QCD resummation effects in inclusive production of a forward J/psi and a backward jet at the LHC

Lech Szymanowski

National Centre for Nuclear Research, Warsaw

GDR QCD 2017, 4-6 December 2017, Orme des Merisiers

in collaboration with

- R. Boussarie (INP, Kraków)
- B. Ducloué (Institut de physique théorique, Université Paris Saclay, CEA, CNRS)
- S. Wallon (LPT Orsay, CNRS / Université Paris Sud, Université Paris Saclay)

Based on arXiv:1709.02671 [hep-ph]

The partonic content of the proton

The various regimes governing the perturbative content of the proton

• "usual" regime: x_B moderate ($x_B \gtrsim .01$): Evolution in Q governed by the QCD renormalization group (Dokshitser, Gribov, Lipatov, Altarelli, Parisi equation)

$$\frac{\sum_{n} (\alpha_s \ln Q^2)^n + \alpha_s \sum_{n} (\alpha_s \ln Q^2)^n + \cdots}{\text{LLQ}}$$
 NLLQ

• perturbative Regge limit: $s_{\gamma^*p} \to \infty$ i.e. $x_B \sim Q^2/s_{\gamma^*p} \to 0$ in the perturbative regime (hard scale Q^2) (Balitski Fadin Kuraev Lipatov equation)

$$\frac{\sum_{n} (\alpha_s \ln s)^n + \alpha_s \sum_{n} (\alpha_s \ln s)^n + \cdots}{\text{LLs}}$$
 NLLs

- One of the important longstanding theoretical questions raised by QCD is its behaviour in the perturbative Regge limit $s \gg -t$
- Based on theoretical grounds, one should identify and test suitable observables in order to test this peculiar dynamics

hard scales: $M_1^2, M_2^2 \gg \Lambda_{QCD}^2$ or $M_1'^2, M_2'^2 \gg \Lambda_{QCD}^2$ or $t \gg \Lambda_{QCD}^2$ where the t-channel exchanged state is the so-called hard Pomeron

How to test QCD in the perturbative Regge limit?

What kind of observable?

• perturbation theory should be applicable:

selecting external or internal probes with transverse sizes $\ll 1/\Lambda_{QCD}$ (hard γ^* , heavy meson $(J/\Psi, \Upsilon)$, energetic forward jets) or by choosing large t in order to provide the hard scale.

 \implies semi-hard processes with $s \gg p_{T\,i}^2 \gg \Lambda_{QCD}^2$ where $p_{T\,i}^2$ are typical transverse scale, all of the same order.

How to test QCD in the perturbative Regge limit?

Some examples of processes

- inclusive: DIS (HERA), diffractive DIS, total $\gamma^*\gamma^*$ cross-section (LEP, ILC)
- semi-inclusive: forward jet and π^0 production in DIS, Mueller-Navelet double jets, diffractive double jets, high p_T central jet, in hadron-hadron colliders (Tevatron, LHC)
- exclusive: exclusive meson production in DIS, double diffractive meson production at e^+e^- colliders (ILC), ultraperipheral events at LHC (Pomeron, Odderon)

Resummation in QCD: DGLAP vs BFKL

Dynamics of resummations

Small values of α_s (perturbation theory applies if there is a hard scale) can be compensated by large logarithmic enhancements.

When \sqrt{s} becomes very large, it is expected that a BFKL description is needed to get accurate predictions

Perturbative QCD in a fixed order approach

Hard processes in QCD and collinear factorization

- This is justified if the process is governed by a hard scale:
 - Virtuality of the electromagnetic probe
 - in elastic scattering $e^{\pm} p \rightarrow e^{\pm} p$ in Deep Inelastic Scattering (DIS) $e^{\pm} p \rightarrow e^{\pm} X$ in Deep Virtual Compton Scattering (DVCS) $e^{\pm} p \rightarrow e^{\pm} p \gamma$
 - $\bullet\,$ Total center of mass energy in $e^+e^- \to X$ annihilation
 - *t*-channel momentum exchange in meson photoproduction $\gamma p \rightarrow M p$

convolution

- Mass of a heavy bound state e.g. $J/\Psi, \Upsilon$
- A precise treatment relies on collinear factorization theorems
- Scattering amplitude
 - =
- partonic amplitude

