SUMMARY OF CMS RESULTS IN HEAVY ION COLLISIONS

Javier Martin Blanco

Laboratoire Leprince-Ringuet, École Polytechnique, Palaiseau

GDR QCD 2017

December 4th

QUARK GLUON PLASMA

Conditions for QGP formation can be reached in ultra-relativistic heavy ion collisions

OUTLINE

3 collision systems at LHC: pp, pPb and PbPb

- Constrain quark and gluon (nuclear) PDFs
 Scanning (x,Q²) phase space
 - W and Z bosons
 - Bijets, b and c -jets
 - Top quarks
 - Hidden and open heavy flavor
- Initial state geometry and fluctuations
 - Correlation of Fourier harmonics (v₂ and v₃)

Final stage

Study QGP properties

Debye screening, energy loss...

- 🍃 Jet quenching
- Nuclear modification factors

Transport coefficients

Fourier harmonics and their correlation (v₂ and v₄)

W AND Z BOSONS IN pPb

New measurement of W production in pPb at 8 TeV ongoing Stay tuned!

DIJET PSEUDORAPIDITY IN pp and pPb

Provide **important constrains to nPDFs** in a wide range of x and Q^2 (η_{dijet} and $p^{avg}T$)

Significant modification of pPb pseudorapidity distribution wrt pp

c & b -JETS IN pPb

HF jets sensitive to gluon PDF

c-jets

b-jets

 First measurement of c-jets in pp and pPb

Compatible spectra in pp and pPb

TOP QUARK CROSS SECTION IN pPb

Gluon PDF poorly constrained in the high x and Q^2 region

Measurement of **top cross section in pPb** allows to scan this region

2 b-jet requirement reduce background

First observation of top quarks in nuclear collisions

TOP QUARK CROSS SECTION IN pPb

Measured cross section $\sigma_{tt} = 45 \pm 8$ nb

Consistent with theoretical calculations and pp scaled reference

GDR QCD 2017 | 04/12/2017 | Javier Martin 7

PROMPT J/\psi IN pPb and PbPb

Constraint to nPDFs

Low pt: regeneration?

High pt: energy loss?

PROMPT $\psi(2S)$ vs J/ ψ IN pPb and PbPb

 $\psi(2S)$ more suppressed than J/ ψ both in pPb and PbPb

pPb: importance of final state effects for excited states **PbPb**: medium effects stronger for excited states

Theoretical challenge, especially in pPb

Y(1S,2S,3S) IN PbPb

Measurements of Υ family provide insight to **thermal properties of the medium**

- + Excited states more suppressed than ground state
- Increasing suppression with centrality
- Hydrodynamical model consistent with measurements: Initial medium temperature raises from T ~ 550 MeV @ 2.76 TeV to T ~ 630 MeV @ 5.02 TeV

GDR QCD 2017 | 04/12/2017 | Javier Martin 10

DAND B MESONS IN PbPb

Measurements of open heavy flavor allow to study properties of in-medium energy loss

Similar suppression of D and B mesons

Theoretical models differ on modelling of the medium, energy loss sources and shadowing

- D meson suppression at high p_T is qualitatively reproduced but not at low p_T
- More precise measurements needed for B mesons

D MESON AND NONPROMPT J/ ψ IN PbPb

- + Light quarks and charm flow with the medium
- + If $v_2(B) > 0$ b quarks also flow
- + Large uncertainties do not allow to draw conclusions on flavor dependence

FLAVOR DEPENDENCE OF Eloss

- High p_T: similar suppression of D⁰, light hadrons and nonprompt J/ψ:
 universal behaviour of Eloss at high p_T?
- Low p_T: hints of R_{AA} (B→J/ψ) > R_{AA}(D⁰) ~ R_{AA}(light hadrons):
 smaller E_{loss} of b quarks at low p_T ?

Constrains on flavor dependence of Eloss

HF DIJETS: MOMENTUM IMBALANCE

Momentum imbalance is ascribed to jet quenching

- b dijet removes ambiguity regarding production mechanism
- Consistent modification in inclusive and b dijets

Constrains on mass and flavor dependence of energy loss

BOSON-JET MOMENTUM RATIO

- Measures energy loss of jets wrt EW probe
- Average value of transverse momentum ratio smaller in PbPb than pp

Constrains to quenching with well-defined parton flavor and kinematics

COLLECTIVITY IN SMALL SYSTEMS

Similar ridge effect observed in all hadronic systems at LHC

Sensitive to:

- Initial state geometry and fluctuations
- Transport coefficients of the medium

What is the origin of the ridge? Common paradigm in all systems?

COLLECTIVITY IN SMALL SYSTEMS

 v_2 , v_3 and v_4 harmonics studied with multi-particle correlations

- Similar pattern of vn observed for all systems
- Very small energy dependence in pPb collisions

Evidence of collectivity in all hadronic systems at the LHC

COLLECTIVITY IN SMALL SYSTEMS

Correlation between harmonics studied with normalised symmetric cumulants (SC)

Similar in pPb and PbPb at high multiplicity

Points to the same nature of initial state fluctuations

The same in high multiplicity pp ?

Ordering observed: pp > pPb > PbPb

→ May point to different → medium transport coefficients

GDR QCD 2017 | 04/12/2017 | Javier Martin 8

SUMMARY

• Many **new CMS measurements** to:

- Constrain PDFs and understand shadowing effects
- + Understand initial state geometry/fluctuations in all hadronic systems
- + Better understand QGP properties and interaction of partons with the medium

We still have to make full use of all the data collected so stay tuned !

THANK YOU FOR YOUR ATTENTION

