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Computing Statistical Results
III. Discovery

(Continued from yesterday)

Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011

https://arxiv.org/abs/1007.1727
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One-sided vs. Two-Sided 
If S < 0, is it a discovery ? (does reject the S=0 hypothesis…)
Usual assumption : only S > 0 is a bona fide signal

 ⇒ Change statistic so that S < 0  Þ t0 = 0 (perfect agreement with H0, as for Ŝ = 0)

H1

m=0

H0

Two-sided One-sided

t 0 =−2 log
L(S=0)

L( Ŝ)
q0 = {−2 log

L(S=0)

L( Ŝ)
Ŝ ≥ 0

0 Ŝ < 0

m=0

H0H1 H1

Z = Φ
−1
(1− p0)Z = Φ

−1
(1−

p0

2
)

p0 Z p0

0.32 1 0.16

0.003 3 0.0015

6 x 10-7 5 3 x 10-7

By convention, factor 2 
in p-values for a given Z

 ⇒ Same Z in both cases 
for a given signal S

Test
Statistic
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One-Sided Asymptotics
→ One-sided test: 

Asymptotics: “half-χ2” distribution:

S=0
H0

H1

f (q0 ∣ S=0) =
1
2
δ (q0) +

1
2
f
χ

2
(ndof=1)(q0)

Z = Φ
−1
(1− p0) = √ q0Significance:p0 = 1−Φ (√ q0)Discovery p-value:

q0=( Ŝ
σ S )

2
Ŝ
σ S

Φ  : normal CDF

1−Φ ( Ŝ
σ S )

q0 = {−2 log
L(S=0)

L( Ŝ)
Ŝ ≥ 0

0 Ŝ < 0

Φ( z)=∫
−∞

z

G(u ;0,1)du
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Example: Gaussian Counting
Count number of events n in data
→ assume n large enough so process is Gaussian
→ assume B is known, measure S

Likelihood :

MLE for S : S = n – B

Test statistic: assume Ŝ > 0,

Finally: 

L(S) = e
−

1
2 (

n−(S+B)

√S+B )
2

S+B

√(S+B)
n

q0 =−2 log
L(S=0)

L( Ŝ)
= λ(S=0) − λ(Ŝ) = (

n−B

√B )
2

= ( Ŝ

√B )
2

Z = √ q0 =
Ŝ

√B

λ (S) = (
n−(S+B)

√S+B )
2

Known formula!
→ Strictly speaking only 
valid in Gaussian regimge
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Example: Poisson Counting
Same problem but now not assuming Gaussianity

MLE: S = n – B, same as Gaussian

Test statistic (for Ŝ > 0):

Assuming asymptotic distribution for q0,

Exact result can be obtained using
pseudo-experiments → close to √q0 result

L(S) = e−(S+B)
(S+B)n λ (S) = 2(S+B)−2n log (S+B)

q0 = λ(S=0) − λ ( Ŝ) = −2 Ŝ−2( Ŝ+B)  log
B

Ŝ+B

Z = √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]

Asymptotic formulas justified by Gaussian regime, 
but remain valid even for small values of S+B (5!), 

when S itself is not Gaussian
See G. Cowan’s slides for case with B uncertainty

Eur.Phys.J.C71:1554,2011

http://www-conf.slac.stanford.edu/statisticalissues2012/talks/glen_cowan_slac_4jun12.pdf
https://arxiv.org/abs/1007.1727
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Example: Multi-bin counting
Likelihood :

Assume Gaussianity:

Test statistic: assuming Ŝ > 0,

Asymptotics: 

L(S) =∏
i=1

N

Pois (ni ; S f i+Bi)

λ (S) =∑
i=1

N

(
ni − (S f i + Bi)

√Sf i + Bi
)

2

q0 = λ(S=0) − λ ( Ŝ) = ( Ŝ √ ∑i=1

N f i
2

Bi
)

2

Z = √ q0 =
Ŝ

( ∑i=1

N f i
2

Bi
)
−1 /2

Ŝ=

∑
i=1

N f i
Bi

Ŝi

∑
i=1

N f i
2

Bi

Always better than
● Any bin by itself (for same Ŝ)
● All bins merged together Combined uncertainty 

on Ŝ from all the bins

Ŝi = ni−Bi
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Some Examples High-mass X→γγ Search: JHEP 09 (2016) 1

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

p0 = 1.8 ´ 10-9  Û  Z = 5.9σ

Z
=
Φ

−
1(1

−
p

0 )

3.9σ

http://link.springer.com/article/10.1007/JHEP09%282016%29001
http://www.sciencedirect.com/science/article/pii/S037026931200857X
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Takeaways
Given a statistical model P(data; μ), define likelihood L(μ) = P(data; μ)

To estimate a parameter, use value μ ̂that maximizes L(μ).

To decide between hypotheses H0 and H1, use the likelihood ratio

To test for discovery, use

For large enough datasets (n > 5), 

For a Gaussian measurement,

For a Poisson measurement,

L(H 0)

L(H 1)

q0 = {−2 log
L(S=0)

L( Ŝ)
Ŝ ≥ 0

0 Ŝ < 0

Z = √ q0

Z =
Ŝ

√B

Z = √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]
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What was the question ?
Definition of the p-value:

So 5σ significance (p0~10-7)  ⇔ Occurs once in107 if only background present

However this is NOT “One chance in 107 to be a fluctuation”

The first statement is about data probabilities – P(data; H0)

The second is on P(H0) itself – not addressed in the framework described so far
→ makes sense in a Bayesian context, more on this later in these lectures.

It’s also a different statement (although they sometimes get confused)
→ If a signal outcome is also very unlikely, we may not want to 
     reject H0, even with p0 ~ 10-7.

p-value =
number of signal-like outcomes with only background present

all outcomes with only background present

http://www.nytimes.com/2012/07/05/science/cern-physicists-may-have-discovered-higgs-boson-particle.html?pagewanted=all
https://understandinguncertainty.org/explaining-5-sigma-higgs-how-well-did-they-do
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What was the question ?
e.g. Faster-than-light neutrino anomaly

“despite the large significance of the measurement reported 
here and the stability of the analysis, the potentially great impact 
of the result motivates the continuation of our studies in order to 
investigate possible still unknown systematic effects that could 
explain the observed anomaly.”

P ( fluctuation) =
number of signal-like outcomes with only B present

number of signal-like outcomes from any source (S or B)

 ⇒ Very unlikely to be a background fluctuation, but 
hard to believe since alternative (v>c) is far-fetched

Alternative:

→ Needs a priori P(S) and P(B) → Bayesian methods, discussed later
→ In frequentist context, only have p0 = P(deviation|B) 

 ⇒ However usually same conclusion, assuming P(S) is not  p≪ 0...