(computed at a given fixed order)

7 / 36

MN jets at full NLLx

 J/Ψ and jet production

Semi-hard processes: resummed QCD at large s

QCD in the perturbative Regge limit

 $s \gg M_{\rm hard\ scale}^2 \gg \Lambda_{QCD}^2$

The amplitude can be written as:

this can be put in the following form :

- \leftarrow Impact factor
- $\leftarrow \textit{Green's function}$

 $\leftarrow \mathsf{Impact}\ \mathsf{factor}$

$$\sigma_{tot}^{h_1 h_2 \to anything} = \frac{1}{s} Im\mathcal{A} \sim s^{\alpha_{\mathbb{P}}(0)-1}$$

with $\alpha_{\mathbb{P}}(0) - 1 = C \alpha_s + C' \alpha_s^2 + \cdots$ C > 0: Leading Log Pomeron Balitsky, Fadin, Kuraev, Lipatov

MN iets at full NLLx

 J/Ψ and let production

Opening the boxes: Impact representation $\gamma^* \gamma^* \to \gamma^* \gamma^*$ as an example

- Sudakov decomposition: $k_i = \alpha_i p_1 + \beta_i p_2 + k_{\perp i}$ $(p_1^2 = p_2^2 = 0, 2p_1 \cdot p_2 = s)$
- write $d^4k_i = \frac{s}{2} d\alpha_i d\beta_i d^2k_{\perp i}$ (k = Eucl. $\leftrightarrow k_{\perp}$ = Mink.)
- t-channel gluons have non-sense polarizations at large s: $\epsilon_{NS}^{up/down} = \frac{2}{s} p_{2/1}$

Higher order corrections

Only a few higher order corrections are known

- Higher order corrections to BFKL kernel are known at NLL order (Lipatov Fadin; Camici, Ciafaloni), now for arbitrary impact parameter $\alpha_S \sum_n (\alpha_S \ln s)^n$ resummation
- impact factors are known in some cases at NLL

• $\gamma^* \to \gamma^*$ at t=0 (Bartels, Colferai, Gieseke, Kyrieleis, Qiao; Balitski, Chirilli)

- forward jet production (Bartels, Colferai, Vacca; Caporale, Ivanov, Murdaca, Papa, Perri; Chachamis, Hentschinski, Madrigal, Sabio Vera)
- inclusive production of a pair of hadrons separated by a large interval of rapidity (Ivanov, Papa)
- $\gamma_L^*
 ightarrow
 ho_L$ in the forward limit (Ivanov, Kotsky, Papa)

MN jets at full NLLx

 J/Ψ and jet production

Mueller-Navelet jets: Basics

Mueller-Navelet jets

- Consider two jets (hadrons flying within a narrow cone) separated by a large rapidity, i.e. each of them almost fly in the direction of the hadron "close" to it, and with very similar transverse momenta
- Pure LO *collinear* treatment: these two jets should be emitted back to back at leading order:
 - $\varphi \equiv \Delta \phi \pi = 0$ ($\Delta \phi = \phi_1 \phi_2 =$ relative azimuthal angle)
 - $k_{\perp 1}{=}k_{\perp 2}.$ No phase space for (untagged) multiple (DGLAP) emission between them

 J/Ψ and jet production

Mueller-Navelet jets: LL fails

Mueller Navelet jets at LL BFKL

- in LL BFKL (~ ∑(α_s ln s)ⁿ), emission between these jets → strong decorrelation between the relative azimutal angle jets, incompatible with pp̄ Tevatron collider data
- a collinear treatment at next-to-leading order (NLO) can describe the data
- important issue: non-conservation of energy-momentum along the BFKL ladder. A LL BFKL-based Monte Carlo combined with e-m conservation improves dramatically the situation (Orr and Stirling)

Multi-Regge kinematics (LL BFKL)

