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Motivations

Our goal is to study QCD in the saturation regime

Saturation
Qs

lnQ2

Y = ln 1
x

DGLAP

BFKL

BK/JIMWLK
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We want to stay in the perturbative regime: requires a hard scale in the process

Linear small x evolution (BFKL): dominated by 1→ 2 scatterings:
rapid growth of parton densities when going to smaller x values

At large densities, recombination e�ects become important:
Non-linear evolution (BK, JIMWLK)

Probing saturation: reach small x values, preferably in a nucleus (Q2
s ∼ A1/3)
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Forward hadron production at LO

Single inclusive forward hadron production at LO in the q → q channel:

P+

P−

xpP
+

xgP
−+k⊥

p⊥ = zk⊥, yPDF FF

UGD

Dilute projectile: xp =
k⊥√
s
ey, described by a collinear PDF

Dense target: xg =
k⊥√
s
e−y � 1, described by unintegrated gluon distribution S

LO quark multiplicity:
dN

d2p dy
∝ PDF⊗ S ⊗ FF

(
dσ

d2p dy
=

∫
d2b

dN

d2p dy

)
S is the Fourier transform of the correlator S(r):

S(k⊥) =

∫
d2re−ik·rS(r) , S(r = x− y) =

〈
1

Nc

TrV (x)V †(y)

〉
Where V (x) is a fundamental representation Wilson line in the target color �eld
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High energy evolution

The rapidity (or x) evolution of S is governed by the Balitsky-Kovchegov (BK)
equation:

∂S(x− y, x)

∂ lnx
=
ᾱs
2π

∫
d2z

(x− y)2

(x− z)2(z− y)2

[
S(x− y, x)− S(x− z, x)S(z− y, x)

]
Solving numerically this equation, we can evolve perturbatively S down to
lower values of x

For this we need an initial condition S(r, x0) to start the evolution

The initial condition involves non-perturbative dynamics. It can be extracted by
a �t to data

4 / 33



Initial condition for BK evolution

Process generally used to �t the initial condition: deep inelastic scattering

DIS in the dipole picture:

q+,Q2

x0, z0q
+

x1, z1q
+

r = x0 − x1

Structure functions FL and FT :

FL,T (x,Q2) =
Q2

4π2αem
σL,T (x,Q2)

with e.g.

σL(x,Q2) =
4Ncαem
π2

σ0

2

∑
f

e2
f

∫
dz1d

2rQ2z2
1(1− z1)2K2

0

(
Q
√
z1(1− z1)r2

)
(1− S(r, x))

σ0

2
: normalization parameter (transverse area of the proton)
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Initial condition for BK evolution

Possible parametrization for the initial condition of a proton target:

S(r, x0) = exp

[
−

(r2Q2
s,0)γ

4
ln

(
1

|r|ΛQCD

+ ec · e
)]

(γ = 1, ec = 1: original McLerran-Venugopalan model)

Example of �t to HERA DIS data in the region Q2 < 50 GeV2 and x < 0.01
(Lappi, Mäntysaari):

Model χ2/d.o.f Q2
s,0 [GeV2] γ ec σ0/2 [mb]

MV 2.76 0.104 1 1 18.81
MVγ 1.17 0.165 1.135 1 16.45
MVe 1.15 0.060 1 18.9 16.36

Quite good description of the data

There is no such precise data for nuclear targets. Initial condition for a nucleus:
need some modeling (e.g. Glauber model)
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Forward hadron production at LO

Using the obtained dipole correlators to compute forward hadron production
(Lappi, Mäntysaari):

0 1 2 3 4 5 6
pT [GeV]

10−8
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10−4
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10−2

10−1

100

d
N
/(

d
2
p T

d
y

)
[1
/G

eV
2
]

MVγ

MVe

MV
BRAHMS y = 3.2 h− ×10
PHENIX 3 < y < 3.8 π0 ×1
STAR y = 3.3 π0 ×0.1
STAR y = 3.8 π0 ×0.05
STAR y = 4 π0 ×0.01

p + p→ π0/h− + X,
√
s = 200 GeV, K = 2.5

Reasonable description of the trend of the data (but large K factor needed)

This is only leading order. What about NLO corrections?

