Statistical analysis methods in High-Energy Physics

Part II

Nicolas Berger (LAPP Annecy)

Computing Statistical Results III. Discovery

(Continued from yesterday)

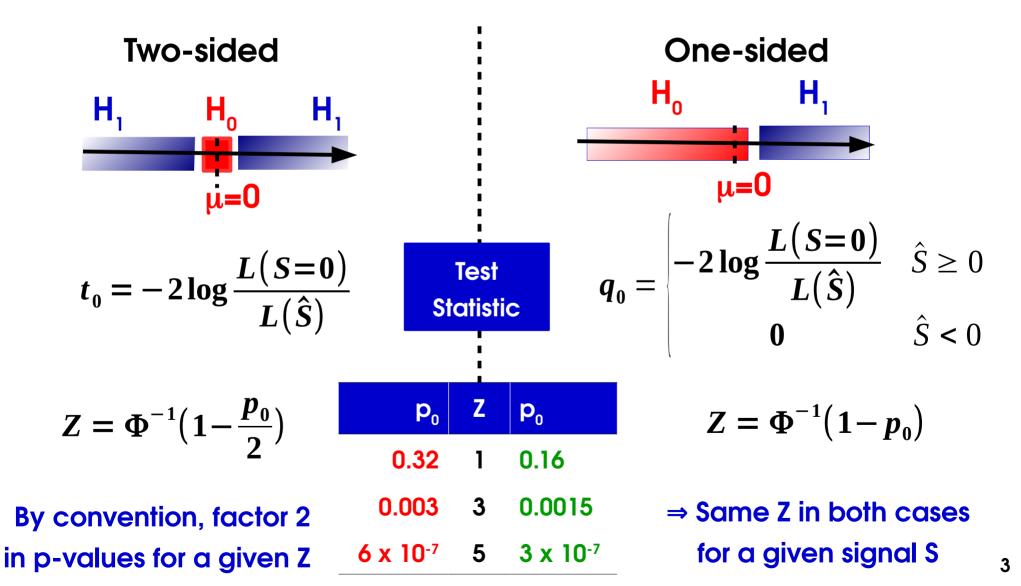
Cowan, Cranmer, Gross & Vitells, Eur. Phys. J. C71: 1554, 2011

One-sided vs. Two-Sided

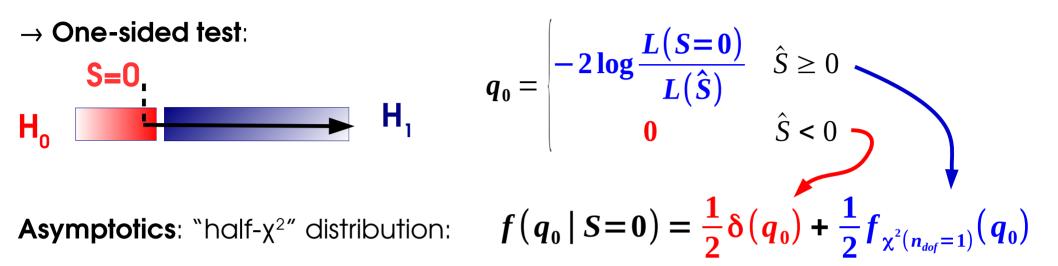
If $\hat{S} < 0$, is it a *discovery*? (does reject the S=0 hypothesis...)

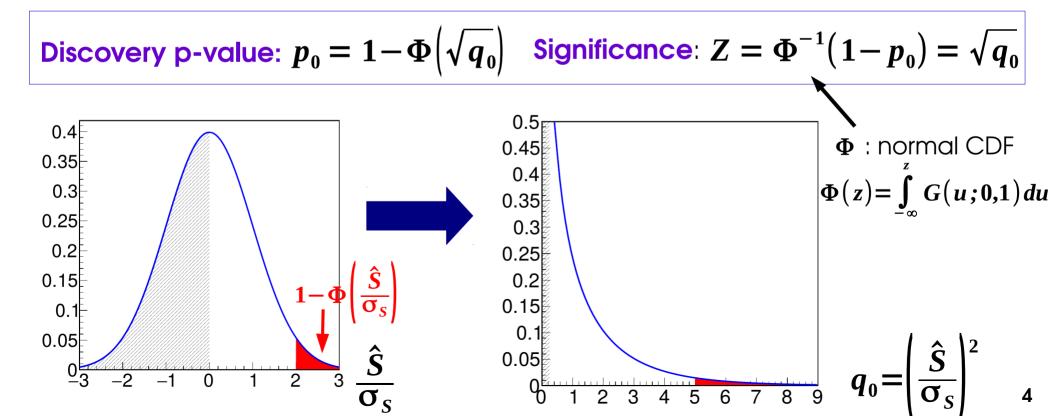
Usual assumption : only **\$ > 0** is a *bona fide* signal

⇒ Change statistic so that $\hat{\mathbf{S}} < \mathbf{0} \Rightarrow \mathbf{t}_0 = \mathbf{0}$ (perfect agreement with H_0 , as for $\hat{\mathbf{S}} = 0$)