6.2σ above c

c

=
P (deviation∣B) P (B)

P (deviation∣S)P (S) + P (deviation∣B) P (B)

“Extraordinary claims 
require extraordinary 
evidence”

https://arxiv.org/abs/1109.4897v2


Outline

Yesterday: 
Statistics basics for HEP
Describing HEP measurements
Computing statistics results:

Discovery

Today:
Computing statistics results:

Limits
Confidence intervals

Profiling
Look-Elsewhere Effect
Bayesian methods

Tomorrow: Practical modeling, Unfolding
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Usual Statistical Results

• Discovery: we see an excess – 
is it a (new) signal, or a background 
fluctuation ?

• Upper limits: we don’t see an excess – 
if there is a signal present, 
how small must it be ?

• Parameter measurement: what is the 
allowed range (“confidence interval”) 
for a model parameter ?
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Upper Limits
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Hypothesis tests for Limits
If no signal in data, testing for discovery 
not very relevant (report 0.2σ excess ?)
→ More interesting to exclude
large signals → Upper limits on signal yield

For discovery
• Try to exclude H0 : S=0
• Alternative : H1 : S > 0
• Report p-value for the test (or Z)

For limit-setting:
• Try to exclude H0 : S=S0

• Alternative : H1 : S < S0 
• Usually, adjust S0 to get a predefined p-value (typically 5%)

→ Confidence Levels: CL = 1 - p (p = 5%  95% CL)⇔

H0

S=0 S0

H0
H1

H1

Discovery

Limit-Setting

?
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Hypothesis tests for Limits
If no signal in data, testing for discovery 
not very relevant (report 0.2σ excess ?)
→ More interesting to exclude
large signals → Upper limits on signal yield

For discovery
• Try to exclude H0 : S=0
• Alternative : H1 : S > 0
• Report p-value for the test (or Z)

For limit-setting:
• Try to exclude H0 : S=S0

• Alternative : H1 : S < S0 
• Usually, adjust S0 to get a predefined p-value (typically 5%)

→ Confidence Levels: CL = 1 - p (p = 5%  95% CL)⇔

H0

S=0 S0

H0
H1

H1

Discovery

Limit-Setting

OK ?



17

Hypothesis tests for Limits
If no signal in data, testing for discovery 
not very relevant (report 0.2σ excess ?)
→ More interesting to exclude
large signals → Upper limits on signal yield

For discovery
• Try to exclude H0 : S=0
• Alternative : H1 : S > 0
• Report p-value for the test (or Z)

For limit-setting:
• Try to exclude H0 : S=S0

• Alternative : H1 : S < S0 
• Usually, adjust S0 to get a predefined p-value (typically 5%)

→ Confidence Levels: CL = 1 - p (p = 5%  95% CL)⇔

H0

S=0 S0

H0
H1

H1

Discovery

Limit-Setting

Not OK ?
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Test Statistic for Limit-Setting

Discovery :
• H0 : S = 0
• H1 : S > 0

Limit-setting
• H0 : S = μ0

• H1 : S < μ0

q0=−2 log
L(S=0)

L( Ŝ)

Compare
Likelihood of H0

Likelihood of H1

μ0

H0H1

qS0
=−2 log

L(S0)

L( Ŝ)

Compare
Likelihood of H0

Likelihood of H1

S=0
H0 H1

S ~ S0 (no exclusion) : qS0 ~ 0
S  S≪ 0 (good exclusion) : qS0  ≫ 1 

Same as q0 : large values 
Þ good rejection of H0.
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H1H0

One-sided Test Statistic
For upper limits, alternate is H1 : S < μ0 :
→ Ιf large signal observed (Ŝ  S≫ 0), does not favor H1 over H0

→ Only consider S < S0 for H1, and include S ≥ S0 in H0. 

Þ Set qS0 = 0 for  S > S0  – only small signals (Ŝ < S0) help lower the limit.
→ Also treat separately the case S < 0 
to avoid technical issues in -2logL fits.

Asymptotics:
qS0 ~ “½χ2” under H0(S=S0), same as q0, 
except for special treatment of Ŝ < 0.

H0

S=0 S0

H1

Discovery

Limit-Setting

~qS0
= {

0 Ŝ ≥ S0

−2 log
L(S=S0)

L ( Ŝ)
0 ≤ Ŝ ≤ S0

−2 log
L(S=S0)

L(S=0)
Ŝ < 0

Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011
p0 = 1−Φ (√ qS0 )

https://arxiv.org/abs/1007.1727
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Inversion : Getting the limit for a given CL

Procedure
→ Consider H0 : H(S=S0) – alternative H1 : H(Ŝ < S0)
→ Compute qS0, get exclusion p-value pS0.
→ Adjust S0 until 95% CL exclusion (pS0 = 5%) is reached
Asymptotics: set target in terms of qS0 :

qS1 p-value 
for qS1

qS = 2.70 : p = 5% 

S1 : (too) strong exclusion 

CL Region

90% qS > 1.64

95% qS > 2.70

99% qS > 5.41

Asymptotics

√ qS0
= Φ

−1
(1− p0 )
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Inversion : Getting the limit for a given CL

Procedure
→ Consider H0 : H(S=S0) – alternative H1 : H(Ŝ < S0)
→ Compute qS0, get exclusion p-value pS0.
→ Adjust S0 until 95% CL exclusion (pS0 = 5%) is reached
Asymptotics: set target in terms of qS0 :

qS2
qS1 p-value 

for qS1

qS = 2.70 : p = 5% 

S1 : (too) strong exclusion S2 : no exclusion 

CL Region

90% qS > 1.64

95% qS > 2.70

99% qS > 5.41

Asymptotics

√ qS0
= Φ

−1
(1− p0 )
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Inversion : Getting the limit for a given CL

Procedure
→ Consider H0 : H(S=S0) – alternative H1 : H(Ŝ < S0)
→ Compute qS0, get exclusion p-value pS0.
→ Adjust S0 until 95% CL exclusion (pS0 = 5%) is reached
Asymptotics: set target in terms of qS0 :

qS2
qS1 p-value 

for qS1

qS = 2.70 : p = 5% 

qS3

S1 : (too) strong exclusion S2 : no exclusion S3 : 95% exclusion 

CL Region

90% qS > 1.64

95% qS > 2.70

99% qS > 5.41

Asymptotics

√ qS0
= Φ

−1
(1− p0 )
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Upper Limits: Gaussian Example
Usual Gaussian counting example with known B:

Reminder:
Best fit signal : Ŝ = n - B
Significance: Z = Ŝ/√B

Compute the 95% CL upper limit on S:

so

And finally

S+B

σ 
n

λ (S) = ( n−(S+B)
σ S )

2

qS0
=−2 log

L(S=S0)

L( Ŝ)
= λ (S0) − λ ( Ŝ) = ( n−(S0+B)

σ S )
2

= ( S0− Ŝ
σS )

2 for 
S0 > Ŝ 

qS0
= 2.70  for  S0 = Ŝ + √2.70 σ S

Sup = Ŝ + 1.64σ S  at 95 % CL
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Upper Limit Pathologies
Upper limit:   Sup ~ S + 1.64 σS.