1309.6963
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Forward hadron production at NLO

NLO corrections to the impact factor for this process: Chirilli, Xiao, Yuan

Example of real q → q contribution:
P+

P−

xpP
+

XP−+q⊥

p⊥ = zk⊥, y
kµq

kµg

Example of virtual q → q contribution:
P+

P−

xpP
+

XP−+k⊥

p⊥ = zk⊥, y
kµq

kµg

1− ξ =
k+g

xpP+ is the momentum fraction of the incoming quark carried by the gluon
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Forward hadron production at NLO

First numerical implementation of these expressions (Sta±to, Xiao, Zaslavsky):

0 1 2 3
10−7

10−5

10−3

10−1

101

η = 3.2
(×0.1)

η = 2.2

p⊥[GeV]

d
3
N

d
η
d
2
p
⊥

[ G
eV
−
2
]

BRAHMS η = 2.2, 3.2

LO

NLO

data

Negative cross section above some p⊥ ∼ Qs

Many works devoted to solving this issue, using for example the kinematical
constraint / Io�e time cuto� (Altinoluk, Armesto, Beuf, Kovner, Lublinsky).
Numerical implementation: Watanabe, Xiao, Yuan, Zaslavsky. Can extend the
positivity range but doesn't solve the problem completely.

1307.4057

It turned out that the cause of the negativity is the subtraction of the LO
contribution from the NLO corrections
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LO vs. NLO

Balitsky-Kovchegov (BK) evolution: resummation of (αs ln 1/x)n,
corresponding to any number of soft gluons already at LO

LO: all gluons are soft:

soft (ξ ∼ 1)

....

NLO impact factor: the �rst gluon can be hard:

exact (any ξ)

....

The case where the �rst gluon is soft is already included in the leading order
⇒ Need to avoid double counting between LO and NLO
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LO vs. NLO

Two possible solutions to avoid double counting:

1) Subtract the case where the gluon in the NLO impact factor is soft
Chirilli, Xiao, Yuan ('CXY')

2) Rearrange the terms to avoid doing a subtraction. The expression for the
cross section is explicitly positive
Iancu, Mueller, Triantafyllopoulos

+

exact

....

These two choices should be equivalent
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The NLO cross section

The expression for the (quark production) multiplicity at NLO reads

dN

d2kdy
= xpq(xp)

S(k⊥, x0)

(2π)2
← No emission

+
αs
2π2

∫ ξmax

xp

dξ
1 + ξ2

1− ξ
xp
ξ
q

(
xp
ξ

){
CFI(k⊥, ξ,X(ξ)) +

Nc

2
J (k⊥, ξ,X(ξ))

}
← real

− αs
2π2

∫ ξmax

0

dξ
1 + ξ2

1− ξ xpq (xp)

{
CFIv(k⊥, ξ,X(ξ)) +

Nc

2
Jv(k⊥, ξ,X(ξ))

}
← virtual

with e.g.

J (k⊥, ξ,X(ξ)) =

∫
d2q

(2π)2

2(k− ξq) · (k− q)

(k− ξq)2(k− q)2
S(q⊥, X(ξ))

−
∫

d2q

(2π)2

d2l

(2π)2

2(k− ξq) · (k− l)

(k− ξq)2(k− l)2
S(q⊥, X(ξ))S(l⊥, X(ξ))

Jv(k⊥, ξ,X(ξ)) =

∫
d2q

(2π)2

2(ξk− q) · (k− q)

(ξk− q)2(k− q)2
S(k⊥, X(ξ))

−
∫

d2q

(2π)2

d2l

(2π)2

2(ξk− q) · (l− q)

(ξk− q)2(l− q)2
S(k⊥, X(ξ))S(l⊥, X(ξ))
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The NLO cross section

In the previous expressions:

xpq(xp)
S(k⊥, x0)

(2π)2
represents the lowest order contribution

(no phase space for BK evolution. x0: initial condition)

X(ξ) is the rapidity scale at which the dipole correlators are evaluated

At LO: the P− fraction needed from the target is
k⊥√
s
e−y ≡ xg

At NLO:

xpP
+

XP−+q⊥

kµq

k+
g = (1− ξ)xpP+

X =
k⊥√
s
e−y

(
1 +

ξ

1− ξ
(q⊥ − k⊥)2

k2
⊥

)
≈ xg

1− ξ ≡ X(ξ) when k⊥ & Qs

The limit ξ < 1− xg
x0
≡ ξmax enforces X(ξ) < x0

The 'CXY' approximation corresponds to making the replacements X(ξ)→ xg
and ξmax → 1
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CF terms