0000

 J/Ψ and let production

Mueller-Navelet jets: beyond LL

Mueller Navelet jets at NLL BFKL

- up to ~ 2010 , the subseries $\alpha_s \sum (\alpha_s \ln s)^n$ NLL was included only in the exchanged Pomeron state, and not inside the jet vertices Sabio Vera, Schwennsen Marguet, Rovon
- our studies have shown was that these corrections are very important Colferai, Schwennsen, L.Sz, S. Wallon. Ducloué, L.Sz., S. Wallon.

for similar studies and results: Caporale, Ivanov, Murdaca, Papa Caporale, Murdaca, Sabio Vera, Salas

Quasi Multi-Regge kinematics (here for NLL BFKL)

MN jets at full NLLx ○○○●○○○ J/Ψ and jet production

Mueller-Navelet jets at NLL: master formulas

 k_T -factorized differential cross section

with $\Phi(\mathbf{k}_{J,2}, x_{J2}, \mathbf{k}_2) = \int dx_2 f(x_2) V(\mathbf{k}_2, x_2)$ $f \equiv \mathsf{PDF}$ $x_J = \frac{|\mathbf{k}_J|}{\sqrt{s}} e^{y_J}$

Mueller-Navelet jets at NLL: Renormalization scale fixing

Renormalization scale uncertainty

- We used the Brodsky-Lepage-Mackenzie (BLM) procedure to fix the renormalization scale
- The BLM procedure resums the self-energy corrections to the gluon propagator at one loop into the running coupling.
- First attempts to apply BLM scale fixing to BFKL processes lead to problematic results. Brodsky, Fadin, Kim, Lipatov and Pivovarov suggested that one should first go to a physical renormalization scheme like MOM and then apply the 'traditional' BLM procedure, i.e. identify the β_0 dependent part and choose μ_R such that it vanishes.

We followed this prescription for the full amplitude at NLL.

Mueller-Navelet jets at NLL: comparison with the data

Ducloué, L.Sz., S. Wallon.

 $35 \text{ GeV}^2 < \mathbf{k}_{J,1}, \mathbf{k}_{J,2}$

Mueller-Navelet jets at NLL

Other effects and references

- Full NLL description
- D. Colferai, F. Schwennsen, L. Sz., S. Wallon., JHEP 1012 (2010) 026 [arXiv:1002.1365 [hep-ph]]
- B. Ducloué, L. Sz., S. Wallon., JHEP 1305 (2013) 096 [arXiv:1302.7012 [hep-ph]]
 - BLM renormalization scale fixing and comparison with data
- B. Ducloué, L. Sz., S. Wallon., Phys. Rev. Lett. 112 (2014) 082003 [arXiv:1309.3229 [hep-ph]]
 - Energy momentum violation: the situation is much improved when including full NLL corrections
- B. Ducloué, L. Sz., S. Wallon., Phys. Lett. B738 (2014) 311-316 [arXiv:1407.6593 [hep-ph]]
 - Multiparton description of Mueller-Navelet jets: two uncorrelated ladders suppressed at LHC kinematics
- B. Ducloué, L. Sz., S. Wallon., Phys. Rev. D92 (2015) 7, 076002 [arXiv:1507.04735 [hep-ph]]
 - Sudakov resummation effects:

in the almost back-to-back region, and at LL, the resummation as been performed: no overlap with low-x resummation effects

A. H. Mueller, L. Sz., S. Wallon., B.-W. Xiao, F. Yuan, JHEP 1603 (2016) 096 [arXiv:1512.07127 [hep-ph]]

Why J/Ψ ?

- $\bullet~{\rm Numerous}~J/\psi$ mesons are produced at LHC
- J/ψ is "easy" to reconstruct experimentaly through its decay to $\mu^+\mu^-$ pairs
- The mechanism for the production of J/ψ mesons is still to be completely understood (see discussion later), although it was observed more than 40 years ago E598 collab 1974; SLAC-SP collab 1974
- Any improvement of the understanding of these mechanisms is important in view of QGP studies since J/Ψ suppression (melting) is one of the best probe. Cold nuclear effects are numerous and known to make life more complicate
- The vast majority of J/ψ theoretical predictions are done in the collinear factorization framework : would k_t factorization give something different?
- We will perform an MN-like analysis, considering a process with a rapidity difference which is large enough to use BFKL dynamics but small enough to be able to detect J/ψ mesons at LHC (ATLAS, CMS).