Problem: for negative Ŝ, get very good 
observed limit. 
→ For Ŝ sufficiently negative, even Sup < 0 ! 

How can this be ?
→ Background modeling issue ?… Or:
→ This is a 95% limit

 ⇒ 5% of the time, the limit wrongly 
excludes the true value, e.g. S*=0.
But if we assume S must be >0, we 
know a priori this is just a fluctuation. 

Options
→ live with it: sometimes report limit < 0
→ Special procedure to avoid these cases

σS = 1
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Upper Limit Pathologies
When setting limits, goal is to exclude large μ, 
to indicate that μ~0. What happens at μ=0  ?

Normal case: μ̂~0, μ=0 not excluded : 
μup = μ̂ + 1.64 σμ > 0, large p-value for μ=0

Pathological case, very negative μ̂, μ=0 also excluded : 
μup = μ̂ + 1.64 σμ < 0, p-value for μ=0 also small

→ However we know a priori that μ ≥ 0 
  ⇒ Inject this information into the procedure

qμ0,obs

μ=0

p=5% for μ

large p 
for μ=0

p=5% for μ

small p
for μ=0

H0

μ=0 μ0

H1

H0
H1

μ̂

μ=0 μ0μ̂

μ=μ0

qμ0,obs

μ=0

μ=μ0

σμ

σμ
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CLs

Usual solution in HEP : CLs.
→ Compute modified p-value 
• pμ0 is the usual p-value (5%)
• p0 is the p-value computed under H(μ=0).

 ⇒ Rescale exclusion at μ0 by exclusion at μ=0.
→ Somewhat ad-hoc, but good properties…

Good case : p0 ~ O(1)
pCLs ~ pμ0 ~ 5%, no change.

Pathological case : p0  1≪
pCLs~ pμ0/p0  5%≫

→ no exclusion  ⇒ worse limit, usually >0 as desired

Drawback: overcoverage 
→ limit is actually >95% CL for small p0.

p0pμ0

μ=0
μ0

μ0

μ=0

pCLs
=

pm 0

p0

A. Read, J.Phys. G28 (2002) 2693-2704

σS = 1

http://inspirehep.net/record/599622?ln=en
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CLs : Gaussian Example

Usual Gaussian counting example with known B:

Reminder 
Best fit signal : S = n - B
CLs+b limit:  

CLs upper limit : still have 
so need to solve

for Ŝ = 0,  

S+B

ÖB

n

λ (S) = ( n−(S+B)
σ S )

2

qS0
= ( S0− Ŝ

σ S )
2

(for S0 > Ŝ) 

Sup = Ŝ + 1.64σ S  at 95 % CL
Ŝ ~ G(S, σS) so
Under H0(S = S0) :

Under H0(S = 0) :
pCLs

=
pS0

p0

=
1−Φ(√ qS0

)

1−Φ(√ qS0
− S0 / σ S)

= 5%

Φ(0) = 0.5 ⇒ at 95% CL, CLs :  Sup = 1.96σ S

Sup = Ŝ + [ Φ−1

(1 − 0.05 Φ ( Ŝ / σ S) ) ] σ S  at 95 %  CL

pS0
= 1−Φ(√qS0

)

p0 = 1−Φ(√ qS0
−S0 / σ S)

√ qS0
∼ G (S0 / σ S ,1)

√ qS0
∼ G (0, 1)

CLs+b :  Sup = 1.64σ S
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CLS: Poisson Rule of Thumb
Same exercise, for the Poisson case
Exact computation : sum probabilities of cases “at least as extreme as data” (n)

For n = 0: 

 ⇒ Rule of thumb: when nobs=0, the CLs 95% CL limit is 3 events (for any B)

Asymptotics: as before, 

For n = 0,

 ⇒ Sup ~ 2, exact value depends on B 
 Asymptotics not valid in this case – need to use exact results, or toys⇒

qS0
= λ (S0) − λ ( Ŝ) = 2(S0 + B− n)−2n  log

S0+B

n

pS0
(n) =∑

0

n

e−(S0+B)
(S0+B)

k

k !

pCLs
=

pSup
(0)

p0(0)
= e−Sup = 5% ⇒ Sup = log (20) = 2.996 ≈ 3

and one should solve pCLs
=

pSup
(n)

p0(n)
= 5 %  for Sup

pCLs
=

pS0

p0

=
1−Φ(√ qS0

(n=0))

1−Φ(√ qS0
(n=0)−√ qS0

(n=B))
= 5%

qS0
(n=0) = 2(S0+B)
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Expected Limits: Toys
Expected results: median outcome under a given hypothesis
→ usually B-only by convention, but other choices possible.

Two main ways to compute:
→ Pseudo-experiments (toys):
• Generate pseudo-data in B-only hypothesis
• Compute limit
• Repeat and histogram the results
• Central value = median, bands 

based on quantiles

Computed limit

95% of toys68% of toys

Repeat for 

each mass

Nu
m

be
r o

f T
oy

s

Eur.Phys.J.C71:1554,2011

Phys. Lett. B 775 (2017) 105

https://arxiv.org/abs/1007.1727
http://www.sciencedirect.com/science/article/pii/S0370269317308511?via=ihub
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Expected Limits: Asimov
Expected results: median outcome under a given hypothesis
→ usually B-only by convention, but other choices possible.

Two main ways to compute:

→ Asimov Datasets
• Generate a “perfect dataset” – e.g. for binned

data, set bin contents carefully, no fluctuations.
• Gives the median result immediately:

median(toy results)  result(median dataset) ↔
• Get bands from asymptotic formulas:

Band width

⊕ Much faster (1 “toy”)
⊖ Relies on Gaussian approximation

σ S0 , A
2

=
S0

2

qS0
(Asimov)

Strictly speaking, Asimov dataset if
X̂ = X0 for all parameters X, 

where X0 is the generation value
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CLs : Gaussian Bands

Usual Gaussian counting example with known B:
95% CLs upper limit on S:

Compute expected bands for S=0:
→ Asimov dataset  S = 0⇔  : 
→ ± nσ bands:  

Sup,exp
0

= 1.96 σ S

Sup = Ŝ + [ Φ−1

(1 − 0.05 Φ ( Ŝ / σ S) ) ] σ S

Sup,exp
±n

= (±n + [ 1 − Φ
−1

( 0.05 Φ(∓n) ) ] ) σ S

Ŝ 

n Sexp
±n

  /√B

+2 3.66

+1 2.72

  0 1.96

-1 1.41

-2 1.05

CLs : 
● Positive bands 

somewhat reduced,
● Negative ones more so

σS = √B
with

Band width from
depends on S, for
non-Gaussian cases,different
values for each band...