One-Sided Asymptotics





Example: Gaussian Counting

Count number of events n in data

 \rightarrow assume n large enough so process is Gaussian

 $L(S) = e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sqrt{S+B}}\right)^2}$

 \rightarrow assume B is known, measure S

Likelihood :

$$\lambda(S) = \left(\frac{n - (S + B)}{\sqrt{S + B}}\right)^2$$

MLE for $S : \hat{S} = n - B$

Test statistic: assume $\hat{S} > 0$,

$$q_0 = -2\log\frac{\boldsymbol{L(S=0)}}{\boldsymbol{L(\hat{S})}} = \lambda(S=0) - \lambda(\hat{S}) = \left|\frac{n-B}{\sqrt{B}}\right|^2 = \left|\frac{\hat{S}}{\sqrt{B}}\right|^2$$

~

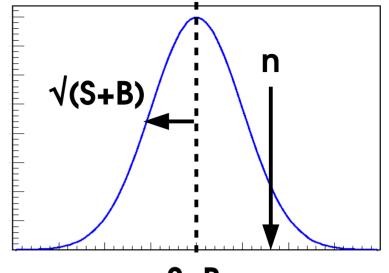
Finally:

$$Z = \sqrt{q_0} = \frac{S}{\sqrt{B}}$$

Known formula!

 \rightarrow Strictly speaking only

valid in Gaussian regimge



S+B

Example: Poisson Counting

Same problem but now not assuming Gaussianity

 $L(S) = e^{-(S+B)}(S+B)^n \qquad \lambda(S) = 2(S+B) - 2n\log(S+B)$

MLE: $\hat{S} = n - B$, same as Gaussian

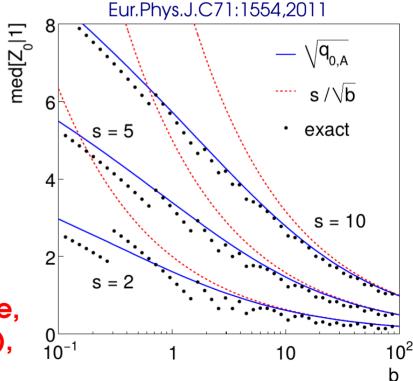
Test statistic (for
$$\hat{S} > 0$$
): $q_0 = \lambda(S=0) - \lambda(\hat{S}) = -2\hat{S} - 2(\hat{S}+B) \log \frac{B}{\hat{S}+B}$

Assuming asymptotic distribution for q_0 ,

$$Z = \left(\hat{S} + B \right) \log \left| 1 + \frac{\hat{S}}{B} \right| - \hat{S}$$

Exact result can be obtained using pseudo-experiments \rightarrow close to $\sqrt{q_0}$ result

Asymptotic formulas justified by Gaussian regime, but remain valid even for small values of S+B (5!), when S itself is not Gaussian



See G. Cowan's slides for case with B uncertainty 6

Example: Multi-bin counting

Likelihood : $L(S) = \prod_{i=1}^{N} \operatorname{Pois}(n_i; Sf_i + B_i)$

Assume Gaussianity:

$$\lambda(S) = \sum_{i=1}^{N} \left(\frac{n_i - (Sf_i + B_i)}{\sqrt{Sf_i + B_i}} \right)^2$$

Test statistic: assuming $\hat{S} > 0$,

$$q_0 = \lambda(S=0) - \lambda(\hat{S}) = \left| \hat{S} \sqrt{\sum_{i=1}^{N} \frac{f_i^2}{B_i}} \right|^2$$

Asymptotics:

$$Z = \sqrt{q_0} = \frac{\hat{S}}{\left|\sum_{i=1}^{N} \frac{f_i^2}{B_i}\right|^{-1/2}}$$

Combined uncertainty
on \hat{S} from all the bins

Always better than

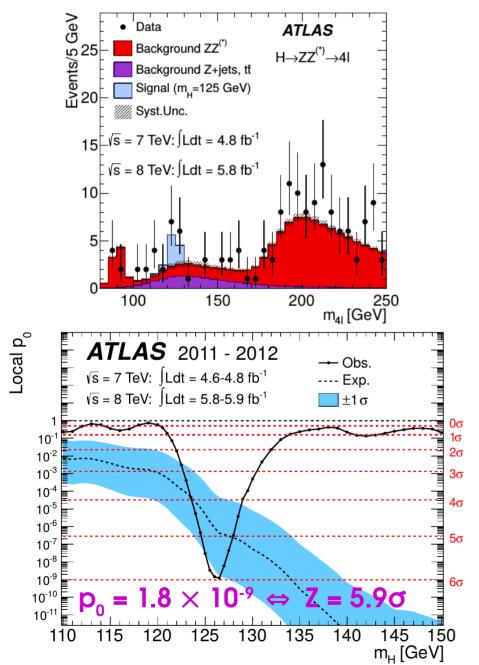
 $\hat{S} = \frac{\sum_{i=1}^{N} \frac{f_i}{B_i} \hat{S}_i}{\sum_{i=1}^{N} \frac{f_i^2}{B_i^2}}$