MN jets at full NLLx

Master formula

k_{\perp} -factorization description of the process

$$\hat{s} = x \, x' \, s$$

$$\frac{d\sigma}{dy_V d|p_{V\perp}|d\phi_V dy_J d|p_{J\perp}|d\phi_J}$$
$$= \sum_{a,b} \int d^2 k_\perp d^2 k'_\perp$$
$$\times \int_0^1 dx f_a(x) V_{V,a}(\mathbf{k}_\perp, x)$$

$$\times G(-\mathbf{k}_{\perp},-\mathbf{k}_{\perp}',\hat{s})$$

$$imes \int_0^1 dx' f_b(x') V_{J,b}(-k'_{\perp},x'),$$

MN jets at full NLLx

???

 J/Ψ and jet production

Master formula

$k_\perp\text{-}\mathsf{factorization}$ description of the process

$$\hat{s} = x \, x' \, s$$

$$\frac{d\sigma}{dy_V d|p_{V\perp}|d\phi_V dy_J d|p_{J\perp}|d\phi_J}$$
$$= \sum_{a,b} \int d^2 k_\perp d^2 k'_\perp$$
$$\times \int_0^1 dx f_a(x) V_{V,a}(\mathbf{k}_\perp, x)$$

$$\times G(-\mathbf{k}_{\perp},-\mathbf{k}_{\perp}',\hat{s})$$

$$\times \int_0^1 dx' f_b(x') V_{J,b}(-k'_{\perp},x'),$$

The NRQCD formalism

Quarkonium production in NRQCD

- We will first use the Non Relativistic QCD (NRQCD) formalism Bodwin, Braaten, Lepage; Cho, Leibovich
- There is no proof of NRQCD factorization at all orders.
- Basically, one expands the onium state wrt the velocity $v \sim \frac{1}{\log M}$ of its constituents: infinite series in v

$$\begin{split} |V\rangle &= O(1) \Big| Q\bar{Q} [{}^3S_1^{(1)}] \Big\rangle + O(v) \Big| Q\bar{Q} [{}^3P_J^{(8)}]g \Big\rangle + O(v^2) \Big| Q\bar{Q} [{}^1S_0^{(8)}]g \Big\rangle + \\ &+ O(v^2) \Big| Q\bar{Q} [{}^3S_1^{(1,8)}]gg \Big\rangle + O(v^2) \Big| Q\bar{Q} [{}^3D_J^{(1,8)}]gg \Big\rangle + \dots . \end{split}$$

- \Rightarrow all the non-perturbative physics is encoded in Long Distance Matrix Elements (LDME) obtained from $|V\rangle$
- \Rightarrow the hard part (series in $\alpha_s)$ is obtained by the usual Feynman diagram methods \Rightarrow the cross-sec. = convolution of (the hard part)² * LDME
- In NRQCD, the two Q and \bar{Q} share the quarkonium momentum: $p_V = 2q$
- The relative importance of color-singlet versus color-octet mechanisms is still subject of discussions.

 \Rightarrow the vertex V in LO and we consider case with $Q\bar{Q}$ -pair with the same spin and orbital mom. as $J/\Psi: \left|Q\bar{Q}[^3S_1^{(1)}]\right\rangle$ and $\left|Q\bar{Q}[^3S_1^{(8)}]gg\right\rangle$ Fock states

MN jets at full NLLx

 J/Ψ and jet production

The J/ψ impact factor: NRQCD color singlet contribution

From open quark-antiquark gluon production to J/ψ production

NRQCD color-singlet transition vertex:

$$[v(q)\bar{u}(q)]^{ij}_{\alpha\beta} \to \frac{\delta^{ij}}{4N} \left(\frac{\langle \mathcal{O}_1 \rangle_V}{m}\right)^{1/2} [\hat{\epsilon}^*_V \left(2\hat{q} + 2m\right)]_{\alpha\beta}$$

 $\langle {\cal O}_1
angle_V$ from leptonic J/Ψ decay rate

The J/ψ impact factor: NRQCD color octet contribution

From open quark-antiquark production to J/ψ production

 $\langle \mathcal{O}_8 \rangle_V$ varied in $[0.224 \times 10^{-2}, 1.1 \times 10^{-2}]$ GeV³

The Color Evaporation Model

Quarkonium production in the color evaporation model

Relies on the local duality hypothesis Fritzsch, Halzen ...