σ S , A
2

=
S2

qS(Asimov)

Eur.Phys.J.C71:1554,2011

https://arxiv.org/abs/1007.1727
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Upper Limit Examples
ATLAS 2015-2016 4l aTGC Search

Phys. Lett. B 775 (2017) 105

Phys. Re v. D
 92 (2015) 0 12004 

http://inspirehep.net/record/1625109
http://www.sciencedirect.com/science/article/pii/S0370269317308511?via=ihub
http://dx.doi.org/10.1103/PhysRevD.92.012004
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Usual Statistical Results

• Discovery: we see an excess – 
is it a (new) signal, or a background 
fluctuation ?

• Upper limits: we don’t see an excess – 
if there is a signal present, 
how small must it be ?

• Parameter measurement: what is the 
allowed range (“confidence interval”) 
for a model parameter ?



Outline

Computing statistics results:
Limits
Confidence intervals

Profiling

Look-Elsewhere Effect

Bayesian methods
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Confidence Intervals
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Gaussian Inversion
If μ̂ ~ G(μ*, σ), known quantiles : 

This is a probability for μ̂ , not μ* !
→ μ* is a fixed number, not a random variable

But we can invert the relation:

→ This gives the desired statement on μ* : if we repeat the experiment many 
times, [μ̂ - σ, μ̂ + σ] will contain the true value 68% of the time
This is a statement on the interval [μ̂ - σ, μ̂ + σ] obtained for each experiment

Works in the same way for other interval
sizes: [μ̂ - Zσ, μ̂ + Zσ] with

Experiment 6

Experiment 4

Experiment 3

Experiment 2

Experiment 5

Experiment 1

μ*–σ     μ*    μ*+σ

Z 1 1.96 2
CL 0.68 0.95 0.955

P (m
*
− σ < m̂ < m

*
+ σ) = 68 %

⇒ P (∣ m̂ − m
*
∣< σ) = 68 %

P (m
*
− σ < m̂ < m

*
+ σ) = 68 %

⇒ P (m̂ − σ < m
*
< m̂ + σ) = 68 %
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Neyman Construction
Tru

e 
va

lu
e

Observed value

General case: Build 1σ intervals of observed values for each true value 
 ⇒ Confidence belt
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Inversion using the Confidence Belt
Tru

e 
va

lu
e 

μ*

σμ
+

μ̂ 

σμ
-

μ̂ Observed value μ̂

General case: Intersect belt with given μ ̂, get 
→ Same as before for Gaussian, works also when P(μobs|μ) varies with μ.

σμ comes from the 
model, not the data
→ data only provides μ̂.

σμ
+ from negative side of μ̂ intervals

σμ
- from positive side of μ̂ intervals

Doesn’t generalize well to many NPs 
in realistic models

P (m̂ − σm

-
< m

*
< m̂ + σm

+
) = 68%
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Likelihood Intervals
Confidence intervals from L:
• Test H(μ0) against alternative using
• Two-sided test since true value can be 

higher or lower than observed

Asymptotics:
• tμ ~ χ2(NPOI) under H(μ0)
• √tμ ~ G(0,1) (Gaussian with d=NPOI)

In practice:
• Plot tμ vs. μ
• The minimum occurs at μ = μ̂
• Crossings with tμ= Z2 give the 

±Zσ uncertainties (for NPOI=1)

→ Gaussian case:  parabolic profile,
same result as Neyman construction, also robust against non-Gaussian effects.

H0
m

tm 0
=−2 log

L(m=m0)

L(m̂ )
μ can be 
several POI!

ATLAS-CONF-2017-047 

H1
H1

tm = ( m−m̂
σ )

2

⇒ m± = m̂ ± σ  at tm = 1

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-047/
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2D Example: Higgs σVBF vs. σggF
ATLAS-CONF-2017-047 

By
 K

ris
hn

av
ed

al
a 

- O
w

n 
w

or
k,

 C
C

 B
Y-

SA
 3

.0
, h

ttp
s:/

/c
om

m
on

s.w
iki

m
ed

ia
.o

rg
/w

/in
de

x.
ph

p?
cu

rid
=1

52
78

82
6tggF,VBF

ggF

VBF

CL 68% (1σ) 95% 95.5% (2σ)
1D Z2 1 3.84 4
2D Z2 2.30 5.99 6.18

Z2

 t < 2.30
t < 5.99

Gaussian case: elliptic 
paraboloid surface

t=−2 log
L(X0,Y 0)

L( X̂ , Ŷ )

∼ χ
2
(N dof=2)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-047/
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Reparameterization
Start with basic measurement in terms of e.g. σ´B
→ How to measure derived quantities (couplings, parameters in some theory 
model, etc.) ?  → just reparameterize the likelihood:
e.g. Higgs couplings: σggF, σVBF sensitive to Higgs coupling modifiers κV, κF. 

L(σ ggF ,σVBF) L(σ ggF( κV ,κF) ,σVBF( κV ,κF)) ≡ L' ( κV ,κF)

σggF→σ ggF(κV , κF)

σVBF→σVBF (κV , κF)
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Reparameterization: Limits
CMS Run 2 Monophoton Search: measured 
NS in a counting experiment reparameterized  
according to various DM models

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-16-039/
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Takeaways
Limits : use LR-based test statistic:

→ Use CLs procedure to avoid negative limits

Poisson regime, n=0 : Sup = 3 events
Gaussian regime, n=0 : Sup = 1.96 σGauss

Uncertainty bands: obtain from toys or from Asimov

Confidence intervals: use

→ 1D: crossings with tμ0 = Z2 for ±Zσ intervals

Gaussian regime: μ = μ̂ ± σGauss (1σ interval)

σ S , A
2

=
S2

qS(Asimov)

~qm 0
= {

0 m̂ ≥ m0

−2 log
L (m=m 0)

L (m̂ )
0 ≤ m̂ ≤ m0

−2 log
L (m=m 0)

L(m=0)
m̂ < 0

tm0
=−2 log

L(m=m 0)

L(m̂ )
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Historical Aside
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Classic Discoveries (1)

y Discovery 
Lo

g 
sc

al
e!