The terms proportional to CF are divergent when the additional gluon at NLO
is collinear to the initial or �nal state quark

These divergences are absorbed in the DGLAP evolution of the PDFs and
fragmentation functions

After subtracting the corresponding 1/ε poles, we should replace I and Iv by

I�nite(k⊥, ξ,X(ξ)) =

∫
d2r

4π
S(r, X(ξ)) ln

c20
r2µ2

(
e−ik·r +

1

ξ2
e
−i k

ξ
·r
)

−2

∫
d2q

(2π)2

(k− ξq) · (k− q)

(k− ξq)2(k− q)2
S(q⊥, X(ξ))

I�nitev (k⊥, ξ,X(ξ)) =
S(k⊥, X(ξ))

2π

(
ln
k2
⊥
µ2

+ ln(1− ξ)2

)
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CF terms

Results for the LO+CF NLO corrections at �xed coupling (αs = 0.2):
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d2kdy
[GeV−2]

LO
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X(ξ) = xg/(1 − ξ), ξmax = 1 − xg/x0
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0
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1

 0  5  10  15

k⊥ [GeV]

NLO/LO

CXY
X(ξ) = xg/(1 − ξ), ξmax = 1 − xg/x0

'CXY' approximation: X(ξ)→ xg and ξmax → 1

In both cases the NLO corrections proportional to CF are positive → not the
cause of the negativity

(Initial condition for the BK evolution at x0 = 0.01: MV model

S(r, x0) = exp

[
−

r2Q2
s,0

4
ln

(
1

|r|ΛQCD

+ e

)]
, Q2

s,0 = 0.2 GeV2 and ΛQCD = 0.241 GeV)
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Nc terms

We can write the sum of the LO and Nc terms as

dNLO+Nc

d2kdy
= xpq(xp)

S(k⊥, x0)

(2π)2
+ αs

∫ 1−xg/x0

0

dξ

1− ξK(k⊥, ξ,X(ξ)) ≡ dNLO+Nc,unsub

d2kdy
,

K(k⊥, ξ,X) =
Nc

(2π)2
(1 + ξ2)

[
θ(ξ − xp)

xp
ξ
q

(
xp
ξ

)
J (k⊥, ξ,X)− xpq (xp)Jv(k⊥, ξ,X)

]
.

At large k⊥ the function K(k⊥, ξ,X) is positive and so is the cross section.

Using the integral BK equation,

S(k⊥, xg) = S(k⊥, x0) + 2αsNc

∫ 1−xg/x0

0

dξ

1− ξ [J (k⊥, 1, X(ξ))− Jv(k⊥, 1, X(ξ))] ,

the LO+Nc terms can be rewritten as

dNLO+Nc,sub

d2kdy
= xpq(xp)

S(k⊥, xg)

(2π)2
+ αs

∫ 1−xg/x0

0

dξ

1− ξ [K(k⊥, ξ,X(ξ))−K(k⊥, 1, X(ξ))] .

'CXY' approximation: X(ξ)→ xg and ξmax → 1 in this subtracted version (not
explicitly positive)
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Nc terms

Results for the LO+Nc NLO corrections at �xed coupling (αs = 0.2):

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 0  5  10  15

k⊥ [GeV]

dN

d2kdy
[GeV−2]

LO

CXY

unsubtracted
subtracted

10
-1

10
0

10
1

 0  5  10  15

k⊥ [GeV]

NLO/LO

CXY

unsubtracted
subtracted

The 'subtracted' and 'unsubtracted' expressions give the same positive results

The 'CXY' approximation leads to negative results for k⊥ & 5 GeV.
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Conclusions at �xed coupling

⇒ The negativity issue observed in the �rst implementation of the NLO impact
factor can be attributed to approximations made in the LO subtraction

In the 'subtracted' formulation, we add and subtract a large contribution. If we
use the CXY approximation what we add and subtract is no longer the same
which can make the �nal result negative

