NLO description of exclusive diffractive processes with saturation effects

Renaud Boussarie

Institute of Nuclear Physics Polish Academy of Sciences

GDR QCD 2017

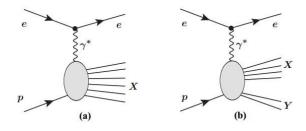
December 2017

In collaboration with A.V.Grabovsky, D.Yu.Ivanov, L.Szymanowski, S.Wallon

Diffractive dijets in DDIS	The shockwave formalism	Open parton production		Further applications
Diffractive DI	S			

Rapidity gap events at HERA

Experiments at HERA : about 10% of scattering events reveal a rapidity gap



DIS events

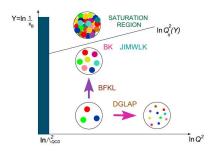
DDIS events

DIS : Deep Inelastic Scattering, DDIS : Diffractive DIS

Rapidity gap \equiv Pomeron exchange

Diffractive dijets in DDIS		Open parton production		
Diffractive D	IS			

Theoretical approaches for DDIS using pQCD



- Collinear factorization approach
 - Relies on a QCD factorization theorem, using a hard scale such as the virtuality Q² of the incoming photon
 - One needs to introduce a diffractive distribution function for partons within a pomeron
- k_T factorization approach for two exchanged gluons
 - low-x QCD approach : $s \gg Q^2 \gg \Lambda_{QCD}$
 - The pomeron is described as a two-gluon color-singlet state

Diffractive dijets in DDIS

The shockwave formalis

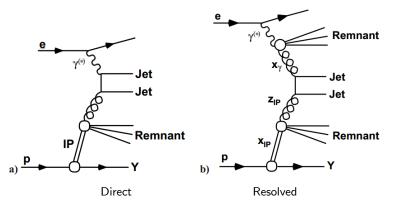
pen parton production

Dijet production

Further application: 000000000

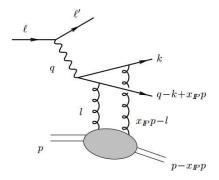
Theoretical approaches for DDIS using pQCD

Collinear factorization approach



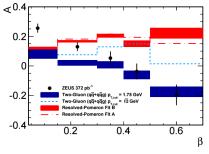
	DDIS using pQ	0000000		
	Open parton production 000000000000000000000000000000000000		Further applications	

k_{T} -factorization approach : two gluon exchange



Bartels, Diehl, Ewerz, Ivanov, Jung, Lotter, Wüsthoff Braun and Ivanov developed a similar model in collinear factorization

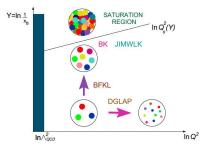
Confrontation of the two approaches with HERA data



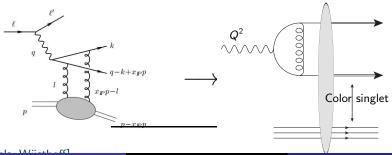
ZEUS collaboration, 2015

[cf. Paul Newman's talk]

Diffractive dijets in DDIS			Dijet production		Further applications	
00000	000000000	000000000000000000000000000000000000000	000000	00000000	00000000	
Diffractive D	IS					

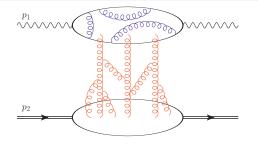


- Shockwave (CGC) approach
 - low-x QCD approach : $s \gg Q^2 \gg \Lambda_{QCD}$
 - The pomeron exchange is described as the action of a color singlet Wilson line operator on the target states



1Zto and a street					
000000	• 00 0000000	000000000000000000000000000000000000000	000000	00000000	000000000
Diffractive dijets in DDIS	The shockwave formalism	Open parton production	Dijet production	Vector meson production	Further applications

Kinematics



$$p_{1} = p^{+} n_{1} - \frac{Q^{2}}{2s} n_{2}$$

$$p_{2} = \frac{m_{t}^{2}}{2p_{2}^{-}} n_{1} + p_{2}^{-} n_{2}$$

$$p^{+} \sim p_{2}^{-} \sim \sqrt{\frac{s}{2}}$$

Lightcone (Sudakov) vectors

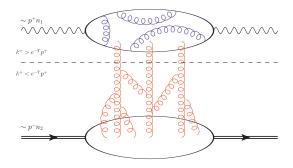
$$n_1 = \sqrt{rac{1}{2}}(1, 0_{\perp}, 1), \quad n_2 = \sqrt{rac{1}{2}}(1, 0_{\perp}, -1), \quad (n_1 \cdot n_2) = 1$$

Lightcone coordinates:

$$x = (x^0, x^1, x^2, x^3) \to (x^+, x^-, \vec{x})$$
$$x^+ = x_- = (x \cdot n_2) \quad x^- = x_+ = (x \cdot n_1)$$

Diffractive dijets in DDIS	The shockwave formalism	Open parton production	Dijet production		Further applications
000000	000000000	000000000000000000000000000000000000000	000000	00000000	000000000

Rapidity separation



Let us split the gluonic field between "fast" and "slow" gluons

$$\begin{aligned} \mathcal{A}^{\mu a}(k^+,k^-,\vec{k}\,) &= & \mathcal{A}^{\mu a}_{\eta}(|k^+| > e^{\eta} p^+,k^-,\vec{k}\,) \\ &+ & b^{\mu a}_{\eta}(|k^+| < e^{\eta} p^+,k^-,\vec{k}\,) \end{aligned}$$

 ${\rm e}^\eta = {\rm e}^{-Y} \ll 1$

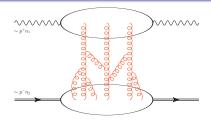
Diffractive dijets in DDIS 000000 The shockwave formalism

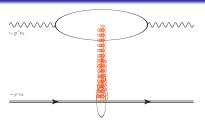
Open parton production Dijet

Dijet production Vecto 000000 000

Vector meson production 000000000 Further applications

Large longitudinal boost to the projectile frame





 $b^{+}(x^{+}, x^{-}, \vec{x}) \qquad \qquad \frac{1}{\Lambda} b^{+}(\Lambda x^{+}, \frac{x^{-}}{\Lambda}, \vec{x})$ $b^{-}(x^{+}, x^{-}, \vec{x}) \qquad \longrightarrow \qquad \Lambda b^{-}(\Lambda x^{+}, \frac{x^{-}}{\Lambda}, \vec{x})$

 $b^k(x^+,x^-,\vec{x})$ $\Lambda \sim \sqrt{\frac{s}{m_t^2}}$ $b^k(\Lambda x^+,\frac{x^-}{\Lambda},\vec{x})$

 $b^{\mu}(x) \rightarrow b^{-}(x) n_{2}^{\mu} = \delta(x^{+}) \mathbf{B}(\vec{x}) n_{2}^{\mu} + O(\sqrt{\frac{m_{t}^{2}}{s}})$ Shockwave approximation

