Charmonium suppression in PbPb collisions with CMS

Andre Ståhl

Laboratoire Leprince-Ringuet, École Polytechnique, France

Charmonia in Pb-Pb Collisions

Charmonia (cc̄ mesons) are produced in the early stages of the collision

The Quark-Gluon Plasma is expected to modify the charmonia production

Charmonia are good probes of the medium evolution

Prompt and Non-Prompt Charmonia

• Prompt Charmonia:

Directly affected by the QGP

• Non-Prompt Charmonia:

Reflects energy loss of b quarks in the QGP

Separation based on pseudo-proper decay length ($l_{J/\Psi}$)

LHC Runs: Recorded by CMS

Run 1 (2011-2013)			

Run 2 (2015)			
р-р	$\sqrt{s_{NN}}$ = 5.02 TeV	L = 28 pb ⁻¹	
Pb-Pb	$\sqrt{s_{NN}}$ = 5.02 TeV	L = 460 µb ⁻¹	

- ~2x increase in Energy
- ~3x increase in Pb-Pb Luminosity

GDR QCD 2017

Run 1

Run 2

CMS Detector

GDR QCD 2017

Δ

Prompt and Non-Prompt Charmonia

2D fits of the dimuon mass and pseudo-proper decay length

- Signal:
 - Mass: Two Crystal Ball Functions (Guassian with power like tail)
 - Decay Length: Exponential Function
- Background:
 - Mass: Polynomial function (between order 1-3)
 - Decay Length: 3 Exponential Functions

Saclay

Prompt and Non-Prompt Charmonia

2D fits of the dimuon mass and pseudo-proper decay length

- From the fits we get:
 - Inclusive J/ψ Yields
 - Nonprompt J/ ψ fraction (also called b fraction)
- Combining the inclusive yields and the b-fractions, we extract the Prompt and Nonprompt J/ $\!\psi$ yields

Outline:

"Measurement of prompt and nonprompt charmonium suppression in PbPb collisions at 5.02 TeV"

CMS-PAS-HIN-16-025

- Prompt J/ ψ in PbPb at 5.02 TeV
- Prompt $\psi(2S)$ PbPb at 5.02 TeV
- Nonprompt J/ ψ in PbPb at 5.02 TeV

Prompt J/\psi in PbPb at 5 TeV

Prompt J/ψ R_{AA}

- Similar suppression between 5.02 TeV and 2.76 TeV
- No strong rapidity dependence
- Suppression increases when going to more central events

GDR QCD 2017

Prompt J/\psi R_{AA}: Low p_T

- Similar p_{τ} trend for different rapidities bins
- Less suppression at lowest $\boldsymbol{p}_{_{\!T}}$
- Less suppression at lowest p_{τ} for the most central events (cent < 30%)

GDR QCD 2017

Prompt J/ψ R_{AA}: High p_T

- Less suppression at high $\mathbf{p}_{_{\rm T}}$
- Similar $p_{\scriptscriptstyle T}$ trend between different centrality bins

GDR QCD 2017

Prompt \psi(2S) in PbPb at 5 TeV

Prompt ψ(2S) R_{AA}

- Increasing suppression of $\psi(2S)$ towards more central events at high p_{τ}
- Stronger suppression of $\psi(2S)$ than J/ ψ in all centrality bins

GDR QCD 2017

Prompt ψ(2S) R_{AA}

- No strong $p_{_{T}}$ dependence of $\psi(2S)$ suppression
- Stronger suppression of $\psi(2S)$ than J/ $\psi~$ in all $p_{_{T}}$ bins

GDR QCD 2017

Charmonium vs Bottomonium

- Similar suppression between $\psi(2S)$ and Y(2S), versus $p_{_{T}}$ and centrality
- Hint of less suppression of J/ ψ compared to Y(1S) at lowest $p_{_{T}}$

GDR QCD 2017

Open vs Hidden Charm

- Similar $R_{_{AA}}$ trend between prompt J/ ψ and D^{0} $R_{_{AA}}$
 - E_{loss} contribution to charmonium suppression?
- $\psi(2S)$ still more suppressed up to $p_T = 30 \text{ GeV/c}$

Nonprompt J/ψ in PbPb at 5 TeV

Nonprompt J/ψ R_{AA}

- Similar suppression between 2.76 TeV and 5.02 TeV
- No strong rapidity dependence at 5.02 TeV
- Increasing suppression towards more central events

GDR QCD 2017

Nonprompt J/ψ R_{AA}

- Similar suppression between 2.76 TeV and 5.02 TeV
- Hint of less suppression at lowest $p_{_{T}}$, while no clear $p_{_{T}}$ dependence at high $p_{_{T}}$

4/12/17

- Slight less suppression at the lowest $\boldsymbol{p}_{_{T}}$ in all centrality bins

Flavour Dependence of E

- **High** p_{τ} : Similar suppression between D^o, light hadrons and nonprompt J/ ψ
 - Universal trend of E_{loss} at high p_{T} ?
- Low p_T : hints of $R_{AA}(B \rightarrow J/\psi) > R_{AA}(D^0) \sim R_{AA}(light hadrons)$
 - Smaller E_{loss} of b quarks at low p_T ?

SUMMARY

Probing Hot Nuclear Matter Effects:

Less prompt J/ ψ suppression at lowest p_{τ} PbPb 368 (<30%) / 464 (>30%) µb⁻¹, pp 28.0 pb⁻¹ (5.02 TeV) **** m^{4} 1.4 Prompt J/ ψ CMS 1.8 < |y| < 2.4 Preliminary 1.2[⊨] 0.8 0.6 0.4 ♦ 3 < p₁ < 6.5 GeV/c 0.2 ♦ 6.5 < p₊ < 50 GeV/c</p> 0^L0 50 100 150 200 250 300 350 400 N_{part}

E_{loss} in charmonium suppression?

Prompt $\psi(2S)$ more suppressed than J/ψ

Flavour dependence of E_{loss}?

4/12/17

Stay tuned for more future CMS results!

Thank you for your attention!

Ratio of $\psi(2S) / J/\psi R_{AA}$ vs p_T

 $R_{AA}(\psi(2S))$ / $R_{AA}(J/\psi)$ < 1 in all bins → $\psi(2S)$ is more suppressed than J/ψ

- No $\boldsymbol{p}_{\scriptscriptstyle T}$ dependence within uncertainties

ψ(2S) / J/ψ vs Centrality

- $\psi(2S)$ is more suppressed than J/ψ at 5.02 TeV
- No strong N_{part} dependence at 5.02 TeV
- Double ratio at 5.02 TeV consistently lower than at 2.76 TeV in 1.6 < y < 2.4, $3 < p_T < 30$ GeV/c, especially for most central collisions (~3 s.d. in 0-100%)

Saclay

GDR QCD 2017

Open vs Hidden Beauty

- Similar suppression between $\psi(2S)$ and Y(2S), versus $p_{_{T}}$ and centrality
- Hint of less suppression of J/ ψ compared to Y(1S) at lowest $p_{_{T}}$