Z0 Discovery

Huge signal
S/B~50
Several 1000 events

(almost) no 
background

Logbo ok of J. Roh lf, 1983 -05-3 0
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Classic Discoveries (2) y' : discovered online 
by the (lucky) shifters

First hints of top at D0: 
O(10) signal events, 

a few bkg events, 2.4σ
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And now ?
Short answer: The high-signal, low-background experiments have been done 
already (although a surprise would be welcome...)
e.g. at LHC:
• High background levels, need precise modeling
• Large systematics, need to be described accurately
• Small signals: need optimal use of available information :

– Shape analyses instead of counting
– Categories to isolated signal-enriched regions

AT
LA

S-
C

O
N

F-
20

17
-0

45

JH
EP

 1
2 

(2
01

7)
 0

24

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-045/
https://link.springer.com/article/10.1007/JHEP12(2017)024
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Discoveries that weren't

 Phys. Rev. Lett. 91, 252001 (2003)

UA1 Monojets (1984)

Pentaquarks (2003) BICEP2 B-mode Polarization (2014)

5.2σ

Avoid spurious discoveries!
→ Treatment of modeling uncertainties,
systematics in general

http://www.sciencedirect.com/science/article/pii/0370269384900467
https://inspirehep.net/record/622999
https://inspirehep.net/record/1286113
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Profiling
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Nuisances and Systematics
Likelihood typically includes
• Parameters of interest (POIs) : S, σ×B, mW, …
• Nuisance parameters (NPs) : other parameters 

needed to define the model
→ Ideally, constrained by data like the POI

e.g. shape of H→μμ continuum bkg

What about systematics ?
= what we don’t know about the random processs
Þ Parameterize using additional NPs
→ By definition, not constrained by the data

 ⇒ Cannot be free, or would spoil the measurement
(lumi free Þ no σ×B measurement!) 
Þ Introduce a constraint in the likelihood:

L(m ,θ ;data) = Lmeasurement(m ,θ ;data) C (θ)

Phys. Rev. Lett. 119 (2017) 051802

POI Systematics 
NP

Measurement
Likelihood

NP Constraint term 
 penalty for θ ≠ θ⇒ nominal

e−αmm m

"Systematic uncertainty is, in any 
statistical inference procedure, 
the uncertainty due to the 
incomplete knowledge of the 
probability distribution of the 
observables.
G. Punzi, What is systematics ?

http://inspirehep.net/record/1599399
https://www-cdf.fnal.gov/physics/statistics/notes/punzi-systdef.ps
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Frequentist Constraints
Prototype: NP measured in a separate auxiliary experiment 
e.g. luminosity measurement

→ Build the combined likelihood of the main+auxiliary measurements

Gaussian form often used by default:

In the combined likelihood, systematic NPs are constrained
→ now same as other NPs: all uncertainties statistical in nature

→ Often no clear setup for auxiliary measurements
e.g. theory uncertainties on missing HO terms from scale variations
→ Implemented in the same way nevertheless (“pseudo-measurement”)

L(m ,θ ;data) = Lmain(m ,θ ;main data) Laux(θ ;aux. data )

Laux(θ ;aux. data) = G (θ
obs ;θ ,σ syst)

Independent 
measurements: 
Þ just a product
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Likelihood, the full version (binned case)

Bin Yields or
Observable 

values
Sig/Bkg Shapes,

efficiencies

Systematics

L(m , {θ j } j=1. ..nNP
;{ni

(k )
}
i=1... ndata

( k)

k=1. ..ncat , {θ j
obs
} j=1. .nNP

)=

∏
k=1

ncat

P [ ni ;m ϵi , k ( θ⃗ ) N S , i , k ( θ⃗ ) + Bi ,k ( θ⃗ ) ] ∏
j=1

nsyst

G(θ j
obs ;θ j ;1)

DataPseudo-
experiments

MC
Auxiliary 

Data

Expected 
bin yield

POI NPs

× number of categories!
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Wilks’ Theorem
The likelihood usually has NPs:
• Systematics
• Parameters fitted in data

→ What values to use when defining the hypotheses ? → H(μ=0, θ=?)

Answer: let the data choose  Þ use the best-fit values (Profiling)

Þ Profile Likelihood Ratio (PLR)

tm 0
=−2 log

L(m=m0,

^̂
θm0

)

L(m̂ , θ̂)
θ̂ overall best-fit value (unconditional MLE)

^̂
θm0

best-fit value for m=m0  (conditional MLE)

Wilks’ Theorem: PLR also follows a χ2 ! 

→ Profiling “builds in” the effect of the NPs
Þ Can treat the PLR as a function of the POI only

f ( tm0
∣m=m0 ) = f

χ
2
(ndof=1) ( tm0 )

also with NPs present
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Effect of Profiling
Systematics still affect the result even after profiling their NPs!
e.g. Simple counting experiment: N(S,θ) = S + θ, measure Nobs, constraint on θ.

1. No NP: N(S) = S
→ S fit: adjust S to N(S) = S = nobs

→ S=S0 fit: S=S0 fixed Þ N(S0) = S0, cannot adjust
Þ tension between N(S0)=S0 and Sobs Þ large tS0 Þ strong exclusion of H(S0)

2. With NP: N(μ,θ) = S + θ
→ Ŝ fit: adjust N(S, θ̂) = N(S, θ̂=0) = nobs using S only (avoid penalty on θ)
→ S=S0 fit: S=S0 fixed, but θ̂S0 can still pull N(S0,θ̂μ0) towards Nobs
Þ smaller tS0 Þ reduced exclusion of H(S0)

t S0
=−2 log

L (S=S0 ,
^̂
θS0

;nobs)

L( Ŝ , θ̂ ;nobs)

N

Nobs

N(S, θ̂=0)
N(S0)

N(S0, θ̂S0)
N(S)tS0, no systematics

tS0, with systematics

t S0
=−2 log

L (S0 ;nobs)

L( Ŝ ;nobs)

More freedom
 Weaker exclusion ⇒
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Uncertainty decomposition
All systematics NPs fixed to 0 : statistical uncertainty only

1σ intervals

exp. syst. NPs fixed to 0 : stat+theory uncertainty

σ syst = √σ total
2

− σ stat
2

σ theo = √σ stat+theo
2

− σ stat
2

Subtraction in quadrature

m = 0.99 ± 0.12 (stat) ± 0.06 (syst) ± 0.06 ( theo)
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Gaussian Profiling

μ

θ

L(m ,θ ;m̂ , θ̂) = exp [− 1
2 (

m−m̂

θ−θ̂ )
T

C−1 (
m−m̂

θ−θ̂ ) ]

λ(m ,θ ;m̂ , θ̂ ) = Fmm (m−m̂)
2
+ 2Fm θ(m−m̂ )(θ−θ̂) + Fθ θ(θ−θ̂)

2

“data”
C = [ σ m

2
γ σmσ θ

γ σm σθ σθ
2 ]

Gaussian measurement with 1 POI μ and 1 NP θ:

→ λ(μ, θ) defines an ellipse:

σm σ θ

Uncertainty on μ:
● From C, with θ 

included: σm

F ≡ C−1

(m̂ , θ̂ )

= [ Fm m Fm θ

Fm θ Fθθ ]



58

Gaussian Profiling

^̂
θ (m

)

λ(m ,θ ;m̂ , θ̂ ) = Fmm (m−m̂)
2
+2Fm θ(m−m̂)(θ−θ̂)+Fθ θ(θ−θ̂)

2

Profile likelihood ratio:

Uncertainty on μ:

● From C:
● From PLR:

λ(m ,
^̂
θ(m) ;m̂ , θ̂ ) = (Fmm−Fm θFθ θ

−1Fθm ) (m−m̂)
2
= Cmm

−1
(m−m̂)

2
= ( m−m̂

σm )
2

Proof of Wilks’ theorem...