- Any bin by itself (for same Ŝ)
- All bins merged together

 $\hat{S}_i = n_i - B_i$

Some Examples

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

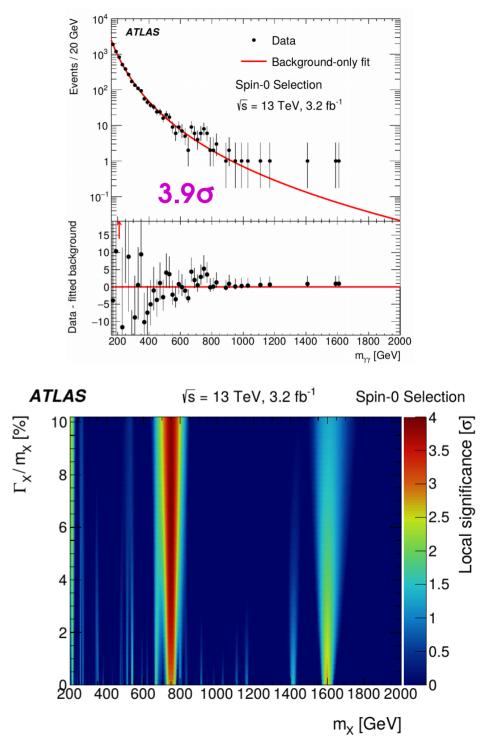


N

П Ф

 $-p_0$

High-mass X→ yy Search: JHEP 09 (2016) 1

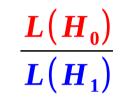


Takeaways

Given a statistical model P(data; μ), define likelihood L(μ) = P(data; μ)

To estimate a parameter, use value $\hat{\mu}$ that maximizes L(μ).

To decide between hypotheses H_0 and H_1 , use the likelihood ratio



0

0

To test for **discovery**, use
$$q_0 = \begin{cases} -2\log\frac{L(S=0)}{L(\hat{S})} & \hat{S} \geq 0 \\ 0 & \hat{S} < 0 \end{cases}$$

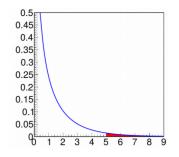
For large enough datasets (n > 5), $Z = \sqrt{q_0}$

For a Gaussian measurement,
$$Z = \frac{\hat{S}}{\sqrt{B}}$$

For a Poisson measurement, $Z = \sqrt{2\left[(\hat{S}+B)\log\left(1+\frac{\hat{S}}{B}\right)-\hat{S}\right]}$

What was the question ?

Definition of the p-value:



p-value = number of signal-like outcomes with only background present all outcomes with only background present

So 5 σ significance ($p_0 \sim 10^{-7}$) \Leftrightarrow Occurs once in 10⁷ if only background present

However this is **NOT** "One chance in 10⁷ to be a fluctuation"

The first statement is about **data probabilities** – **P(data; H₀)**

The second is on $P(H_0)$ itself – not addressed in the framework described so far \rightarrow makes sense in a **Bayesian** context, more on this later in these lectures.

It's also a different statement (although they sometimes get confused) \rightarrow If a signal outcome is also very unlikely, we may not want to reject H₀, even with p₀ ~ 10⁻⁷.

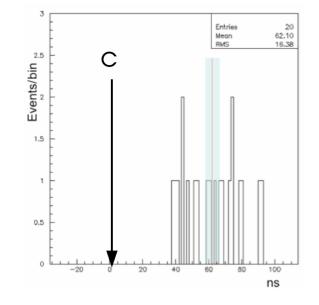
What was the question ?

e.g. Faster-than-light neutrino anomaly

 $(v-c)/c = (2.37 \pm 0.32 \text{ (stat.)} ^{+0.34}_{-0.24} \text{ (sys.)}) \times 10^{-5}$ 6.20 above c

"despite the large significance of the measurement reported here and the stability of the analysis, the potentially great impact of the result motivates the continuation of our studies in order to investigate possible still unknown systematic effects that could explain the observed anomaly."

⇒ Very unlikely to be a background fluctuation, but hard to believe since alternative (v>c) is far-fetched



"Extraordinary claims require extraordinary evidence"

Alternative: $P(\text{fluctuation}) = \frac{\text{number of signal-like outcomes with only B present}}{\text{number of signal-like outcomes from any source (S or B)}$ $= \frac{P(\text{deviation}|B)P(B)}{P(\text{deviation}|S)P(S) + P(\text{deviation}|B)P(B)}$

 \rightarrow Needs *a priori* P(S) and P(B) \rightarrow Bayesian methods, discussed later

- \rightarrow In frequentist context, only have $p_0 = P(deviation | B)$
- \Rightarrow However usually same conclusion, assuming P(S) is not $\ll p_0...$

Outline

Yesterday:

Statistics basics for HEP Describing HEP measurements Computing statistics results: Discovery

Today:

Computing statistics results:

Limits

Confidence intervals

Profiling Look-Elsewhere Effect Bayesian methods

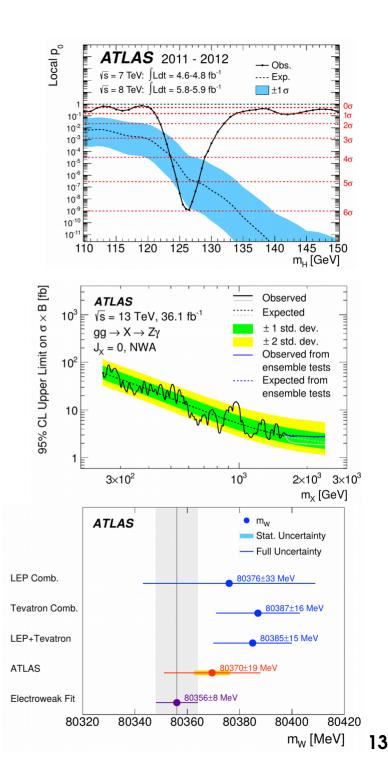
Tomorrow: Practical modeling, Unfolding

Usual Statistical Results

Discovery: we see an excess –
 is it a (new) signal, or a background fluctuation ?

 Upper limits: we don't see an excess – if there is a signal present, how small must it be ?

 Parameter measurement: what is the allowed range ("confidence interval") for a model parameter ?



Upper Limits

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?) → More interesting to **exclude large signals** → **Upper limits on signal yield**

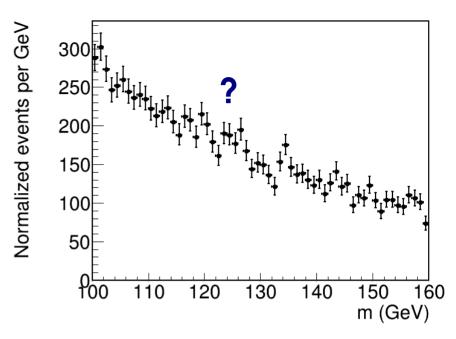
For **discovery**

- Try to exclude H₀: S=0
- Alternative : $H_1 : S > 0$
- Report p-value for the test (or Z)

For **limit-setting**:

- Try to exclude H₀: S=S₀
- Alternative : $H_1 : S < S_0$
- Usually, adjust S₀ to get a predefined p-value (typically 5%)

→ *Confidence Levels*: CL = 1 - p ($p = 5\% \Leftrightarrow 95\%$ CL)





Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?) → More interesting to **exclude large signals** → **Upper limits on signal yield**

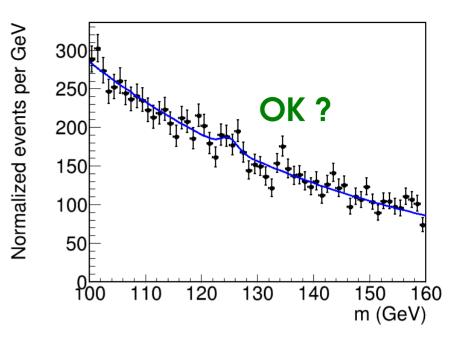
For **discovery**

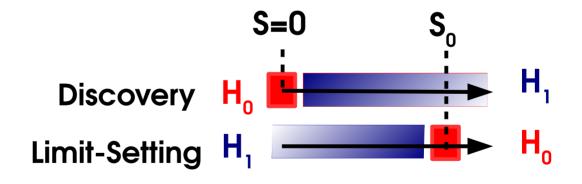
- Try to exclude H₀: S=0
- Alternative : $H_1 : S > 0$
- Report p-value for the test (or Z)

For **limit-setting**:

- Try to exclude H₀: S=S₀
- Alternative : $H_1 : S < S_0$
- Usually, adjust S₀ to get a predefined p-value (typically 5%)

→ *Confidence Levels*: CL = 1 - p ($p = 5\% \Leftrightarrow 95\%$ CL)





Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?) → More interesting to **exclude large signals** → **Upper limits on signal yield**

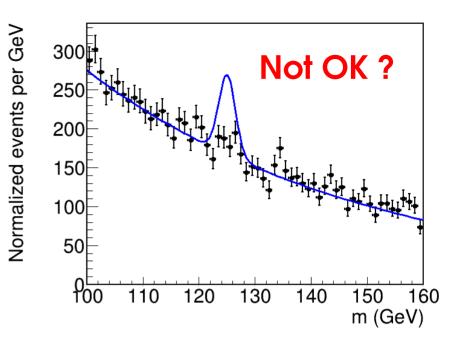
For **discovery**

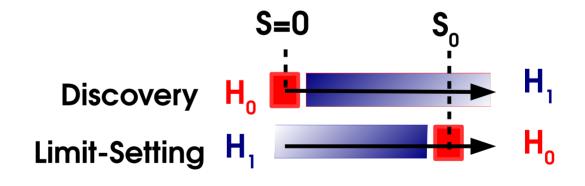
- Try to exclude H₀: S=0
- Alternative : $H_1 : S > 0$
- Report p-value for the test (or Z)

For **limit-setting**:

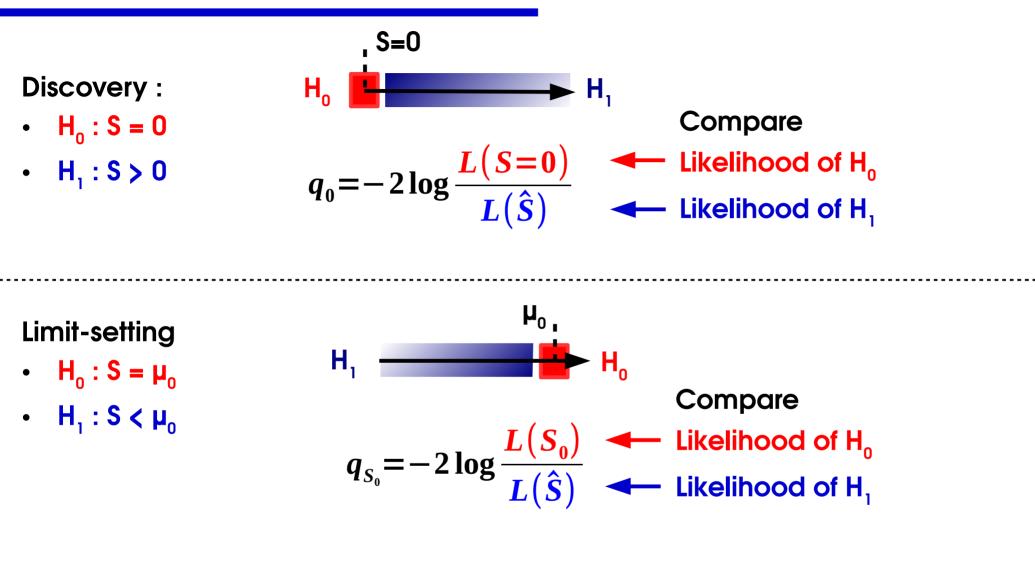
- Try to exclude H₀: S=S₀
- Alternative : $\mathbf{H}_1 : \mathbf{S} < \mathbf{S}_0$
- Usually, adjust S₀ to get a predefined p-value (typically 5%)

→ *Confidence Levels*: $CL = 1 - p (p = 5\% \Leftrightarrow 95\% CL)$





Test Statistic for Limit-Setting

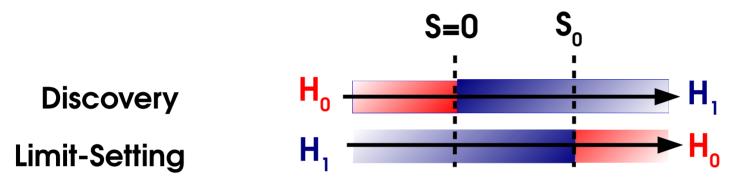


 $\hat{\mathbf{S}} \sim \mathbf{S}_0$ (no exclusion) : $\mathbf{q}_{so} \sim \mathbf{0}$ $\hat{\mathbf{S}} \ll \mathbf{S}_0$ (good exclusion) : $\mathbf{q}_{so} \gg \mathbf{1}$ Same as q_0 : large values \Rightarrow good rejection of H_0 .

One-sided Test Statistic

For upper limits, alternate is $H_1 : S < \mu_0$:

- \rightarrow If **large** signal observed ($\hat{S} \gg S_0$), does not favor H₁ over H₀
- \rightarrow Only consider $\hat{S} < S_0$ for H_1 , and include $\hat{S} \ge S_0$ in H_0 .



 \Rightarrow Set $\mathbf{q}_{so} = \mathbf{0}$ for $\hat{\mathbf{S}} > \mathbf{S}_{o}$ – only small signals ($\hat{\mathbf{S}} < \mathbf{S}_{o}$) help lower the limit.

 \rightarrow Also treat separately the case S < 0 to avoid technical issues in -2logL fits.

Asymptotics:

 $p_0 = 1 - \Phi$

 $q_{so} \sim "\frac{1}{2}\chi^2$ " under $H_0(S=S_0)$, same as q_0 , except for special treatment of $\hat{S} < 0$.

$$\widetilde{q}_{S_0} = \begin{vmatrix} \mathbf{0} & \widehat{S} \ge S_0 \\ -2\log\frac{L(S=S_0)}{L(\widehat{S})} & 0 \le \widehat{S} \le S_0 \\ -2\log\frac{L(S=S_0)}{L(S=0)} & \widehat{S} < 0 \end{vmatrix}$$

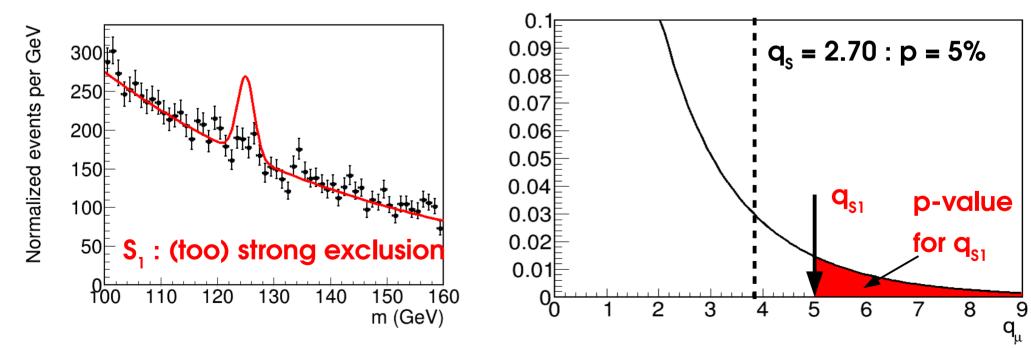
Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011 19

