WaveCatcher Electronics for **ALTO**

VHE Gamma-Ray wide-field observatory: From tests to prototypes to implementation possibilities

http://alto-gamma-ray-observatory.org

Michael Punch - APC Laboratory, Paris (France), IN2P3/CNRS & Linnaeus University --- for the ALTO group ----Jean-Pierre Ernenwein - Aix-Marseille University (France) Yvonne Becherini – Linnaeus University (Sweden) Satyendra Thoudam - Linnaeus University (Sweden)

- Project born in 2014 at Linnaeus University after we received a research grant from the Crafoord Foundation (Sweden)
- A Wide Field-of-View (~ 2 sr) gamma-ray observatory:
 - In the Southern hemisphere → Daily observations of Southern sources
 - At high altitude (~ 5 km)
 - Particle detectors
 - Hybrid detectors
 - Excellent timing accuracy
 - Modular design
 - Simple to construct
 - Long duration
 - "Open Observatory"

- → Low threshold $E \ge 200 \text{ GeV}$
- \rightarrow Observations may be done 24h per day
- \rightarrow Improved S/B discrimination
- \rightarrow Improved angular resolution (~ 0.1° at few TeV)
- → Phased construction and easy maintenance
- → Minimize human intervention at high-altitude
- \rightarrow Should operate for 30 years
- → Distribute data to the community "à la Fermi-LAT"

Linnæus University

• Simple to construct

Particle detectors

Hybrid detectors

The ALTO project

the Crafoord Foundation (Sweden)

At high altitude (~ 5 km)

• Excellent timing accuracy

• A Wide Field-of-View (~ 2 sr) gamma-ray observatory:

Long duration

Modular design

"Open Observatory"

- → Observati
- \rightarrow Improved
- \rightarrow Improved
- \rightarrow Phased co
- \rightarrow Minimize
- \rightarrow Should op
- → Distribute

In the Southern hemisphere → Daily obse **Extensive** air \rightarrow Low thres shower A section of the ALTO detector array

ALTO Science Goals

Daily monitoring of Southern targets:

- Transients and variable sources;
- Active Galactic Nuclei, Gamma-Ray Bursts (if spectra favourable), X-ray binaries;
- Galactic centre and central region;
- Alerts to other observatories;
- Multi-year light-curves;
- High-end of the sources' spectra;
- Search for Pevatrons;

H.E.S.S. PKS 2155-304 (blazar) flare

Study of extended sources:

Fermi Bubbles, Vela SNR, AGN radio lobes;

Credit: NASA/DOE/Fermi LAT Collaboration, Capella Observatory, and Ilana Feain, Tim Cornwell, and Ron Ekers (CSIRO/ATNF), R. Morganti (ASTRON), and N. Junkes (MPIfR)

Other accessible goals:

- Search in past data if detections of:
 - gravitational waves or
 - neutrinos;
- Study of the cosmic-ray composition and anisotropy;
- Dark matter searches;
- EBL studies (if threshold low enough);
- Search for Lorentz invariance violation;
- Axion-like particles from distant AGNs.

Current Collaboration

Sweden	France
 Department of Physics and Electrical	 APC Laboratory, IN2P3/CNRS, Paris Michael Punch Contacts with Jean-Christophe Hamilton
Engineering, Linnaeus University,	(discussions about the site) Aix-Marseille University Jean-Pierre Ernenwein LAL/Orsay Dominique Breton
Växjö PI Yvonne Becherini Post-doc Satyendra Thoudam Two PhD students just started (50%) Mohanraj Seniappan: MVA Rejection Tomas Bylund: DAQ & Control Industry: TBS Yard AB, Torsås Industrial construction,	(discussions on electronics) CEA/Saclay Eric Delagnes
responsible Lars Tedehammar	(discussions on electronics)

Discussions with other parties in Academia/Research Institutes:

- Los Alamos Laboratory, U.S.
- North-West University, Potchefstroom, South Africa

Linnæus University

Key design characteristics of the full array

- Altitude (~ 5km):
 - For Physics goals, as a survey/alert instrument for transients
- Fine-grained array of 1242 units:
 - Smaller WCD (Water Cherenkov Detector) than existing Northern HAWC
 - Low dead-space ("packing factor" ~70%)
 - Improved angular resolution

Analogue memories + ADCs to

Muon-detector tank

No cables from central DAQ room, only fibres.