During	1 . 1	and all all and the	. C.I.I		
000000	00000000	000000000000000000000000000000000000000	000000	00000000	000000000
Diffractive dijets in DDIS	The shockwave formalism	Open parton production	Dijet production	Vector meson production	Further applications

Propagator through the external shockwave field

$$G(z_{2}, z_{0}) = -\int d^{4}z_{1}\theta(z_{2}^{+}) \,\delta(z_{1}^{+}) \,\theta(-z_{0}^{+}) \,G(z_{2}-z_{1}) \,\gamma^{+}G(z_{1}-z_{0}) \,U_{1}$$

Wilson lines :

$$U_{i}^{\eta} = U_{\vec{z}_{i}}^{\eta} = P \exp\left[ig \int_{-\infty}^{+\infty} b_{\eta}^{-}(z_{i}^{+}, \vec{z}_{i}) dz_{i}^{+}
ight]$$

$$U_{i}^{\eta} = 1 + ig \int_{-\infty}^{+\infty} b_{\eta}^{-}(z_{i}^{+}, \vec{z}_{i}) dz_{i}^{+} + (ig)^{2} \int_{-\infty}^{+\infty} b_{\eta}^{-}(z_{i}^{+}, \vec{z}_{i}) b_{\eta}^{-}(z_{j}^{+}, \vec{z}_{j}) \theta(z_{ji}^{+}) dz_{i}^{+} dz_{j}^{+}$$
...
$$= \frac{1}{2} = \frac{1}{2} + \frac{$$

Fourier transform of a Wilson line

$$\tilde{U}^{\eta}(\vec{p}) = \int d^{D-2}\vec{z} \ e^{-i(\vec{p}\cdot\vec{z})} U^{\eta}_{\vec{z}}$$

$$z_{0} \xrightarrow{p_{1}} z_{1} \xrightarrow{p_{2}} z_{2}$$

$$G(p_2,p_1) \propto heta(p_1^+) \int d^D p \ \delta(p^+) \, \delta(p+p_1-p_2) G(p_2) \gamma^+ G(p_1) ilde{U}_{ec{p}}^\eta$$

Exchange in *t*-channel of an effective off-shell particle with 0 momentum along n_1

Festovized misture						
000000	000000000	000000000000000000000000000000000000000	000000	00000000	000000000	
Diffractive dijets in DDIS	The shockwave formalism	Open parton production	Dijet production	Vector meson production	Further applications	

Factorized picture



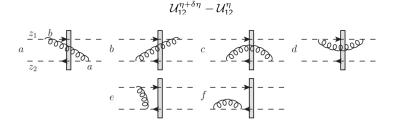
Factorized amplitude

$$\mathcal{A}^{\eta} = \int d^{D-2} \vec{z}_1 d^{D-2} \vec{z}_2 \, \Phi^{\eta}(\vec{z}_1, \vec{z}_2) \, \langle \mathcal{P}' | [\operatorname{Tr}(U^{\eta}_{\vec{z}_1} U^{\eta\dagger}_{\vec{z}_2}) - \mathcal{N}_c] | \mathcal{P} \rangle$$

Dipole operator $U_{ij}^{\eta} = \frac{1}{N_c} \text{Tr}(U_{\vec{z}_i}^{\eta} U_{\vec{z}_j}^{\eta\dagger}) - 1$ Written similarly for any number of Wilson lines in any color representation!

Diffractive dijets in DDIS	The shockwave formalism	Open parton production	Dijet production	Vector meson production	Further applications
	0000000000				

Evolution for the dipole operator



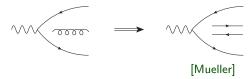
B-JIMWLK hierarchy of equations [Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner]

$$\frac{\partial \mathcal{U}_{12}^{\eta}}{\partial \eta} = \frac{\alpha_{s} N_{c}}{2\pi^{2}} \int d\vec{z}_{3} \vec{z}_{12}^{2}} \left[\mathcal{U}_{13}^{\eta} + \mathcal{U}_{32}^{\eta} - \mathcal{U}_{12}^{\eta} + \mathcal{U}_{13}^{\eta} \mathcal{U}_{32}^{\eta} \right]$$
$$\frac{\partial \mathcal{U}_{13}^{\eta} \mathcal{U}_{32}^{\eta}}{\partial \eta} = \dots$$

Evolves a dipole into a double dipole

Diffrac 0000		The shockwave formalism	Open parton production 000000000000000000000000000000000000		Further applications
The	e BK equa	ition			

Mean field approximation, or 't Hooft planar limit $N_c \to \infty$ in the dipole B-JIMWLK equation replacements



⇒ BK equation [Balitsky, 1995] [Kovchegov, 1999]

$$\frac{\partial \langle \mathcal{U}_{12}^{\eta} \rangle}{\partial \eta} = \frac{\alpha_{s} N_{c}}{2\pi^{2}} \int d\vec{z}_{3} \frac{\vec{z}_{12}^{2}}{\vec{z}_{13}^{2} \vec{z}_{23}^{2}} \left[\langle \mathcal{U}_{13}^{\eta} \rangle + \langle \mathcal{U}_{32}^{\eta} \rangle - \langle \mathcal{U}_{12}^{\eta} \rangle + \langle \mathcal{U}_{13}^{\eta} \rangle \langle \mathcal{U}_{32}^{\eta} \rangle \right]$$

BFKL/BKP part Triple pomeron vertex

Non-linear term : saturation

Linear limit: usual k_t -factorization (BFKL framework)

s-channel discontinuity of $A + B \rightarrow A' + B'$ scattering amplitudes

$$\delta(p_{A'}+p_{B'}-p_A-p_B)Disc_s\mathcal{A}_{AB}^{A'B'}\propto\Phi(A',A)\otimes\mathcal{K}\otimes\Phi(B',B)$$

For any non-singular operator \mathcal{O} this discontinuity is invariant under

$$\Phi(A',A) \to \Phi(A',A) \mathcal{O}, \quad \mathcal{K} \to \mathcal{O}^{-1}\mathcal{K}\mathcal{O}, \quad \Phi(B',B) \to \mathcal{O}^{-1}\Phi(B',B)$$

i.e. there is an ambiguity of distribution of corrections between the impact factors and the kernel. In the linear approximation of BK there exists an operator ${\cal O}$ such that

$$\Phi_{BK} \otimes \mathcal{K}_{BK} \otimes \Phi_{BK} = (\Phi_{BFKL} \otimes \mathcal{O}) \otimes (\mathcal{O}^{-1} \otimes \mathcal{K}_{BFKL} \otimes \mathcal{O}) \otimes (\mathcal{O}^{-1} \otimes \Phi_{BFKL})$$

The expression for \mathcal{O} to make the kernels explicitly equivalent at NLO accuracy under such a change of variables is known [Fadin, Fiore, Grabovsky, Papa]