- Consider a heavy quark pair $Q\bar{Q}$ with $m_{Q\bar{Q}} < 2 m_{Q\bar{q}}$ $Q\bar{q} =$ lightest meson which contains Qe.g D-meson for Q = c
- it will eventually produce a bound $Q\bar{Q}$ pair after a series of randomized soft interactions between its production and its confinement , independently of its color and spin.
- It is assumed that the repartition between all the possible charmonium states is universal.
- Thus the procedure is the following :
 - Compute all the Feynman diagrams for open $Q\bar{Q}$ production
 - Sum over all spins and colors
 - Integrate over the Q ar Q invariant mass

The J/ψ impact factor: relying on the color evaporation model

From open quark-antiquark gluon production to J/ψ production

 $F_{J/\psi}$: varied in [0.02, 0.04],

purely known

Introduction	MN jets at full NLLx	J/Ψ and jet production
00000000	000000	000000000000000000000000000000000000000
Numerical results		

 $\bullet~{\rm Two}~{\rm CMS}$ energies: $~\sqrt{s}=8{\rm TeV}~~{\rm and}~~\sqrt{s}=13{\rm TeV}$

•
$$|p_{V\perp}| = |p_{J\perp}| = p_{\perp}$$

- Four different kinematic configurations:
 - $0 < y_V < 2.5, -6.5 < y_J < -5, p_{\perp} = 10 \text{ GeV}$ CASTOR@CMS
 - $0 < y_V < 2.5, -4.5 < y_J < 0, p_\perp = 10$ GeV • $0 < y_V < 2.5, -4.5 < y_J < 0, p_\perp = 20$ GeV
 - $0 < y_V < 2.5, -4.5 < y_J < 0, \ p_\perp = 30 \ {\rm GeV}$

main detectors at ATLAS and CMS

• uncertainty band: due to variation of non-pert. constants and scales μ_R , μ_F

Cross section at $\sqrt{s} = 8$ TeV

 $0 < y_V < 2.5, -6.5 < y_J < -5, \ p_{\perp} = 10 \text{ GeV}$ $0 < y_V < 2.5, -4.5 < y_J < 0, \ p_{\perp} = 10 \text{ GeV}$

Figure: Cross section at $\sqrt{s}=8~{\rm TeV}$ as a function of the relative rapidity Y between the J/ψ and the jet

Cross section at $\sqrt{s} = 8$ TeV cntd

 $0 < y_V < 2.5, -4.5 < y_J < 0, \ p_{\perp} = 20 \text{ GeV}$ $0 < y_V < 2.5, -4.5 < y_J < 0, \ p_{\perp} = 30 \text{ GeV}$

Figure: Cross section at $\sqrt{s}=8~{\rm TeV}$ as a function of the relative rapidity Y between the J/ψ and the jet

 \implies color-octet dominates over color-singlet specially for large p_{\perp}

 \implies color-octet and color-evaporation model give similar results

 J/Ψ and jet production

Cross section at $\sqrt{s} = 13$ TeV

 $0 < y_V < 2.5, -6.5 < y_J < -5, p_{\perp} = 10 \text{ GeV}$ $0 < y_V < 2.5, -4.5 < y_J < 0, p_{\perp} = 10 \text{ GeV}$

Figure: Cross section at $\sqrt{s}=13~{\rm TeV}$ as a function of the relative rapidity Y between the J/ψ

Cross section at $\sqrt{s} = 13$ TeV cntd

 $0 < y_V < 2.5, \ -4.5 < y_J < 0, \ p_\perp = 20 \ \text{GeV} \qquad 0 < y_V < 2.5, \ -4.5 < y_J < 0, \ p_\perp = 30 \ \text{GeV}$