An ALTO "cluster"

Cluster = Group of 6 Units = $6 \times (WCD + SLD)$

- WCDs on concrete "table"
- SLDs below "table", on telescopic rails

Each cluster to have common:

- Electronics readout unit
- Solar panel + battery
- Communication/data to central DAQ room by fibre only

ALTO Electronics

- Readout electronics box, powered by solar panels
- Communications, by fibre-optic connections only, to central DAQ
- Electronics box containing:
 - **SBC**, Single Board Computer (Arduino / BeagleBone ...) or similar
 - For local control and monitoring, autonomy in case of connection loss
 - Analogue I/O for control of PMT active bases, readout of temperatures (e.g. USB LabJack)
 - "WaveCatcher"
 - 12-channel version, i.e. 16 minus 1 mezzanine
 - Would be well adapted for ALTO
 - BUT, majority trigger logic on all channels
 - Low power consumption (~20W)
 - Output data
 - Either copper ethernet UDP through switch to SBC
 - Or direct fibre to central DAQ
 - TiCkS White Rabbit node (or firmware-modified SPEC)
 - Time-stamping of WaveCatcher Read-out trigger to ns precisior
 - Dedicated single-mode 1Gb optical fibre required to central DAQ (White Rabbit Switch Stack for time distribution)
- In Central DAQ,
 - Time stamps reunited with their WaveCatcher data by their event counters
 - Coincidence logic applied to time-stamps in software gives Array Trigger (cluster multiplicity/topology)

Linnæus University

"TiCkS: A Flexible White-Rabbit Based Time-Stamping Board", Champion et al., ICALEPCS2017 , Barcelona, Spain, 2017

ALTO Electronics

- Per cluster
 - 6 (Up) Cherenkov Channels
 - 6 (Down) Muon channels
- Rates
 - Expect << 20kHz singles rates
 - 20ns hardware coincidence window reasonable
 - 2-fold coincidence rate with 12 channels → 1 kHz
- Coincidence:
 - Ideally OR of
 - majority 2/6-Up or
 - any pair Up-Down
 - But can live with existing 2/n Majority logic
 - Maybe finer logic in 2nd step by LUT sent to FPGA to reduce data rate?
- Read-out characteristics:
 - Few tens of ns (maybe more pre-pulse to have baseline), lower is better for dead-time
 - GHz sampling is probably sufficient (lower would give lower dead-time)
 - Simulations re-analysis to find how coarse to go without degrading angular resolution
- (note, full reconstruction and S/B rejection chain needed to close this loop... soon ready)

- More compact
- Regular pattern

Cosmic ray

- Clumpy
- Hot spots in the muon detectors far from core

ALTO Pre-prototyping: tests in laboratory

- Many test-benches, all with readout triggered by small (10x20cm) muon-paddles, read by "WaveCatcher"
 - All compared with GEANT4 simulations to find reflectivity, absorption, etc.
- Small water tank viewed from above by 8" PMT (next slide), to test
 - blackness of the internal "gel-coat"
 - Effects over time with strong chlorine concentration (bio-growth, leaching)
 - \rightarrow 20x normal swimming pool concentration OK for now
- "Scintillator rails" read by 2" PMT
 - To test Aluminium material used in lower tank
 - Comparison of measured and expected (from GEANT4 simulations, adjusting reflectivity & polish)
 - \rightarrow led to redesign using folded 0.5mm Al sheet
 - No welding, much simpler construction
- Large scintillator tank read by 8" PMT
 - To test aluminium material with final PMT immersed in Scintillator
 - Test of re-design \rightarrow Confirmation of simplicity of construction
 - Result scalable to full-sized tank (factor ~x2 PE from reflections on walls)
- Comparison with a deeper (10cm) tank with Water (not scintillator)
 + Tyvek as reflector to replace scintillator tank, currently running
 - May be able to reduce costs, avoid some radioactivity triggers (see next slides)

Tests in laboratory, small-scale upper tank

ALTO

Long term test (6 months) to verify the possible interaction of water-black gel coat

50cm x 50cm x 50cm test box with final black gelcoat.

Tests in laboratory

Test of small-scale bottom tank (area=area of final tank/10)

Tests of: Water (Cherenkov) and LAB+PPO+POPOP (Scintillation)

Reflector in tanks: aluminium, Tyvek

Collected pes = f(trigger distance from PMT center)

Cherenkov case (Water+Tyvek+super bialkali R5912 Hamamatsu with gain 10⁷)

Linnæus University

17 🎙

Results of tests in dark room, next steps

- R5912-SB Hamamatsu @gain 10⁷ + ISEG PHQ 7081SEL_4 + WaveCatcher perfectly suitable for bottom tank in the 2 studied options: water or liquid scintillator.
- The same chain will be used in the top tank (chain is also suitable according to simulations).
- Full test will be done with the Växjö prototype.
- The test setups use Labview+USB (max rate of 1 event/s), and 1024 samples @ 1.07 GHz.
- The Växjö prototype and next steps will use a linux software+UDP (to be developed).
- For expected 2-fold coincidence rate with 12 channels is 1 kHz (assuming 20kHz single rate and 20ns window). ing
 → Basic tests with labview+UDP and
 48 samples @ 2GHz on 8 channels
 work up to ~3000 evts/s.