Inversion : Getting the limit for a given CL

Procedure

- \rightarrow Consider H_n : H(S=S_) alternative H_1 : H($\hat{S} < S_)$
- \rightarrow Compute q_{s_0} , get exclusion p-value p_{s_0} .
- \rightarrow Adjust S_o until 95% CL exclusion (p_{so} = 5%) is reached Asymptotics: set target in terms of q_{s_0} : $\sqrt{q_{s_0}} = \Phi^{-1}(1-p_0)$

Asymptotics	
CL	Region
90%	q _s > 1.64
95%	q _s > 2.70
99%	q _s > 5.41

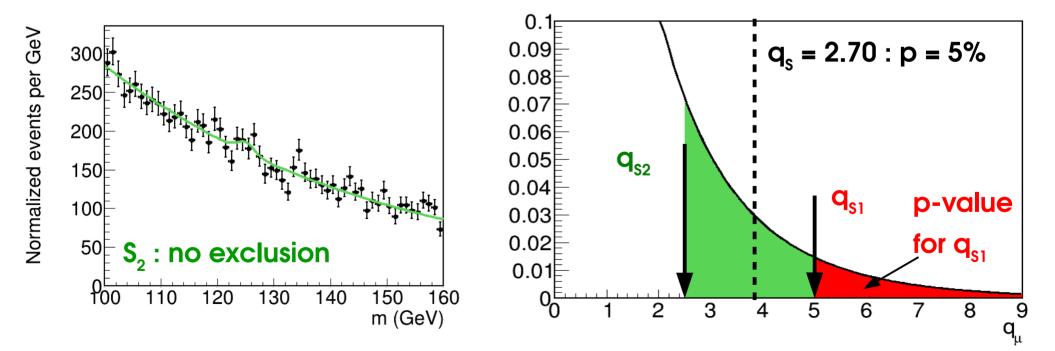


Inversion : Getting the limit for a given CL

Procedure

- \rightarrow Consider H_0 : H(S=S_0) alternative H_1 : H(Ŝ < S_0)
- \rightarrow Compute q_{so} , get exclusion p-value p_{so} .
- → Adjust S₀ until 95% CL exclusion ($p_{s0} = 5\%$) is reached Asymptotics: set target in terms of q_{s0} : $\sqrt{q_{s_0}} = \Phi^{-1}(1-p_0)$

Asymptotics	
CL	Region
90%	q _s > 1.64
95%	q _s > 2.70
99%	q _s > 5.41

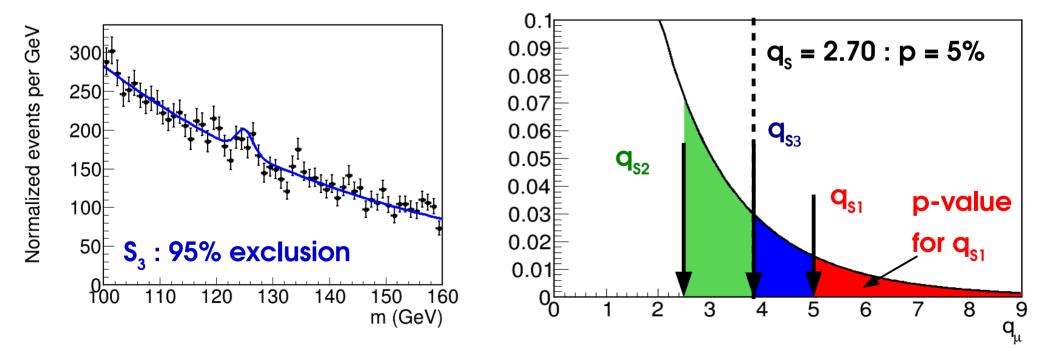


Inversion : Getting the limit for a given CL

Procedure

- \rightarrow Consider H_0 : H(S=S_) alternative H_1 : H(Ŝ < S_)
- \rightarrow Compute q_{s_0} , get exclusion p-value p_{s_0} .
- \rightarrow Adjust S_o until 95% CL exclusion (p_{so} = 5%) is reached Asymptotics: set target in terms of q_{s_0} : $\sqrt{q_{s_0}} = \Phi^{-1}(1-p_0)$

Asymptotics	
CL	Region
90%	q _s > 1.64
95%	q _s > 2.70
99%	q _s > 5.41



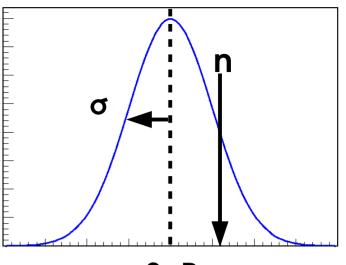
Upper Limits: Gaussian Example

Usual Gaussian counting example with known B:

$$\lambda(S) = \left(\frac{n - (S + B)}{\sigma_S}\right)^2$$

Reminder:

Best fit signal : $\hat{S} = n - B$ Significance: $Z = \hat{S}/\sqrt{B}$



S+B

١

1

Compute the 95% CL upper limit on S:

$$q_{S_0} = -2\log\frac{L(S=S_0)}{L(\hat{S})} = \lambda(S_0) - \lambda(\hat{S}) = \left(\frac{n - (S_0 + B)}{\sigma_s}\right)^2 = \left(\frac{S_0 - \hat{S}}{\sigma_s}\right)^2 \quad \text{for} \quad S_0 > \hat{S}$$

so $q_{S_0} = 2.70$ for $S_0 = \hat{S} + \sqrt{2.70} \sigma_s$

And finally $S_{up} = \hat{S} + 1.64 \sigma_s$ at 95 % CL

Upper Limit Pathologies

Upper limit: $S_{up} \sim \hat{S} + 1.64 \sigma_{s}$

Problem: for negative Ŝ, get **very** good observed limit.

 \rightarrow For \hat{S} sufficiently negative, even $S_{up} < 0$!

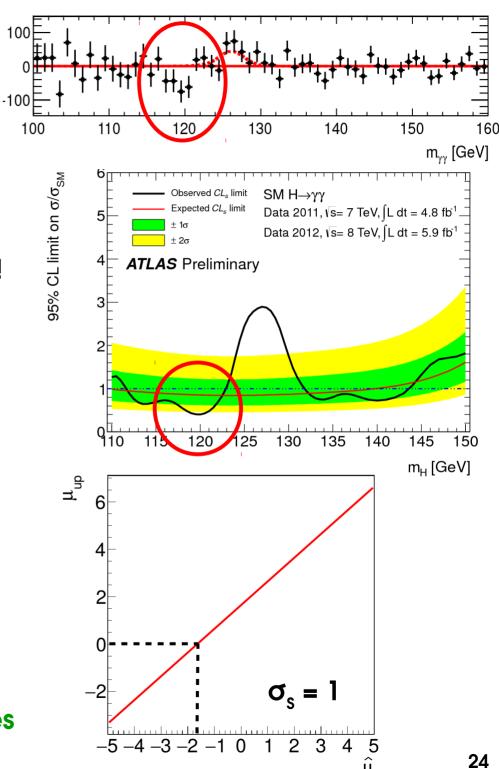
How can this be ?

- → Background modeling issue ?... Or:
- \rightarrow This is a **95%** limit
- \Rightarrow 5% of the time, the limit wrongly excludes the true value, e.g. S*=0.

But if we assume S must be >0, we know a priori this is just a fluctuation.

Options

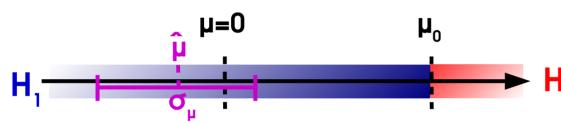
- \rightarrow live with it: sometimes report limit < 0
- \rightarrow Special procedure to avoid these cases

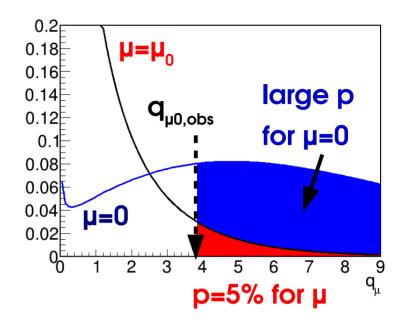


Upper Limit Pathologies

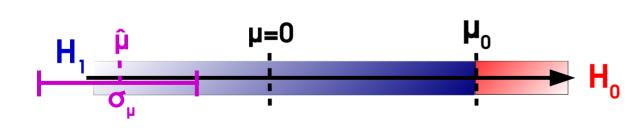
When setting limits, goal is to exclude large μ , to indicate that μ ~0. What happens at μ =0 ?

Normal case: $\hat{\mu} \sim 0$, $\mu = 0$ not excluded : $\mu_{\mu\nu} = \hat{\mu} + 1.64 \Rightarrow 0$, large p-value for $\mu = 0$

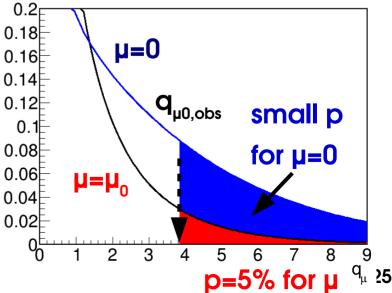




Pathological case, very negative $\hat{\mu}$, $\mu=0$ also excluded : $\mu_{\mu\nu} = \hat{\mu} + 1.64 \text{ oc} 0$, p-value for $\mu=0$ also small 0.2_{E}



- \rightarrow However we know a priori that $\mu \ge 0$
- \Rightarrow Inject this information into the procedure



A. Read, J.Phys. G28 (2002) 2693-2704

Usual solution in HEP : CL_s.