Diffractive dijets in DDIS 000000 The shockwave formalism

Open parton production

oduction Dijet production

n Vector meson production 00000000 Further applications

Practical use of the formalism

- Compute the upper impact factor using the effective Feynman rules
- Build non-perturbative models for the matrix elements of the Wilson line operators acting on the target states
- Solve the B-JIMWLK evolution for these matrix elements with such non-perturbative initial conditions at a typical target rapidity $\eta = Y_0$
- Evaluate the solution at a typical projectile rapidity η = Y, or at the rapidity of the slowest gluon (cf. Bertrand's talk)
- Convolute the solution and the impact factor



Exclusive diffraction allows one to probe the b_{\perp} -dependence of the non-perturbative scattering amplitude

000000	000000000	000000000000000000000000000000000000000	000000	00000000	000000000
				Vector meson production	

First step: open parton production

- Regge-Gribov limit : $s \gg Q^2 \gg \Lambda_{QCD}$
- Otherwise completely general kinematics
- Shockwave (CGC) Wilson line approach
- Transverse dimensional regularization $d = 2 + 2\varepsilon$, longitudinal cutoff

 $|\boldsymbol{p}_{g}^{+}| > \alpha \boldsymbol{p}_{\gamma}^{+}$

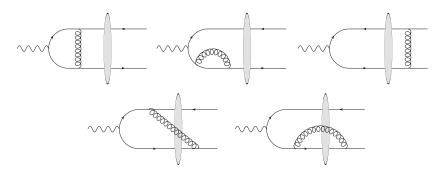
Diffractive dijets in DDIS 000000	Open parton production OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC		Further applications
LO diagram			

$$\vec{p}_2$$
 $p_{\bar{q}}$ $p_{\bar{q}}$

$$\begin{aligned} \mathcal{A} &= \frac{\delta^{ik}}{\sqrt{N_c}} \int \! d^D z_0 [\bar{u}(p_q, z_0)]_{ij}(-ie_q) \hat{\varepsilon}_{\gamma} e^{-i(p_{\gamma} \cdot z_0)} [v(p_{\bar{q}}, z_0)]_{jk} \theta(-z_0^+) \\ & \text{Color factor} \\ & \frac{\delta^{ik}}{\sqrt{N_c}} [(\tilde{U}^{\alpha}_{\vec{p}_1})_{ij} (\tilde{U}^{\alpha}_{-\vec{p}_2})_{jk} - \delta_{ij} \delta_{jk}] = \sqrt{N_c} \, \tilde{\mathcal{U}}^{\alpha}(\vec{p}_1, \vec{p}_2) \\ \tilde{\mathcal{U}}^{\alpha}(\vec{p}_1, \vec{p}_2) &= \int d^d \vec{z}_1 d^d \vec{z}_2 \, e^{-i(\vec{p}_1 \cdot \vec{z}_1) - i(\vec{p}_2 \cdot \vec{z}_2)} [\frac{1}{N_c} \text{Tr}(\mathcal{U}^{\alpha}_{\vec{z}_1} \mathcal{U}^{\alpha\dagger}_{\vec{z}_2}) - 1] \\ p_{ij} &= p_i - p_j \end{aligned}$$

	00000000000				0000000000000	
Differentian dilate in DDIC	The sheet laws of ferrors allows	Open parton production	Dilat and death an	\/t	Eventhe a small antions	

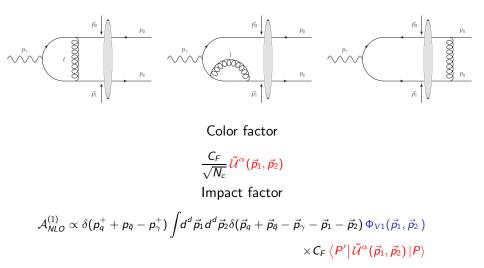
NLO open $q\bar{q}$ production



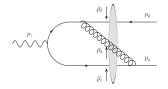
Diagrams contributing to the NLO correction

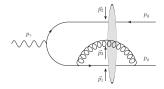
Diffractive dijets in DDIS The shockwave formalism Open parton production Dijet production Vector meson production Further applications

First kind of virtual corrections



Second kind of virtual corrections





Color factor

$$\frac{\delta^{ik}}{\sqrt{N_c}}(t^a U_1 t^b U_2^\dagger)_{ik} (U_3)^{ab}$$

Action of the Wilson line in the adjoint representation

$$(U_3)^{ab}t^b = U_3t^aU_3^{\dagger} \quad \Rightarrow \quad (U_3)^{ab} = 2\mathrm{Tr}(t^aU_3t^bU_3^{\dagger})$$

+ Fierz identity

$$C_F \mathcal{U}_{12} + \frac{1}{2} [\mathcal{U}_{13} + \mathcal{U}_{32} - \mathcal{U}_{12} + \mathcal{U}_{13} \mathcal{U}_{32}] = C_F \mathcal{U}_{12} + \mathcal{W}_{123}$$

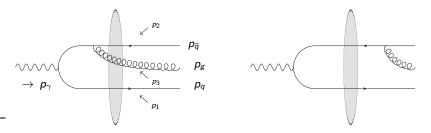
Diffractive dijets in DDIS The shockwave formalism Open parton production Dijet production Vector meson production Further applications

Second kind of virtual corrections

$$\begin{aligned} \mathcal{A}_{NLO}^{(2)} &\propto \delta(p_q^+ + p_{\bar{q}} - p_{\gamma}^+) \int d^d \vec{p}_1 d^d \vec{p}_2 d^d \vec{p}_3 \delta(\vec{p}_q + \vec{p}_{\bar{q}} - \vec{p}_{\gamma} - \vec{p}_1 - \vec{p}_2 - \vec{p}_3) \\ \times [\Phi_{V1}'(\vec{p}_1, \vec{p}_2) C_F \langle P' | \tilde{\mathcal{U}}^{\alpha}(\vec{p}_1, \vec{p}_2) | P \rangle \\ + \Phi_{V2}(\vec{p}_1, \vec{p}_2, \vec{p}_3) \langle P' | \tilde{\mathcal{W}}(\vec{p}_1, \vec{p}_2, \vec{p}_3) | P \rangle] \end{aligned}$$

		000000000000000000000000000000000000000			
Diffractive dijets in DDIS	The shockwave formalism	Open parton production	Dijet production	Vector meson production	Further applications