μ

θ

^̂
θ(m) = θ̂ − Fθθ

−1 Fθ m(m − m̂)

Profiled θ (minimize λ at fixed μ) :

σm

σm

Profiled θ crosses ellipse at 
vertical tangents by 
definition (L is lower at other 
points on the tangent)

Fmm ≠ Cmm

−1  !!

C = [ σm

2
γ σmσ θ

γ σmσθ σθ

2 ]

(m̂ , θ̂ )

F = [
Fmm Fm θ

Fm θ Fθθ ]
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Gaussian Profiling

λ(m ,θ = θ̂ ;m̂ , θ̂) = Fmm(m−m̂)
2
= (

m−m̂

σm √ 1−γ
2 )

2

F ≡ C−1
=

1

1−γ
2 [

1

σ m

2

γ
σm σ θ

γ
σm σθ

1

σ θ
2 ]→ For fixed θ = θ̂, λ(μ) defines an interval:

σm √ 1 − γ
2

μ

λ(m ,θ ;m̂ , θ̂ ) = Fmm(m−m̂)
2
+2Fm θ(m−m̂)(θ−θ̂)+Fθ θ(θ−θ̂)

2

θUncertainty on μ:

● From C:
● From PLR:

● From λ(μ):

σm

σm √1 − γ
2

σm

(m̂ , θ̂ )
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Gaussian Profiling

λ(m ,θ = θ̂ ;m̂ , θ̂) = Fmm(m−m̂)
2
= (

m−m̂

σm √ 1−γ
2 )

2

F ≡ C−1
=

1

1−γ
2 [

1

σ m

2

γ
σm σ θ

γ
σm σθ

1

σ θ
2 ]→ For fixed θ = θ̂, λ(μ) defines an interval:

σm √ 1 − γ
2

μ

λ(m ,θ ;m̂ , θ̂ ) = Fmm(m−m̂)
2
+2Fm θ(m−m̂)(θ−θ̂)+Fθ θ(θ−θ̂)

2

θ

Total uncertainty

Uncertainty on μ:

● From C:
● From PLR:

● From λ(μ):

σm

σm √1 − γ
2

σm

σm = √ ( √1 − γ
2
σm )

2
+ ( γ σm )

2

Stat uncertainty Syst uncertainty
(m̂ , θ̂ )
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Gaussian Profiling
Back to N(S,θ) = S + θ :
→ Measure Nobs ~ G(N*, σΝ)
→ constraint G(θ, σθ) on θ
→ everything still Gaussian:

Then: 

 ⇒ Stat uncertainty (on N) and syst (on θ) add in quadrature as expected

Executive summary: 

→ Systematic = NP with an external constraint (auxiliary measurement)
→ Profiling systematics includes their effect into the total uncertainty, as desired 
→ No special treatment for systematics: treated like any other NP,
     automatically accounted for through profiling.
→ Guaranteed to work only as long as everything is Gaussian, but typically
     robust against non-Gaussian behavior.

γ σm = σ θ

√1−γ
2
σm = σ N Stat. uncertainty

Syst. uncertainty
σm = √σ stat

2
+ σ syst

2
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Profiling Example: ttH→bb
Analysis uses low-S/B categories to constrain backgrounds.
→ Reduction in large uncertainties on tt bkg
→ Propagates to the high-S/B categories through the
statistical modeling 
Þ Care needed in the propagation (e.g. different 
kinematic regimes)

ATLA
S- C

O
N

F- 2016-08 0

Fit

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-080/


63

Uncertainty decomposition
All systematics NPs fixed to 0 : statistical uncertainty only

1σ intervals

exp. syst. NPs fixed to 0 : stat+theory uncertainty

σ syst = √σ total
2

− σ stat
2

σ theo = √σ stat+theo
2

− σ stat
2

Subtraction in quadrature

m = 0.99 ± 0.12 (stat) ± 0.06 (syst) ± 0.06 ( theo)
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Pull/Impact plots
Systematics are described by NPs 
included in the fit. Nominally:
• NP central value = 0 : corresponds to 

the pre-fit expectation (usually MC)
• NP uncertainty = 1 : since NPs 

normalized to the value of the syst. : 

Fit results provide information on 
impact of the systematic on the result:
• If central value ¹ 0: some data 

feature absorbed by nonzero value 
Þ Need investigation if large pull

• If uncertainty < 1 : systematic is 
constrained by the data
 Þ Needs checking if this legitimate 
or a modeling issue

• Impact on result of ±1σ shift of NP 

ATLAS-CONF-2016-058

N = N 0 (1 + σ syst θ) , θ ∼ G (0 , 1)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-058/
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Pull/Impact plots
Systematics are described by NPs 
included in the fit. Nominally:
• NP central value = 0 : corresponds to 

the pre-fit expectation (usually MC)
• NP uncertainty = 1 : since NPs 

normalized to the value of the syst. : 

Fit results provide information on 
impact of the systematic on the result:
• If central value ¹ 0: some data 

feature absorbed by nonzero value 
Þ Need investigation if large pull

• If uncertainty < 1 : systematic is 
constrained by the data
 Þ Needs checking if this legitimate 
or a modeling issue

• Impact on result of ±1σ shift of NP 

ATLAS-CONF-2016-05813 TeV single-t XS (arXiv:1612.07231)

N = N 0 (1 + σ syst θ) , θ ∼ G (0 , 1)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-058/
https://arxiv.org/abs/1612.07231
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Takeaways
Systematics: uncertainties on the form of the statistical model 
(as opposed to the uncertainties encoded in the model itself)
→ Implemented using additional nuisance parameters in the model
→ Constrained by adding auxiliary measurements (sometimes fictitious ones) 
to the model – usually represented by a single Gaussian for each NP.

 ⇒ Systematics treated in the same way as statistical uncertainties, although we 
still keep track of systematics NPs for bookkeeping purposes

Profiling: when testing a hypothesis, use the best-fit values 
of the nuisance parameters: profile likelihood ratio.

Wilks’ Theorem: the PLR has the same asymptotic properties as the LR without
systematics: can profile out NPs and just deal with POIs. 
→ NPs still show up in the PLR as increased uncertainties – Gaussian case:

L(m=m0,

^̂
θm 0

)

L(m̂ , θ̂)

L(m ,θ ;data) = Lmain(m ,θ ;main data) G(θ
obs ,θ ,1)

σ total = √σ stat
2

+ σ syst
2

Profiling can have unintended effects – need to carefully check behavior 
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Summary of Statistical Results Computation
Methods provide:

→ Optimal use of information from the data under general hypotheses

→ Arbitrarily complex/realistic models (up to computing constraints...)