Figure: Cross section at $\sqrt{s}=13~{\rm TeV}$ as a function of the relative rapidity Y between the J/ψ and the jet,

 \implies color-octet dominates over color-singlet specially for large p_{\perp}

- \implies color-octet and color-evaporation model give similar results
- \implies slight increase of cross sec. when $\sqrt{s} = 8 \text{ TeV} \rightarrow \sqrt{s} = 13 \text{ TeV}$

 Introduction
 MN jets at full NLLx
 J/Ψ and jet production

 00000000
 0000000
 0000000
 0000000

Variation of $\langle \cos \varphi \rangle$ at $\sqrt{s} = 8$ TeV

 $\varphi = |\phi_V - \phi_J - \pi|$

 $0 < y_V < 2.5, -6.5 < y_J < -5, p_{\perp} = 10$ GeV; $0 < y_V < 2.5, -4.5 < y_J < 0, p_{\perp} = 10$ GeV

Figure: Variation of $\langle\cos\varphi\rangle$ at $\sqrt{s}=8$ TeV as a function of the relative rapidity Y between the J/ψ and the jet

MN jets at full NLLx

 J/Ψ and jet production

Variation of $\langle \cos \varphi \rangle$ at $\sqrt{s} = 8$ TeV cntd

 $0 < y_V < 2.5, -4.5 < y_J < 0, \ p_{\perp} = 20$ GeV; $0 < y_V < 2.5, -4.5 < y_J < 0, \ p_{\perp} = 30$ GeV

Figure: Variation of $\langle\cos\varphi\rangle$ at $\sqrt{s}=8$ TeV as a function of the relative rapidity Y between the J/ψ and the jet

Introduction MN jets at full NLLx
000000000 0000000

 J/Ψ and jet production

Variation of $\langle \cos \varphi \rangle$ at $\sqrt{s} = 13$ TeV

 $\varphi = |\phi_V - \phi_J - \pi|$

 $0 < y_V < 2.5, -6.5 < y_J < -5, \ p_{\perp} = 10 \text{ GeV}; \quad 0 < y_V < 2.5, \ -4.5 < y_J < 0, \ p_{\perp} = 10 \text{ GeV};$

Figure: Variation of $\langle\cos\varphi\rangle$ at $\sqrt{s}=13$ TeV as a function of the relative rapidity Y between the J/ψ and the jet

MN jets at full NLLx

 J/Ψ and jet production

Variation of $\langle \cos \varphi \rangle$ at $\sqrt{s} = 13$ TeV cntd

 $\varphi = |\phi_V - \phi_J - \pi|$

 $0 < y_V < 2.5, -4.5 < y_J < 0, \ p_{\perp} = 20 \text{ GeV}; \quad 0 < y_V < 2.5, \ -4.5 < y_J < 0, \ p_{\perp} = 30 \text{ GeV}$

Figure: Variation of $\langle\cos\varphi\rangle$ at $\sqrt{s}=13$ TeV as a function of the relative rapidity Y between the J/ψ and the jet

- \implies all 3 models lead to similar decorelation effects and are compatible with the case when $V_{J/\Psi} \rightarrow$ LO $_{Vjet}$
- \implies passing from $\sqrt{s}=8~{\rm TeV}$ to $\sqrt{s}=13~{\rm TeV}$ increases slightly decorrelation effects

Introd	uction
0000	00000

Summary

- The production of Mueller-Navelet was successfully described using the BFKL formalism
- We applied the same formalism for the production of a forward J/Ψ meson and a backward jet, using both the NRQCD formalism and the Color Evaporation Model
- This new process could constitute a good probe of importance of color-singlet contribution versus the color-octet contribution in NRQCD
- More predictions about azimuthal correlations can be delivered
- A comparison with a fixed order treatment is planned
- A complete NLL study is very challenging: requires to compute the NLO vertex for J/Ψ production
- Preliminary experimental studies (ATLAS) are very promising

MERCI / THANK YOU