LO open $q\bar{q}g$ production



 $\begin{aligned} \mathcal{A}_{R}^{(2)} &\propto \delta(p_{q}^{+} + p_{\bar{q}} + p_{g}^{+} - p_{\gamma}^{+}) \int d^{d}\vec{p}_{1}d^{d}\vec{p}_{2}d^{d}\vec{p}_{3}\delta(\vec{p}_{q} + \vec{p}_{\bar{q}} + \vec{p}_{g} - \vec{p}_{\gamma} - \vec{p}_{1} - \vec{p}_{2} - \vec{p}_{3}) \\ \times [\Phi_{R1}^{\prime}(\vec{p}_{1}, \vec{p}_{2}) C_{F} \langle P^{\prime} | \tilde{\mathcal{U}}^{\alpha}(\vec{p}_{1}, \vec{p}_{2}) | P \rangle \\ + \Phi_{R2}(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}) \langle P^{\prime} | \tilde{\mathcal{W}}(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}) | P \rangle] \end{aligned}$

$$\begin{aligned} \mathcal{A}_{R}^{(1)} &\propto \delta(p_{q}^{+} + p_{\bar{q}} + p_{g}^{+} - p_{\gamma}^{+}) \int d^{d}\vec{p}_{1}d^{d}\vec{p}_{2}\delta(\vec{p}_{q} + \vec{p}_{\bar{q}} + \vec{p}_{g} - \vec{p}_{\gamma} - \vec{p}_{1} - \vec{p}_{2}) \\ &\times \Phi_{R1}(\vec{p}_{1}, \vec{p}_{2}) C_{F} \left\langle P' \right| \tilde{\mathcal{U}}^{\alpha}(\vec{p}_{1}, \vec{p}_{2}) \left| P \right\rangle \end{aligned}$$

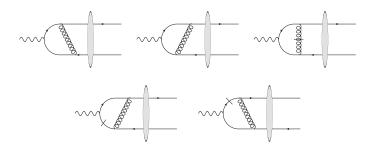
Diffractive dijets in DDIS 000000 The shockwave formalism 000000000

Open parton production Di

Dijet production

Vector meson production 000000000 Further applications

Generic computation method



- Perform the k_{\perp} integration with the usual *d*-dimensional regularization methods
- Perform the k^+ integration with the longitudinal cutoff αp_{γ}^+ when possible, or isolate the divergent term by + prescription

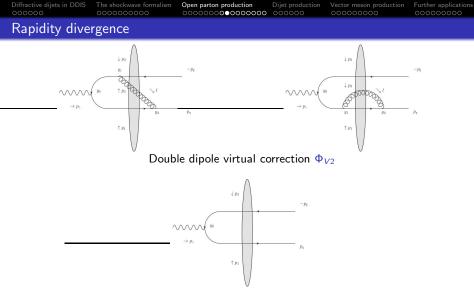
$$\int_{\alpha p_{\gamma}^{+}}^{p^{+}} dk^{+} \frac{F(k^{+})}{k^{+}} = \int_{\alpha p_{\gamma}^{+}}^{p^{+}} dk^{+} \frac{F(0)}{k^{+}} + \int_{0}^{p^{+}} dk^{+} \left[\frac{F(k^{+})}{k^{+}} \right]_{-}^{-}$$

	Open parton production		Further applications
Divergences			

Remaining divergences

• Rapidity divergence $p_g^+ \to 0$ • UV divergence $\vec{p}_g^2 \to +\infty$ • Soft divergence $p_g \to 0$ • Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$ • Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$ • Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$

• Soft and collinear divergence $p_g = \frac{p_g^+}{p_q^+} p_q$ or $\frac{p_g^+}{p_q^+} p_{\bar{q}}$, $p_g^+ \to 0$ $\Phi_{R1} \Phi_{R1}^*$



B-JIMWLK evolution of the LO term : $\Phi_0 \otimes \mathcal{K}_{BK}$

Rapidity divergence							
	Diffractive dijets in DDIS 000000		Open parton production		Vector meson production	Further applications	

B-JIMWLK equation for the dipole operator

$$\begin{split} \frac{\partial \tilde{\mathcal{U}}_{12}^{\alpha}}{\partial \log \alpha} &= 2\alpha_{s} N_{c} \mu^{2-d} \int \frac{d^{d} \vec{k}_{1} d^{d} \vec{k}_{2} d^{d} \vec{k}_{3}}{(2\pi)^{2d}} \delta(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3} - \vec{p}_{1} - \vec{p}_{2}) \Big(\tilde{\mathcal{U}}_{13}^{\alpha} \tilde{\mathcal{U}}_{32}^{\alpha} + \tilde{\mathcal{U}}_{13}^{\alpha} + \tilde{\mathcal{U}}_{32}^{\alpha} - \tilde{\mathcal{U}}_{12}^{\alpha} \Big) \\ \times \left[2 \frac{(\vec{k}_{1} - \vec{p}_{1}) \cdot (\vec{k}_{2} - \vec{p}_{2})}{(\vec{k}_{1} - \vec{p}_{1})^{2} (\vec{k}_{2} - \vec{p}_{2})^{2}} + \frac{\pi^{\frac{d}{2}} \Gamma(1 - \frac{d}{2}) \Gamma^{2}(\frac{d}{2})}{\Gamma(d - 1)} \left(\frac{\delta(\vec{k}_{2} - \vec{p}_{2})}{\left[(\vec{k}_{1} - \vec{p}_{1})^{2} \right]^{1 - \frac{d}{2}}} + \frac{\delta(\vec{k}_{1} - \vec{p}_{1})}{\left[(\vec{k}_{2} - \vec{p}_{2})^{2} \right]^{1 - \frac{d}{2}}} \right) \right] \end{split}$$

 η rapidity divide, which separates the upper and the lower impact factors

$$\Phi_0 \tilde{\mathcal{U}}_{12}^{lpha}
ightarrow \Phi_0 \tilde{\mathcal{U}}_{12}^{\eta} + 2 \log\left(rac{e^{\eta}}{lpha}
ight) \mathcal{K}_{BK} \Phi_0 \tilde{\mathcal{V}}_{123}$$

Rapidity divergence						
Diffractive dijets in DDIS The shockwave formalism Open parton production Dijet prod 0000000 0000000000 000000000000000000000000000000000000						

Virtual contribution

$$(\Phi^{\mu}_{V2})_{div} \propto \Phi^{\mu}_0 \left\{ 4 \ln \left(\frac{x \bar{x}}{\alpha^2} \right) \left[\frac{1}{\varepsilon} + \ln \left(\frac{\vec{p_3}^2}{\mu^2} \right) \right] - \frac{6}{\varepsilon} \right\}$$

BK contribution

$$(\Phi^{\mu}_{BK})_{div} \propto \Phi^{\mu}_{0} \left\{ 4 \ln \left(rac{lpha^{2}}{e^{2\eta}}
ight) \left[rac{1}{arepsilon} + \ln \left(rac{ec{
ho}_{3}^{2}}{\mu^{2}}
ight)
ight]
ight\}$$

Sum : the α dependence cancels

$$(\Phi_{V2}^{\prime\mu})_{div} \propto \Phi_0^{\mu} \left\{ 4 \ln \left(\frac{x \bar{x}}{e^{2\eta}} \right) \left[\frac{1}{\varepsilon} + \ln \left(\frac{\vec{P_3}^2}{\mu^2} \right) \right] - \frac{6}{\varepsilon} \right\}$$