→ No Gaussian assumptions in the measurements
Still often assume Gaussian behavior of PLR – but weaker assumption and 
can be lifted with toys
Systematics treated as auxiliary measurements – modeling can be tailored 
as needed

→ Single PLR-based framework for all usual classes of measurements
Discovery testing
Upper limits on signal yields
Parameter estimation
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Comparison with LEP/TeVatron definitions
Likelihood ratios are not a new idea:
• LEP: Simple LR with NPs from MC

– Compare μ=0 and μ=1
• Tevatron: PLR with profiled NPs

Both compare to μ=1 instead of best-fit μ ̂

→ Asymptotically:
• LEP/Tevaton: q linear in μ Þ ~Gaussian
• LHC: q quadratic in μ Þ  ~χ2 

→ Still use TeVatron-style for discrete cases

H0
H1

m=1
H1

H0

qLEP=−2 log
L(m=0,~θ)

L (m=1,~θ)

qTevatron=−2 log
L(m=0, ^̂θ0)

L(m=1, ^̂θ1)

LEP/Tevatron

LHC

m=0

A
ndrey Korytov , EPS 20 11
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Spin/Parity Measurements
Phys. Rev. D 92 (2015) 012004 

http://dx.doi.org/10.1103/PhysRevD.92.012004


70

Beyond Asymptotics: Toys
Asymptotics usually work well, but break down in 
some cases – e.g. small event counts.

Solution: generate pseudo data (toys) using the PDF, 
under the tested hypothesis
→ Also randomize the observable 
(θobs) of each auxiliary experiment:
→ Samples the true distribution of the PLR

 ⇒ Integrate above observed PLR to get the p-value
→ Precision limited by number of generated toys, 
Small p-values (5σ : p~10-7!) Þ large toy samples 

p(data|x)

PDF

Pseudo data

CMS-PAS-HIG-11-022

q0

Repeat Ntoys times

G (θ
obs ;θ ,σ syst)

http://cds.cern.ch/record/1376643
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Toys: Example  arXiv:1708.00212

ATLAS X→Zγ Search: covers 200 GeV < mX < 2.5 TeV
→ for mX > 1.6 TeV, low event counts Þ derive results from toys

Asymptotic results (in gray) give optimistic result compared to toys (in blue) 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2016-14/
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Look-Elsewhere Effect
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Look-Elsewhere effect
Sometimes, unknown parameters in signal model 

e.g. p-values as a function of mX

Þ Effectively performing multiple, simultaneous 
searches
→ If e.g. small resolution and large 
scan range, many independent experiments

→ More likely to find an excess 
anywhere in the range, rather 
than in a predefined location

 ⇒ Look-elsewhere effect (LEE)

Testing the same H0, but against 
different alternatives

 different p-values⇒



75

Global Significance
Probability for a fluctuation anywhere in the range → Global p-value.

 at a given location       → Local p-value

→ pglobal > plocal  Þ  Zglobal < Zlocal – global fluctuation more likely  less significant⇒

Trials factor : naively = # of independent intervals:
However this is usually wrong – more on this later

For searches over a parameter range, pglobal is the relevant p-value
→ Depends on the scanned parameter ranges
e.g. X→γγ : 200 < mX< 2000 GeV, 0 < ΓX < 10% mX.
→ However what comes out of the usual 
asymptotic formulas is plocal.

How to compute pglobal ? → Toys (brute force) or asymptotic formulas.

pglobal = 1 − (1−plocal)
N
≈ N plocal

Trials factor 

Global 
p-value

Local 
p-value

N trials

??
= N indep =

scan range
peak width
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Global Significance from Toys

Principle: repeat the analysis in toy data:
→ a generate pseudo-dataset
→ perform the search, scanning over parameters
     as in the data
→ report the largest significance found
→ repeat many times 

 ⇒ The frequency at which a given Z0 is found is the global p-value

e.g. X→γγ Search: Zlocal = 3.9σ (  p⇒ local ~ 5 10-5), 
scanning 200 < mX< 2000 GeV and  0 < ΓX < 10% mX 

→ In toys, find such an excess 2% of the time 
 p⇒ global ~ 2 10-2, Zglobal = 2.1σ Less exciting...

 ⊕ Exact treatment
 CPU-intensive⊖  especially for large Z (need ~O(100)/pglobal toys)

Local 3.9σ



77

Global Significance from Asymptotics
Principle: approximate the global p-value in the asymptotic limit
→ reference paper: Gross & Vitells, EPJ.C70:525-530,2010

Asymptotic trials factor (1 POI):

→ Trials factor is not just Nindep, 
     also depends on Zlocal ! 
Why ?
→ slice scan range into Nindep regions 
     of size ~ peak width
→ search for a peak in each region

 ⇒ Indeed gives Ntrials=Nindep.

However this misses peaks sitting on 
edges between regions 

 true N⇒ trials is > Nindep!

N trials = 1 + √
π
2

N indep Zlocal

N indep =
scan range
peak width
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Global Significance from Asymptotics
Principle: approximate the global p-value in the asymptotic limit
→ reference paper: Gross & Vitells, EPJ.C70:525-530,2010

Asymptotic trials factor (1 POI):

→ Trials factor is not just Nindep, 
     also depends on Zlocal ! 
Why ?
→ slice scan range into Nindep regions 
     of size ~ peak width
→ search for a peak in each region

 ⇒ Indeed gives Ntrials=Nindep.

However this misses peaks sitting on 
edges between regions 

 true N⇒ trials is > Nindep!

N trials = 1 + √
π
2

N indep Zlocal

N indep =
scan range
peak width
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Illustrative Example
Test on a simple example: generate toys with
→ flat background (100 events/bin)
→ count events in a fixed-size sliding window, look for excesses
Two configurations:
1. Look only in 10 slices of the full spectrum
2. Look in any window of same size as above, anywhere in the spectrum

Predefined
Slices

Largest excess in predefined slices

Example toy

Largest excess anywhere
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Illustrative Example (2)
Very different results if the excess is near a boundary :

1. Look only in 10 slices of the full spectrum
2. Look in any window of same size as above, anywhere in the spectrum
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Illustrative Example (3)

Zlocal

pglobal(Zlocal)

Normalized 
Zlocal distribution

No LE
E

Search in predefined 
bins: Ntrials = 10

Search 
everywhere:

Searching everywhere gives the 
extra Zlocal dependence

N tr
ia

ls
≈

1
+ √

π
2

N in
de

p
Z lo

ca
l

Search in predefined bins

Search everywhere
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ZGlobal Asymptotics Extrapolation
Asymptotic trials factor (1 POI):

How to get Nindep ? Usually work with a slightly different formula:

→ Get Nup From toys ? but high Zlocal  many toys needed ⇒

 ⇒ calibrate for small Ztest, apply result to higher Zlocal.

Can choose arbitrarily small Ztest 
 ⇒ many excesses
 ⇒ can measure Nup in data (1 “toy”)

Can also measure <Nup> in multiple toys
if large stat uncertainty from
too few excesses

N trials = 1 + √
π
2

N indep Zlocal

Number of excesses with Z > Ztest 

N trials = 1 +
1

p local

⟨Nup(Ztest) ⟩ e
Zlocal

2
−Ztest

2

2

Ztest

Zlocal

Nup ~ 20
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In 2D O. Vitells and E. Gross, Astropart. Phys. 35 (2011) 230

Generalization to 2D scans: consider
sections at a fixed Ztest, compute its
Euler characteristic φ, and use

→ Generalizes 1D 
bump counting

Now need to determine
2 constants N1 and N2,
from Euler φ measurements
at 2 different Ztest values.

