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Introduction

Agcp ~ 250 MeV,
A quark Q is heavy < mg > Agcp.

Up Quark Charm Quar
~0.002 GeV 1.25 GeV.

Top Quark
175 GeV

my, mg, ms <K Nocp = light quarks

Down Quark Strange Quark
~ 0,005 GeV ~ 0.095 GeV

mc > Agcp but not by much!

o b quark only quark such that

Nocp < m < M(myy, mz, my, me)

@ b phenomenology crucially important at the LCH, from flavour physics, to Higgs
characterisation and measurements and as window to New Physics.

@ From a theoretical viewpoint we need better control on this kind of processes
which appear as both BSM signals and SM irreducible backgrounds.

@ Important examples: H and Z associated production.
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Problem! Solution

In the kinematic region § > mi 5 flavour scheme, re-sum such
logs via DGLAP eqs in b-PDF.

s
as(8) log —~ O(1) _
my mp =20
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n
o x Z (as log 52)
n mj

—_—————
Absorbed into a b-PDF!
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What happened? J

When logs are dominant over mass effects we have that:

772 b
= aslog? X Wp<®

b b

2
. lim f® UXg%bbY = as Iog 5 Pag ® fgoxp—y
m2 /n?—0 b

DGLAP equations:

d log pu2

db(,p?) _ 2
=05 (Pas @ ) (08) - — i, p2)=aslog Ly (qu® ) (% 12)+0(a2)
b(x, mg)=0



4F versus 5F scheme

4F scheme 5F scheme

v Stabler predictions, re-summation of

x Doesn't re-sum possibly large logs, IS large logs into b-PDF
but it does have them explicitly /" Higher order easily accessible

X Higher orders are computationally x p7 of b and mass effects are pushed
more difficult to higher orders

' Mass effects present at any order x Implementation in MC depends on the

v~ MCGONLO no problem g — bb splitting implemented
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Computing NLO observables

To compute a NLO observable we need:

do = dopg |:B(¢B) +V(¢B)i| +dop 1 R(PB+1)

o V(®g) and [dPpy1 R(Pp+1) are separately soft (and collinear) divergent in 4d
° fdd)g V(d)B) + fdd)lgurl R(¢B+l) is finite!

o Need method to render the integrand finite for MC integration!
— Catani-Seymour Dipole formalism.
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Catani-Seymour Dipoles

CS-Dipoles

Exploit universal structure of soft- and collinear- singularities = in these limits:

IM{pa},pi) P~ > D=8
ijk

Dk o< Vij.k({pn}, Pr) ® |IM ({Ba}) |2

If we also use this to factorise the PS = d$p; = da;g ® d®; we can write:

do = dog |B(®g) +V(P5) +I(¢B)} +dos4 {R((DBJA)_S((DB ® 1)

I(op) = /d¢15(¢3 © 1)
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Dressing partons

Q@
§ 2 L. .
=  do o Uo/% o as Iog% = One additional emission
b
0

th—1 5
/ dtn x ag log” e

th - Q2
Q4

= Many sub-sequential emissions, with t; >t > --- > t,

Sudakov Form-Factor exponentiate these logs (DGLAP equations):

2

2
A(QF,Q%) = exp | - / < / dzas (£(2)) Pas(2) | ~ exp [—cpas log? %]
0
&

= No emission probability!
v




Matching to the Fixed Order

Leading-Order

At LO, we start with the B cross section:
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Matching to the Fixed Order

Leading-Order

At LO, we start with the B cross section:

Q@

da,(Born) — dq)BB(q)B) {A(Qg, Q2) + /d¢1 |:IC(¢1)A (Q02, t(¢1))] }

Q2

Unitarity of the PS

K(®1) = [ dzas (t(z)) Pab(2)

@ Note that R(¢B ® ¢’1) < B(q)B) & ’C(¢’1)
o introduce K(®1) = R(P5 ® d1)/B(dp) thus:

Q)

doBom) = dogB {E(Qg, Q%) + /d¢1 [kﬁ(nbl)ﬁ (Q3, t(¢1))]

QQ

QQ
A(Q, Q%) = exp |:/d4>116(¢'1)

2
Q%

|




Matching to the FO (NLO)

Going MC@GNLO

Can we do even better? First recall Catani-Seymour:

doM0) = dopB(®p) + dPpi1 |R(P511) — S(P5 @ 1)

B(®g) = B(®p) + V(®p) + I(®p)
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Matching to the FO (NLO)

Going MC@GNLO

Can we do even better? First recall Catani-Seymour:

doM0) = dopB(®p) + dPpi1 |R(P511) — S(P5 @ 1)
B(®g) = B(®g) + V(®5) + Z(Pg)

o Expand R, recalling that
R(®p11) = RO (05 @ &1) + R (0p,1) = S(P5 @ 1) + H(Ps11)

o (Symbolically): S(¢’B (24 ¢’]_) = Zijk B(¢‘5) ® Vijk(q)l)
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S(Pp® 1) = B(ds)® Vie(P1) = B(dp) @ K(41)
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Going MCGNLO

@ = l|dentify the shower kernels with the CS dipoles:

S(@p@ 1) =Y B(Pp) ® Viu(P1) = B(Pp) @ K(1)

ik
@ In this way we get
Q%
doMCONLO — 4 .5 ) A(QR, Q2)+/d¢1zc(¢1)A (@3, £(1)) § + dds i H(®s11)
QZ

where

QZ
2 A2y
A(Qy, Q7)) =exp |:— /{;g doK(P1)




LO-Merging

Basic idea

@ PS = re-sums logs in soft- collinear-region — jet evolution

o ME exact at any give order and description of hard region — jet production

Separate jet production from jet evolution with jet measure Q

ME populate hard region

PS populate soft- collinear-region
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Basic idea

@ PS = re-sums logs in soft- collinear-region — jet evolution

o ME exact at any give order and description of hard region — jet production

Separate jet production from jet evolution with jet measure Q

ME populate hard region

PS populate soft- collinear-region

2
KN
do = doyBy { An(pd, to) +/d¢N+1 [/CNAN (1 tusr) | ©(Qs — Quaa)

to

+ don 1By An (s tven) ©(Qs — Qi)




NLO-Merging

Same idea for NLO

2
KN
do =doy By |An(pd, to) + /d¢1 KnAn(pay, tn41)0(Qs — Quat)
tp

+ doy 1 H AN (i, tne1)O(Qs — Q1)

2
Ky

~ B
+ by Buer | 1+ 2 / 4%, Ky |©(Quar — Q1)
Bn+1 -

N1
- An(phs tvrn) - | Ay (tar, o) + / d®1 Kyy1Anra(tns, tvy2)
to

+d®nyo ,HN+1AN(:U'$V’ tn1) Ang (tvsts tne2)O(Quer — Q) + - ..
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pp — Z+ > 1b jet, @7 TeV

Z+ > 1bet Z+ = 1biet
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pp — H+ > 1b jets, @13 TeV
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Conclusions

o Historical treatment of heavy quarks, 4F vs 5F scheme is starting to change... for
many reasons

@ Correct inclusion of mass effects might play an important role in some precision
physics measurements

o Still not a 100% there yet though... A better understanding of factorisazion is
needed...
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