Description of the second second						
000000	000000000	000000000000000000000000000000000000000	000000	00000000	000000000	
Diffractive dijets in DDIS	The shockwave formalism	Open parton production	Dijet production	Vector meson production	Further applications	

Rapidity divergence

Cancellation of the remaining $1/\epsilon$ divergence

Convolution

$$\begin{aligned} \left(\Phi_{V2}^{\prime \mu} \otimes \mathcal{W} \right) &= 2 \int d^d \vec{p}_1 d^d \vec{p}_2 d^d \vec{p}_3 \left\{ 4 \ln \left(\frac{x \bar{x}}{e^{2 \eta}} \right) \left[\frac{1}{\varepsilon} + \ln \left(\frac{\vec{p}_3^2}{\mu^2} \right) \right] - \frac{6}{\varepsilon} \right\} \\ &\times \delta(\vec{p}_{q1} + \vec{p}_{\bar{q}2} - \vec{p}_3) \left[\tilde{\mathcal{U}}_{13} + \tilde{\mathcal{U}}_{32} - \tilde{\mathcal{U}}_{12} - \tilde{\mathcal{U}}_{13} \tilde{\mathcal{U}}_{32} \right] \Phi_0^{\mu}(\vec{p}_1, \vec{p}_2) \end{aligned}$$

Rq :

- $\Phi_0(\vec{p_1}, \vec{p_2})$ only depends on one of the *t*-channel momenta.
- The double-dipole operators cancels when $\vec{z_3} = \vec{z_1}$ or $\vec{z_3} = \vec{z_2}$.

This permits one to show that the convolution cancels the remaining $\frac{1}{\varepsilon}$ divergence.

Then
$$\tilde{\mathcal{U}}_{12}^{\alpha} \Phi_0 + \Phi_{V2}$$
 is finite

Diffractive dijets in DDIS 000000	Open parton production		Further applications
Divergences			

- Rapidity divergence
- UV divergence $\vec{p}_g^2 \rightarrow +\infty$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*$
- Soft divergence $p_g \rightarrow 0$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*, \Phi_{R1} \Phi_{R1}^*$
- Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$ $\Phi_{R1} \Phi_{R1}^*$
- Soft and collinear divergence $p_g = \frac{p_g^+}{p_q^+} p_q$ or $\frac{p_g^+}{p_q^+} p_{\bar{q}}$, $p_g^+ \to 0$ $\Phi_{R1} \Phi_{R1}^*$

Diffractive dijets in DDIS 000000		Open parton production			Further applications	
UV divergence						

Cancelling tadpole integrals in dimensional regularization

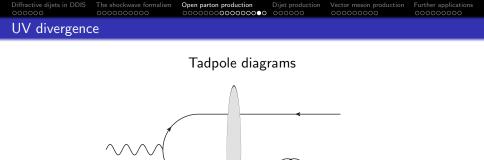
Split the phase space between a UV part and an IR part

$$\int \frac{d^{D}k}{(k^{2}+i0)^{2}} = i S_{D-1} \int_{0}^{+\infty} dk_{E} (k_{E})^{D-5}$$
$$= \lim_{k_{IR} \to 0, k_{UV} \to +\infty} \left[\int_{k_{IR}}^{\Lambda} dk_{E} (k_{E})^{D-5} + \int_{\Lambda}^{k_{UV}} dk_{E} (k_{E})^{D-5} \right]$$

For $D = 4 + \epsilon$, the divergence is regulated by $\epsilon_{IR} > 0$ in the IR part and by $\epsilon_{UV} < 0$ in the UV part. The pole in the previous integral then reads

$$\int \frac{d^D k}{(k^2 + i0)^2} = \frac{1}{2\epsilon_{IR}} - \frac{1}{2\epsilon_{UV}}$$

Then one can cancel the result in the analytic continuation for $\epsilon_{IR} = \epsilon_{UV} = \epsilon \simeq 0.$



Some null diagrams just contribute to turning UV divergences into IR divergences

$$\Phi = 0 \propto \left(\frac{1}{2\epsilon_{IR}} - \frac{1}{2\epsilon_{UV}}\right)$$

In the massless limit, renormalization of the external quark lines is absent in dimensional regularization.

Diffractive dijets in DDIS 000000	Open parton production		Further applications
Divergences			

- Rapidity divergence
- UV divergence
- Soft divergence $p_g \rightarrow 0$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*, \Phi_{R1} \Phi_{R1}^*$
- Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$ $\Phi_{R1} \Phi_{R1}^*$
- Soft and collinear divergence $p_g = \frac{p_g^+}{p_q^+} p_q$ or $\frac{p_g^+}{p_q^+} p_{\bar{q}}$, $p_g^+ \to 0$ $\Phi_{R1} \Phi_{R1}^*$

Diffractive dijets in DDIS		Open parton production	Dijet production	Vector meson production	Further applications
000000	000000000	000000000000000000000000000000000000000	00000	00000000	00000000

Constructing a finite cross section

Exclusive diffractive production of a forward dijet

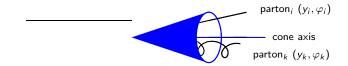
From partons to jets

Jet cone algorithm

We define a cone width for each pair of particles with momenta p_i and p_k , rapidity difference ΔY_{ik} and relative azimuthal angle $\Delta \varphi_{ik}$

$$\left(\Delta Y_{ik}\right)^2 + \left(\Delta \varphi_{ik}\right)^2 = R_{ik}^2$$

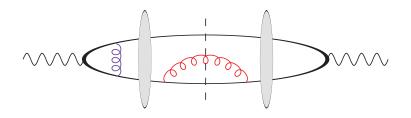
If $R_{ik}^2 < R^2$, then the two particles together define a single jet of momentum $p_i + p_k$.



Applying this in the small R^2 limit cancels our soft and collinear divergence.