ALTO prototype at Linnaeus University in Växjö, Sweden

- Construction stared January 9th 2018
- Several PMT solutions will be tested; along with comparison scintillator/water for the lower tank.
- Fully funded: construction of two full ALTO units, with 4-tank concrete layer
- The empty slots will be equipped with (smaller) additional scintillator boxes

ALTO prototype setup in Växjö

ALTO prototype construction at Linnaeus University: Status

- We received the building permit
- Currently the water tanks (carbon fibre and PVC foam) being produced in Torsås by TBS Yard AB
- Bottom Aluminium tank to start when design is finalized (see "tests in lab")
- Ground preparation completed, using existing pipe for fibres/poser
- Next step will be the installation of tanks
- Tests...

ALTO prototype construction at Linnaeus University: Status

Concrete table construction (is completed now)

basement

Upper tanks completed, will be moved from factory to Växjö in 4 weeks.

structure

PMT housing: plexigass tube (housing PMT, active base). Sealing with Wacker potting. Will be placed in the center of the tank floor.

Linnæus University

VDA W

Project time-line & Next steps

- 2018 Validation of prototype design;
 - At LnU campus, with "Antares Surface Array"

- 2019 If design & funding requests successful:
 - Installation of one or more ALTO clusters at the site in the Southern hemisphere;
 - Flat-pack construction ("IKEA-type") assembly by local crew or "base camp"

ALTO site in South America

- Presence of water nearby is a key factor, to lower the costs
- In order to simplify and be quick, we are aiming for the installation of 2-3 full ALTO clusters behind the site of QUBIC/LLAMA in Argentina, at an altitude of 4850 m
 - Synergies within APC lab which is working on QUBIC
- We should be in the back lobe of QUBIC in order not to disturb the QUBIC experiment data taking
- There might also be the possibility to share infrastructure, power, network, roads
- The 2-3 cluster installation will allow us
 - To further test the construction feasibility at high altitude
 - To acquire further experience on singles and coincidence rates
 - To build partnerships with local industries

- ALTO is a new project, financially supported primarily by Linnaeus University and Swedish private Foundations for now;
- The project's aim:
 - → to build a wide FoV VHE gamma-ray observatory with enhanced sensitivity with respect to current WCDA technology;
- Simple design:
 - → limits costs of construction in full production phase; Prototype costs higher;
- Collaboration between Academia and Industry:
 - \rightarrow cost-effective solutions;
 - \rightarrow knowledge transfer benefiting both parties;
- Possible location of the observatory:
 - → Argentina, near QUBIC/LLAMA;
- Aimed investment cost for full deployment
 - → ~ 20M€ excluding salaries;
- Expansion of collaboration:
 - → to cover costs, expertise in readout electronics: WaveCatcher, expertise in DAQ, design optimisation
- Status of the project with further information can be found at the website:
 - → http://alto-gamma-ray-observatory.org/
- For enquiries about the project, please contact yvonne.becherini@lnu.se

Feedback on WaveCatcher

- We are very happy with the WaveCatcher performance
- Responsiveness of Dominique and Jihane very good
- We would need:
 - For 16 (\rightarrow 12) channel wavecatcher, to have majority logic over all channels
 - Operation with Linux (Python would be nice)
 - ~200 WaveCatchers, if we get funding for full array!
- We would like:
 - Quieter fans (only for versions in lab, in the field no problem)
 - Possibility to connect to heat-pipes for cooling (thin atmosphere at 5km)
 - Some more complex combinatorial logic to reject some events
 - Pre-trigger, to lower dead-time or
 - Post-trigger, for lower data rate
 - Separate "Read-out" and "Busy" triggers and counters, with corresponding outputs to go to White Rabbit node (to ensure counters stay in sync)
- Mode where only triggered channels data(discussed here), could interest us... need to look at MCs...

Photo @Miguel Mostafa

Backups

Exploded view of Water Tank

Exploded view of Scintillator Tank