Some other points still need to be understood. So far we considered only �xed
coupling. Additional complications appear when introducing running coupling
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Running coupling

The equivalence between the 'subtracted' and 'unsubtracted' formulations
holds only if one uses the same coupling αs when computing the cross section
and when solving the BK equation

In practice the BK equation is usually solved in coordinate space, with some
prescription for the running coupling

Fixed coupling BK equation:

∂S(r, X)

∂ lnX
= 2αsNc

∫
d2x

(2π)2

r2

x2(r− x)2

[
S(r, X)− S(x, X)S(r− x, X)

]
BK equation with Balitsky's prescription for the running coupling:

∂S(r, X)

∂ lnX
= 2αs(r

2)Nc

∫
d2x

(2π)2

[
S(r, X)− S(x, X)S(r− x, X)

]
×
[

r2

x2(r− x)2
+

1

x2

(
αs(x

2)

αs((r− x)2)
− 1

)
+

1

(r− x)2

(
αs((r− x)2)

αs(x2)
− 1

)]
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Running coupling

We use dipole correlators obtained by solving the BK equation with the
Balitsky prescription for the running coupling. The initial condition is the
'MVe' parametrization shown previously:

S(r, x0 = 0.01) = exp

[
−r2Q2

s,0

4
ln

(
1

|r|ΛQCD

+ ec · e
)]

,

and the running coupling is taken as αs(r
2) =

4π

β0 ln

(
4C2

r2Λ2
QCD

) .
The values Q2

s,0 = 0.06 GeV2, C2 = 7.2 and ec = 18.9 are obtained by a �t to
HERA DIS data

We can't use the (coordinate-space) Balitsky prescription using the previously
shown momentum-space expressions for the cross section. Here we use the
natural choice αs(k

2
⊥) for the explicit αs appearing in the cross section
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Running coupling

Results with running coupling:
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The 'subtracted' and 'unsubtracted' expressions are no longer equivalent

'Subtracted' expression: closer to the 'CXY' result at small k⊥, negative results
at large k⊥

'Unubtracted' expression: positive results at all k⊥, but does not reduce to the
correct LO result in the eikonal limit
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Coordinate space formulation

Possible way to use consistently a coordinate-space running coupling: rewrite
the cross section expression in coordinate space

We write J =
∫
d2re−ik·rJ̃ and Jv =

∫
d2re−ik·rJ̃v, with

J̃ (r, ξ,X)= 2

∫
d2x

(2π)2

x · (x− r)

x2(r− x)2

[
S(r− (1− ξ)x, X)− S(ξx, X)S(r− x, X)

]
,

J̃v(r, ξ,X)= 2

∫
d2x

(2π)2

1

x2

[
S(r + (1− ξ)x, X)− S(x, X)S(r− ξx, X)

]
.

(and similarly for the CF terms)

In these notations the BK equation reads

∂S(r, X)

∂ lnX
= −2αsNc

[
J̃ (r, 1, X)− J̃v(r, 1, X)

]
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Coordinate space formulation

BK equation with Balitsky's prescription for the running coupling:

∂S(r, X)

∂ lnX
= 2αs(r

2)Nc

∫
d2x

(2π)2

[
S(r, X)− S(x, X)S(r− x, X)

]
×
[

r2

x2(r− x)2
+

1

x2

(
αs(x

2)

αs((r− x)2)
− 1

)
+

1

(r− x)2

(
αs((r− x)2)

αs(x2)
− 1

)]

This can be generalized to ξ 6= 1 by replacing J̃v with

J̃ rc
v (r, ξ,X) = 2

∫
d2x

(2π)2

1

x2

αs(x
2)

αs((r− ξx)2)

[
S(r + (1− ξ)x, X)− S(x, X)S(r− ξx, X)

]
,

and by replacing the explicit αs factors by αs(r
2). Not a unique choice but:

ξ = 1: recovers Balitsky's prescription

Fixed coupling results unchanged
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Coordinate space formulation

Results with this formulation:
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The 'subtracted' expression gives the same results as the 'unsubtracted' one

Completely di�erent results compared to �xed coupling or αs(k⊥)

Similar situation with a simpler parent dipole running coupling αs(r
2)

→ the problem is more general than just the Balitsky prescription
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Coordinate space formulation

To illustrate the problem, let's look at the following quantities:

Nk ≡ ᾱs(k⊥)S(k⊥) = ᾱs(k⊥)
∫
d2r e−ik·rS(r)

Nr ≡
∫
d2r ᾱs(r⊥)e−ik·rS(r)

These two quantities do not di�er by only a small factor. Indeed, one �nds at
large k⊥:

Nk ∼
4πᾱs(k⊥)Q2

s

k4
⊥

Nr ∼ −
4π

b̄[ln(k2
⊥/Λ

2)]2
1

k2
⊥

Which are opposite in sign and have di�erent tails

The choice of the running coupling prescription and the Fourier transform do
not 'commute'
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Coordinate space formulation

Possible way to alleviate the issue (at least for the Nc terms): use daughter
dipole prescription αs(x

2) both when solving BK and in the cross section

 0.1

 1

 10

 0  5  10  15  20

k⊥ [GeV]

NLO/LO

pos

ᾱs(k⊥)
ᾱs(x⊥)

Results similar to using αs(k⊥)

But not natural to use this prescription when solving BK

And can't be used for the CF terms: collinear divergence subtracted in
momentum space → impossible to use consistently a coordinate space αs

A fully consistent treatment would probably require to perform the whole
calculation in momentum space
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DIS at NLO

As explained previously the initial condition for the BK evolution can be
obtained by a �t to DIS data

We observed rather large NLO corrections to forward hadron production
→ no reason to expect that they are small for DIS

For consistency, DIS �ts should also include these corrections

We use the NLO expressions for FL,T derived recently (Beuf)
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DIS at NLO

q+,Q2

x0, z0q
+

x2, z2q
+

x1, z1q
+

we can write σNLOL = σICL + σqgL + σdipL , with

σICL = 4Ncαem
∑
f

e2
f

∫
dz1

∫
x0,x1

KLO
L (z1,x0,x1, x0)

σqgL = 8Ncαem
αsCF

π

∑
f

e2
f

∫
dz1

dz2

z2

∫
x0,x1,x2

KNLO
L (z1, z2,x0,x1,x2, X(z2))

σdipL = 4Ncαem
αsCF

π

∑
f

e2
f

∫
dz1

∫
x0,x1

KLO
L (z1,x0,x1, X

dip)

[
1

2
ln2

(
z1

1−z1

)
− π

2

6
+

5

2

]
Variables in red: rapidity scale of the dipole correlators

z2: momentum fraction of the gluon: similar role as 1− ξ in hadron production
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DIS at NLO

Using X(z2) = xBj (similar to the CXY approximation in forward hadron
production):
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Negative results at large Q2
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DIS at NLO

Taking X(z2) = xBj/z2:

1 10 100

Q2
(
GeV2

)0.000
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Positive results at all Q2, σNLO < σLO: very similar situation as in forward
hadron production
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DIS at NLO

Technical di�culty: in the expressions we use, σdip is already integrated over z2

from 0 to 1 assuming X does not depend on z2 → cannot use X(z2) = xBj/z2

Because of that, NLO does not go back to leading order when xBj → x0 (no
phase space for evolution):
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Not a fully consistent scheme for now
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The next step: BK evolution at NLO

Here we discussed only the NLO corrections to the impact factor

A complete NLO calculation must also include the NLO corrections to the BK
evolution

NLO BK equation known (Balitsky, Chirilli) and solved numerically (Lappi,
Mäntysaari). Large collinear contributions lead to unphysical results

The resummation of these contributions leads to physical results (Iancu,
Madrigal, Mueller, Soyez, Triantafyllopoulos)

⇒ Almost all the necessary ingredients for complete NLO calculations are here
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Conclusions

Phenomenological studies in saturation so far: LO impact factor, LO BK
evolution with running coupling corrections

First study with NLO impact factor for forward hadron production:
unphysical results due to some approximations made. Similar features
observed in DIS

Now understood but some di�culties remain:

Forward hadron production: treatment of the running coupling

DIS: need to 'undo' the z2 integral of some terms

Next steps for phenomenology:

Implement the q → g, g → q and g → g channels + fragmentation
functions in forward hadron production

Use collinearly-improved NLO BK for the evolution of dipole correlators

NLO �t to DIS data for the initial condition of the BK evolution
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