Demostration of the						
000000	000000000	00000000000000000	000000	00000000	000000000	
Diffractive dijets in DDIS		Open parton production	Dijet production	Vector meson production	Further applications	

Remaining divergence



• Soft divergence $p_g \rightarrow 0$

$$\Phi_{V1}\Phi_{0}^{*} + \Phi_{0}\Phi_{V1}^{*}, \Phi_{R1}\Phi_{R1}^{*}$$

• Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$

$$\Phi_{V1}\Phi_0^* + \Phi_0\Phi_{V1}^* + \Phi_{R1}\Phi_{R1}^*$$

Demostration of the						
000000	000000000	000000000000000000000000000000000000000	000000	00000000	00000000	
Diffractive dijets in DDIS	The shockwave formalism	Open parton production	Dijet production	Vector meson production	Further applications	

Remaining divergence

Soft real emission

$$\left(\Phi_{R1}\Phi_{R1}^*
ight)_{soft}\propto \left(\Phi_0\Phi_0^*
ight)\int_{ ext{outside the cones}}\left|rac{p_q^\mu}{(p_q,
ho_g)}-rac{p_{ar q}^\mu}{(p_{ar q},
ho_g)}
ight|^2rac{dp_g^+}{p_g^+}rac{d^dp_g}{(2\pi)^d}$$

Collinear real emission

$$\left(\Phi_{\textit{R1}}\Phi_{\textit{R1}}^{*}\right)_{\textit{col}}\propto\left(\Phi_{0}\Phi_{0}^{*}\right)\left(\mathcal{N}_{\textit{q}}+\mathcal{N}_{\bar{\textit{q}}}\right)$$

Where $\ensuremath{\mathcal{N}}$ is the number of jets in the quark or the antiquark

$$\mathcal{N}_{k} = \frac{(4\pi)^{\frac{d}{2}}}{\Gamma(2-\frac{d}{2})} \int_{\alpha p_{\gamma}^{+}}^{p_{jet}^{+}} \frac{dp_{g}^{+} dp_{k}^{+}}{2p_{g}^{+} 2p_{k}^{+}} \int_{\mathrm{in \ cone \ k}} \frac{d^{d} \vec{p}_{g} d^{d} \vec{p}_{k}}{(2\pi)^{d} \mu^{d-2}} \frac{\mathrm{Tr}\left(\hat{p}_{k} \gamma^{\mu} \hat{p}_{jet} \gamma^{\nu}\right) d_{\mu\nu}(p_{g})}{2p_{jet}^{+} \left(p_{k}^{-} + p_{g}^{-} - p_{jet}^{-}\right)^{2}}$$

Those two contributions cancel exactly the virtual divergences

Diffractive dijets in DDIS	The shockwave formalism	Open parton production	Dijet production	Vector meson production	Further applications
000000	000000000	00000000000000000	000000	00000000	00000000

Cancellation of divergences

Total divergence

$$(d\sigma_1)_{div} = \alpha_s \frac{\Gamma(1-\varepsilon)}{(4\pi)^{1+\varepsilon}} \left(\frac{N_c^2-1}{2N_c}\right) (S_V + S_V^* + S_R + \mathcal{N}_{jet1} + \mathcal{N}_{jet2}) d\sigma_0$$

Virtual contribution

$$S_{V} = \left[2\ln\left(\frac{x_{j}x_{j}}{\alpha^{2}}\right) - 3\right] \left[\ln\left(\frac{x_{j}x_{j}\mu^{2}}{(x_{j}\vec{p}_{j} - x_{j}\vec{p}_{j})^{2}}\right) - \frac{1}{\epsilon}\right] + 2i\pi\ln\left(\frac{x_{j}x_{j}}{\alpha^{2}}\right) + \ln^{2}\left(\frac{x_{j}x_{j}}{\alpha^{2}}\right) - \frac{\pi^{2}}{3} + 6$$

Real contribution

$$\begin{split} S_{R} + \mathcal{N}_{jet1} + \mathcal{N}_{jet2} &= 2 \left[\ln \left(\frac{(x_{j}\vec{p}_{j} - x_{j}\vec{p}_{j})^{4}}{x_{j}^{2}x_{j}^{2}R^{4}\vec{p}_{j}^{-2}\vec{p}_{j}^{-2}} \right) \ln \left(\frac{4E^{2}}{x_{j}x_{j}(p_{\gamma}^{+})^{2}} \right) \\ &+ 2 \ln \left(\frac{x_{j}x_{j}}{\alpha^{2}} \right) \left(\frac{1}{\epsilon} - \ln \left(\frac{x_{j}x_{j}\mu^{2}}{(x_{j}\vec{p}_{j} - x_{j}\vec{p}_{j})^{2}} \right) \right) - \ln^{2} \left(\frac{x_{j}x_{j}}{\alpha^{2}} \right) \\ &+ \frac{3}{2} \ln \left(\frac{16\mu^{4}}{R^{4}\vec{p}_{j}^{-2}\vec{p}_{j}^{-2}} \right) - \ln \left(\frac{x_{j}}{x_{j}} \right) \ln \left(\frac{x_{j}\vec{p}_{j}^{-2}}{x_{j}\vec{p}_{j}^{-2}} \right) - \frac{3}{\epsilon} - \frac{2\pi^{2}}{3} + 7 \right] \end{split}$$

Diffractive dijets in DDIS The shockwave formalism Open parton production Dijet production Vector meson production Further applications

Cancellation of divergences

Total "divergence"

$$div = S_V + S_V^* + S_R + \mathcal{N}_{jet1} + \mathcal{N}_{jet2}$$

$$= 4 \left[\frac{1}{2} \ln \left(\frac{(x_{\bar{j}} \vec{p}_{\bar{j}} - x_{\bar{j}} \vec{p}_{\bar{j}})^4}{x_{\bar{j}}^2 x_{\bar{j}}^2 R^4 \vec{p}_{\bar{j}}^{-2} \vec{p}_{\bar{j}}^{-2}} \right) \left(\ln \left(\frac{4E^2}{x_{\bar{j}} x_j (p_{\gamma}^+)^2} \right) + \frac{3}{2} \right) \right. \\ \left. + \ln \left(8 \right) - \frac{1}{2} \ln \left(\frac{x_j}{x_{\bar{j}}} \right) \ln \left(\frac{x_j \vec{p}_{\bar{j}}^{-2}}{x_{\bar{j}} \vec{p}_{\bar{j}}^{-2}} \right) + \frac{13 - \pi^2}{2} \right]$$

Our cross section is thus finite

Diffractive dijets in DDIS		Open parton production	Dijet production	Vector meson production	Further applications
000000	000000000	000000000000000000000000000000000000000	000000	0000000	00000000

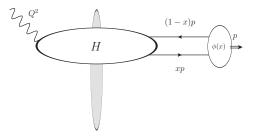
Constructing a finite amplitude

Exclusive diffractive production of a light neutral vector meson

Towards an extension of [Munier, Stasto, Mueller] and [Ivanov, Kotsky, Papa]

Diffractive dijets in DDIS 000000	The shockwave formalism	Open parton production	Vector meson production	Further applications

Additional factorization



Once the amplitude is factorized in terms of impact factors, we perform an additional twist expansion in powers of a hard Björken scale (photon virtuality, Madelstam t..).