1 – 1 = 0

5

1 – 4
= -3

φ = 2

https://arxiv.org/abs/1105.4355
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Bayesian Methods
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Frequentist vs. Bayesian
All methods described so far are frequentist
• Probabilities (p-values) refer to outcomes 

if the experiment were repeated identically
many times

• Parameters value are fixed but unknown

• Probabilities apply to measurements:
→ “mH = 125.09 ± 0.24 GeV” :

→ i.e. [125.09 – 0.24 ; 125.09 + 0.24 ] GeV has p=68% to contain the true mH.
→ if we repeated the experiment many times, we would get different 
intervals, 68% of which would contain the true mH.

→ “5σ Higgs discovery”
• if there is really no Higgs, such fluctuations observed in 3.10-7 of experiments

Not exactly the crucial question – what we would really like to know is
What is the probability that the excess we see is a fluctuation
→ we want P(no Higgs |data) – but all we have is P(data | no Higgs)

Experiment 6

Experiment 4

Experiment 3

Experiment 2

Experiment 5

Experiment 1

μ*–σ     μ*    μ*+σ
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Frequentist vs. Bayesian
Can use Bayes’ theorem to address this:

Can compute P(μ|data), if we provide P(μ)
→ Implicitly, we have now made μ into a random variable

– Is mH, or the presence of H(125), randomly chosen ?
– In fact, different definition of p: degree of belief, not from frequencies.
– P(μ) Prior degree of belief – critical ingredient in the computation

Compared to frequentist PLR:
⊕ answers the “right” question
⊖ answer depends on the prior

P (m∣data) =
P (data∣m)

P (data)
P (m)

“Bayesians address the questions everyone 
is interested in by using assumptions that no
one believes. Frequentist use impeccable 
logic to deal with an issue that is of no 
interest to anyone.”  - Louis Lyons

same as in the frequentist 
formalism (=likelihood)

irrelevant normalization factor

Prior Probability
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Bayesian methods
Probability distribution (= likelihood) : same form as frequentist case, but
P(θ) constraints now priors for the systematics NPs, P(θ) 
                                    not auxiliary measurements P(θmes; θ)

 ⊕ Simply integrate them out, no need for profiling:
→ Use probability distribution P(μ) directly for limits, credibility intervals
e.g. define 68% CL (“Credibility Level”) interval [A, B] by: 

 ⊖ No simple way to test for discovery
⊖ Integration over NPs can be CPU-intensive

Priors : most analyses still using flat priors in the analysis variable(s)
Þ Parameterization-dependent: if flat in σ´B , then not flat in κ…
→ Can use the Jeffreys’ or reference priors, but difficult in practice

Frequentist-Bayesian Hybrid methods (“Cousins-Highland”)
• Integrate out NPs as in Bayesian measurements
• Once only POIs left, Use P(data|μ) in a frequentist way

→ “Bayesian NPs, frequentist POIs”
• Some use in Run 1, now phased out in favor of frequentist PLR.

P (m) =∫ P (m ,θ) dθ

∫
A

B

P (m ) dm = 68 %
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Bayesian methods and CLs: CLs computation

L(n ;S ,θ) = G (n ;S+B+σ systθ ,σ stat) G(θobs=0 ;θ ,1)

Conditional MLE: ^̂θ(m) =
σ syst

σ stat
2

+σ syst
2

(n− S−B)
PLR : λ(m) = (

S+B − n

√ σ stat
2

+σ syst
2 )

2

Gaussian  from previous studies, CL⇒ s limit is

CLs :    Sup
CLs = n−B + [ Φ−1

( 1 − 0.05 Φ (
n−B

√σ stat
2
+σ syst

2 ) ) ] √σ stat
2

+σ syst
2

MLE: Ŝ= n−B

Gaussian counting with systematic on background: n = S + B + σsystθ
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Bayesian methods and CLs: Bayesian case

P (n ∣ S ,θ) = G (n ;S+B+σ syst θ ,σ stat) G (θ ∣ 0, 1)

Gaussian counting with systematic on background: n = S + B + σsystθ

Bayesian: G(θ) is actually a prior on θ  perform integral (⇒ marginalization)

P (n ∣ S) = G (S ; n−B , √σ stat
2

+σ syst
2

)

∫
Sup

∞

P (S∣ n)dS = 5 % = [ 1−Φ (
Sup−(n−B)

√σ stat
2

+σ syst
2 ) ] [ Φ (

n−B

√σ stat
2

+σ syst
2 ) ]

−1

P (S ∣ n) = G (S ;n−B ,√σ stat
2

+σ syst
2

) [ Φ (
n−B

√σ stat
2

+σ syst
2 ) ]

−1

same result as CLs!

same effect as profiling!

Need P(S|n)  a prior for S – take flat PDF over S > 0⇒
 Truncate Gaussian at S=0: ⇒ P (S ∣ n) = P (n ∣ S) P (S)

Bayesian Limit:

Sup
Bayes

= n−B + [ Φ−1

( 1 − 0.05 Φ (
n−B

√σ stat
2

+σ syst
2 ) ) ] √σ stat

2
+σ syst

2
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Example: W’→lν Search
• POI: W’ σ´B → use flat prior over [0, +¥[.
• NPs: syst on signal ε (6 NPs), bkg (6), lumi (1) → integrate over Gaussian priors

arXiv:1706.04786 

file:///home/nberger/Data/Applications/analysisDoc/PDF/1706.04786.pdf
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Why 5σ ?
One-sided discovery:  5σ  p⇔ 0 = 3 10-7   1 chance in 3.5M⇔

→ Overly conservative ?
→ Do we even know the sampling distributions so far out ?

Reasons for sticking with 5σ (from Louis Lyons):
• LEE : searches typically cover multiple 

independent regions 
 Global p-value is the  relevant one⇒

Ntrials ~ 1000 : local 5σ   O(10⇔ -4) more reasonable
• Mismodeled systematics: factor 2 error in 

syst-dominated analysis  factor 2 error on Z…⇒
• History: 3σ and 4σ excesses do occur regularly,

for the reasons above
• “Subconscious Bayes Factor” : p-value should be

at least as small as the subjective p(S):

Extraordinary claims require extraodinary evidence
 ⇒ Stay with 5σ...

Local 3.9σ, p0 = 5E-5
Global 2.1σ, p0 = 2E-2

P( fluct) =
P ( fluct∣B)P (B)

P( fluct∣S)P(S) + P ( fluct∣B)P (B)

https://arxiv.org/abs/1409.1903
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