Thus we can factorize, in terms of collinear factorization, the bilocal matrix element

$$\langle V(p)|\bar{\psi}(z_{12})\gamma^{\mu}\psi(0)|0\rangle|_{z_{12}^{2}\to 0} = p_{\mu}m_{V}f_{V}\int_{0}^{1}dx\,e^{ix(p\cdot z_{12})}\phi_{\parallel}(x)$$

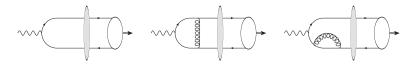
 $\phi_{\parallel}(x) =$ meson Distribution Amplitude (DA)

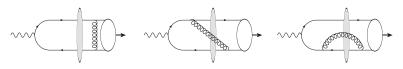
Diffractive dijets in DDIS

Open parton production

Dijet production Vector meson production 000000000

Exclusive diffractive production of a light neutral vector meson





$$\begin{split} \mathfrak{A}_{0} &= -\frac{\mathbf{e}_{V} f_{V} \varepsilon_{\beta}}{N_{c}} \int_{0}^{1} dx \varphi_{\parallel} (x) \int \frac{d^{d} \vec{p}_{1}}{(2\pi)^{d}} \frac{d^{d} \vec{p}_{2}}{(2\pi)^{d}} \\ &\times (2\pi)^{d+1} \delta \left(p_{V}^{+} - p_{\gamma}^{+} \right) \delta \left(\vec{p}_{V} - \vec{p}_{\gamma} - \vec{p}_{1} - \vec{p}_{2} \right) \\ &\times \Phi_{0}^{\beta} (x, \vec{p}_{1}, \vec{p}_{2}) \widetilde{\mathcal{U}}_{12}^{\eta}. \end{split}$$

Leading twist for a longitudinally polarized meson Otherwise general kinematics, including transverse virtual photon (twist 3) contributions, and the photoproduction limit (for large t-channel momentum transfer)

Efremov, Radyushkin, Brodsky, Lepage evolution equation for a DA

Renormalization of the bilocal operator

 $\bar{\psi}(z_{12})\gamma^{\mu}\psi(0)$

 \Rightarrow Evolution equation for the distribution amplitude in the $\overline{\textit{MS}}$ scheme

$$\frac{\partial \varphi(x,\mu_F^2)}{\partial \ln \mu_F^2} = \frac{\alpha_s C_F}{2\pi} \frac{\Gamma(1-\epsilon)}{(4\pi)^{\epsilon}} \left(\frac{\mu_F^2}{\mu^2}\right)^{\epsilon} \int_0^1 dz \varphi(z,\mu_F^2) \mathcal{K}(x,z),$$

 $\mathcal{K} = \mathsf{ERBL} \ \mathsf{kernel}$

ERBL evoluti	on equation			
Diffractive dijets in DDIS 000000		Open parton production 000000000000000000000000000000000000		Further applications

Evolution equation for the distribution amplitude in the \overline{MS} scheme

$$\frac{\partial \varphi(x,\mu_F^2)}{\partial \ln \mu_F^2} = \frac{\alpha_s C_F}{2\pi} \frac{\Gamma(1-\epsilon)}{(4\pi)^{\epsilon}} \left(\frac{\mu_F^2}{\mu^2}\right)^{\epsilon} \int_0^1 dz \varphi(z,\mu_F^2) \mathcal{K}(x,z),$$

where we parameterize the ERBL kernel for consistency as

$$\mathcal{K}(x, z) = \frac{x}{z} \left[1 + \frac{1}{z - x} \right] \theta(z - x - \alpha)$$

+
$$\frac{1 - x}{1 - z} \left[1 + \frac{1}{x - z} \right] \theta(x - z - \alpha)$$

+
$$\left[\frac{3}{2} - \ln \left(\frac{x(1 - x)}{\alpha^2} \right) \right] \delta(z - x).$$

It is equivalent to the usual ERBL kernel

It provides the right counterterm to obtain a finite amplitude

Diffractive dijets in DDIS The shockwave formalism Open parton production Dijet production Vector meson production Further applications 000000000000000 000000 000000000

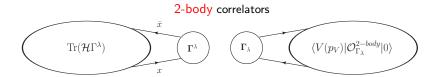
End point singularities and factorization

End point singularities? Leading order impact factor for, respectively, $\gamma_L^* \to V_L$ and $\gamma_T^* \to V_L$ transitions:

$$\begin{split} \Phi_L^{(0)} &= \frac{2 \kappa \bar{x} \rho_V^+ Q}{(\bar{x} \vec{p}_1 - x \vec{p}_2)^2 + \kappa \bar{x} Q^2}, \\ \Phi_T^{(0)} &= -\frac{(x - \bar{x}) \rho_V^+ (\bar{x} \vec{p}_{1\perp} - x \vec{p}_{2\perp}) \cdot \vec{\varepsilon}_{\gamma_T}}{(\bar{x} \vec{p}_1 - x \vec{p}_2)^2 + \kappa \bar{x} Q^2} \end{split}$$

No end point singularity, even for a transverse photon and even in the photoproduction limit and even at NLO.

With null transverse momenta in the t channel, one could encounter $x \in \{0, 1\}$ end point singularities as $\frac{1}{x\bar{x}O^2}$ thus breaking collinear factorization.



$$\langle V(p_V) | \bar{\psi}(z) [z, 0] \gamma_{\mu} \psi(0) | 0 \rangle$$

$$= f_V m_V \int_0^1 dx e^{ix(p_V \cdot z)} \left[-ip_{V\mu}(\varepsilon_V^* \cdot z) h(x) + \varepsilon_V^{*\mu} g_{\perp}^{(v)}(x) \right]$$

$$\langle V(p_V) | \bar{\psi}(z) [z, 0] \gamma_{\mu} \gamma_5 \psi(0) | 0 \rangle$$

$$= \frac{1}{4} f_V m_V \epsilon_{\mu\alpha\beta\gamma} \varepsilon_V^{*\alpha} p_V^{\beta} \int_0^1 dx e^{ix(p_V \cdot z)} z^{\gamma} g_{\perp}^{(a)}(x)$$

Diffr	active dijets in DDIS	The shockwave formalism	Open parton production	Dijet production	Vector meson production	Further applications
	0000				000000000	

Towards higher twist corrections

3-body correlators



$$\begin{array}{l} \left\langle V\left(p_{V}\right)\left|\bar{\psi}\left(z\right)\left[z,tz\right]\gamma_{\alpha}gG_{\mu\nu}\left(tz\right)\left[tz,0\right]\psi\left(0\right)\right|0\right\rangle \\ = -if_{3V}^{(\nu)}m_{V}p_{V\alpha}\left[p_{V\mu}\varepsilon_{V\perp\nu}^{*}-p_{V\nu}\varepsilon_{V\perp\mu}^{*}\right] \\ \times \int_{0}^{1}dx_{1}\int_{0}^{1}dx_{2}\int_{0}^{1}dx_{g}\delta\left(1-x_{1}-x_{2}-x_{g}\right)e^{i\left(x_{1}+tx_{g}\right)\left(p\cdot z\right)}\mathcal{V}\left(x_{1},x_{2}\right) \\ \left\langle V\left(p_{V}\right)\left|\bar{\psi}\left(z\right)\left[z,tz\right]\gamma_{\alpha}\gamma_{5}\frac{-g}{2}\epsilon_{\mu\nu\rho\sigma}G^{\rho\sigma}\left(tz\right)\left[tz,0\right]\psi\left(0\right)\left|0\right\rangle \\ = -f_{3V}^{(a)}m_{V}p_{V\alpha}\left[p_{V\mu}\varepsilon_{V\perp\nu}^{*}-p_{V\nu}\varepsilon_{V\perp\mu}^{*}\right] \\ \times \int_{0}^{1}dx_{1}\int_{0}^{1}dx_{2}\int_{0}^{1}dx_{g}\delta\left(1-x_{1}-x_{2}-x_{g}\right)e^{i\left(x_{1}+tx_{g}\right)\left(p\cdot z\right)}\mathcal{A}\left(x_{1},x_{2}\right) \end{array}$$

Towards high	er twist correc	tions		
Diffractive dijets in DDIS 000000		Open parton production		Further applications

- 5 independent Distribution Amplitudes, including 2 coming with derivatives of the hard part and 2 3-body contributions
- Equations of motion \Rightarrow reduction to 3 independent DAs
- "Wandzura Wilczek" approximation (phenomenologically dominant): neglect the 3-body contributions
- Thus from our NLO open production result, we can in principle extract the Wandzura-Wilczek approximation for the NLO and higher twist impact factor for the production of a transversely polarized light neutral vector meson
- Again the presence of transverse momentum in the *t* channel should restore factorization at NLO

Diffractive dijets in DDIS		Open parton production	Dijet production	Vector meson production	Further applications
000000	000000000	000000000000000000000000000000000000000	000000	00000000	00000000

Practical use of such results for phenomenology

Diffractive dijets in DDIS 000000 The shockwave formalism

Open parton production

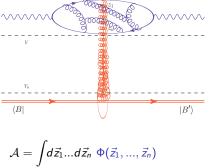
duction Dijet production

Vector meson production
 000000000

Further applications

Practical use of such results

- Compute the upper impact factor using the effective Feynman rules
- Build non-perturbative models for the matrix elements of the Wilson line operators acting on the target states
- Solve the B-JIMWLK evolution for these matrix elements with such non-perturbative initial conditions at a typical target rapidity $\eta = Y_0$
- Evaluate the solution at a typical projectile rapidity $\eta = Y$, or at the rapidity of the slowest gluon (cf. Bertrand's talk)
- Convolute the solution and the impact factor



 $\times \langle P' | U_{\vec{z}_1} ... U_{\vec{z}_n} | P \rangle$

Desidual mars	mantak dan and	0000			
000000	000000000	00000000000000000	000000	00000000	00000000
Diffractive dijets in DDIS	The shockwave formalism	Open parton production	Dijet production	Vector meson production	Further applications

Residual parameter dependence

Required parameters

- Renormalization scale μ_R
- Factorization scale μ_F in the case of meson production (if assumed that $\mu_F \neq \mu_R$)
- Typical target rapidity Y_0
- Typical projectile rapidity Y

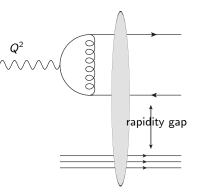
In the linear BFKL limit, the cross section only depends on $Y - Y_0$, so one only needs one arbitrary parameter s_0 defined by

$$Y-Y_0=\ln\left(\frac{s}{s_0}\right).$$

Modifying any of these parameter results in a higher order (NNLO) contribution

General ampli	itude			
Diffractive dijets in DDIS 000000		Open parton production	Vector meson production	Further applications

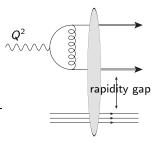
- Most general kinematics
- The hard scale can be Q^2 , t, M_X^2 ...
- The target can be either a proton or an ion, or another impact factor.
- Finite results for $Q^2 = 0$
- One can study ultraperipheral collision by tagging the particle which emitted the photon, in the limit $Q^2 \rightarrow 0$.



The general amplitude

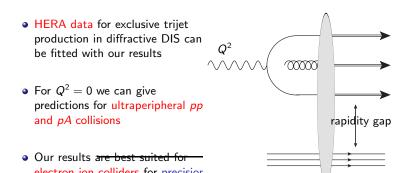
Diffractive dijets in DDIS The shockwave formalism Open parton production Dijet production Vector meson production Sociological applications : exclusive dijet production at NLO accuracy

- HERA data for exclusive dijet production in diffractive DIS can be fitted with our results
- For $Q^2 = 0$ we can give predictions for ultraperipheral *pp* and *pA* collisions
- Our results are best suited for electron ion colliders for precision saturation physics



Amplitude for diffractive dijet production

Diffractive dijets in DDIS occococo Phenomenological applications : exclusive trijet production at LO accuracy



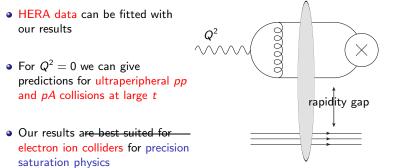
electron ion colliders for precisior saturation physics

Amplitude for diffractive trijet production

[Ayala, Hentschinski, Jalilian-Marian, Tejeda-Yeomans]

Diffractive dijets in DDIS The shockwave formalism Open parton production Dijet production Vector meson production **Further applications**

Phenomenological applications



Amplitude for diffractive V production

- The $\gamma_L^* \rightarrow V_L$ contribution in the forward limit should coincide with previous results of Ivanov, Kotsky, Papa
- The comparison is non-trivial due to additional contributions from the formal BFKL/BK transition

 $\Phi_{BK} \otimes \mathcal{K}_{BK} \otimes \Phi'_{BK} = (\Phi_{BFKL} \otimes \mathcal{O})(\mathcal{O}^{-1} \otimes \mathcal{K}_{BFKL}\mathcal{O})(\mathcal{O}^{-1} \otimes \Phi'_{BFKL})$

 $\ensuremath{\mathcal{O}}$ was obtained to prove the kernel equivalence, but never checked on an impact factor

Diffractive dijets in DDIS 000000		Open parton production			Further applications
000000	0000000000	000000000000000000000000000000000000000	000000	000000000	0000000000
Conclusion					

- We provided the full computation of the impact factor for the exclusive diffractive production of a forward dijet and of a light neutral vector meson with NLO accuracy in the shockwave approach
- It leads to an enormous number of possible phenomenological applications to test QCD in its Regge limit and towards saturation in past, present and future *ep*, *eA*, *pp* and *pA* colliders
- Our results open up possibilities for precision saturation physics with b_{\perp} dependence in future *eA* colliders
 - Exclusive diffractive dijet production ⇒ Wigner distribution at small x [Hatta, Xiao, Yuan]; [hagiwara, Hatta, Pasechnik, Tasevsky, Teryaev]
 - Deeply Virtual Meson Production \Rightarrow Generalized Parton Distributions at small \times