- \rightarrow Compute modified p-value P_{CL_s}
- $\mathbf{p}_{\mu 0}$ is the usual p-value (5%)
- \mathbf{p}_0 is the p-value computed under H(µ=0).
- ⇒ **Rescale** exclusion at μ_0 by exclusion at $\mu=0$.
- \rightarrow Somewhat ad-hoc, but good properties...

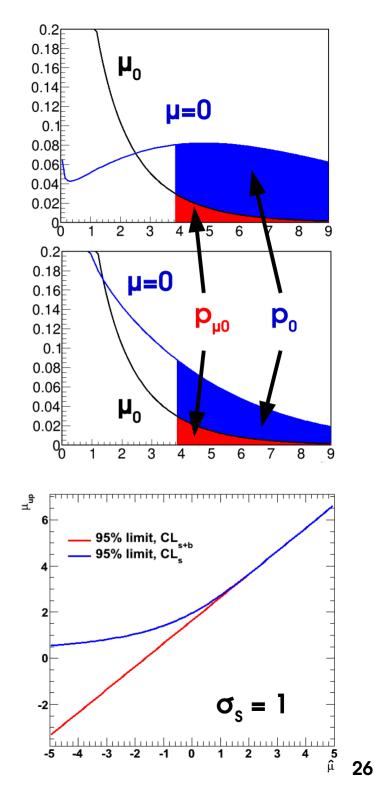
Good case : $p_0 \sim O(1)$ $p_{CLs} \sim p_{\mu 0} \sim 5\%$, no change.

Pathological case : $p_0 \ll 1$

 $p_{_{CLs}} \sim p_{_{\mu 0}} / p_{_0} \gg 5\%$

 \rightarrow no exclusion \Rightarrow worse limit, usually >0 as desired

Drawback: *overcoverage* \rightarrow limit is actually >95% CL for small p₀.



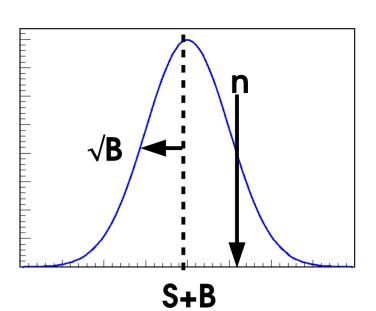
CL_s : Gaussian Example

Usual Gaussian counting example with known B:

$$\lambda(S) = \left(\frac{n - (S + B)}{\sigma_S}\right)^2$$

Reminder

Best fit signal : $\hat{S} = n - B$ CL_{s+b} limit: $S_{up} = \hat{S} + 1.64 \sigma_s$ at 95 % CL



$$\begin{aligned} \mathbf{CL}_{s} \text{ upper limit} : \text{still have} \\ \text{so need to solve} \qquad \mathbf{q}_{S_{0}} = \left(\frac{S_{0}-\hat{S}}{\sigma_{s}}\right)^{2} \quad (\text{for } S_{0} > \hat{S}) \\ \mathbf{p}_{CL_{s}} = \frac{p_{S_{0}}}{p_{0}} = \frac{1-\Phi(\sqrt{q_{S_{0}}})}{1-\Phi(\sqrt{q_{S_{0}}}-S_{0}/\sigma_{s})} = 5\% \\ \text{for } \hat{S} = 0, \\ \text{for } \hat{S} = 0, \\ \mathbf{S}_{up} = \hat{S} + \left[\Phi^{-1}\left(1-0.05\ \Phi(\hat{S}/\sigma_{s})\right)\right]\sigma_{s} \text{ at } 95\% \text{ CL} \\ \Phi(0) = 0.5 \Rightarrow \text{ at } 95\% \text{ CL}, \quad \mathbf{CL}_{s}: \quad \mathbf{S}_{up} = \mathbf{1.96}\sigma_{s} \quad \mathbf{CL}_{s+b}: \quad \mathbf{S}_{up} = \mathbf{1.64}\sigma_{s} \end{aligned}$$

CL_s: Poisson Rule of Thumb

Same exercise, for the Poisson case

Exact computation : sum probabilities of cases "at least as extreme as data" (n)

$$p_{S_0}(n) = \sum_{0}^{n} e^{-(S_0 + B)} \frac{(S_0 + B)^k}{k!} \quad \text{and one should solve } p_{CL_s} = \frac{p_{S_{up}}(n)}{p_0(n)} = 5\% \text{ for } S_{up}$$

For n = 0:
$$p_{CL_s} = \frac{p_{S_{up}}(0)}{p_0(0)} = e^{-S_{up}} = 5\% \Rightarrow S_{up} = \log(20) = 2.996 \approx 3$$

 \Rightarrow Rule of thumb: when n_{obs}=0, the CL_s 95% CL limit is 3 events (for any B)

Asymptotics: as before,
$$q_{s_0} = \lambda(S_0) - \lambda(\hat{S}) = 2(S_0 + B - n) - 2n \log \frac{S_0 + B}{n}$$

For n = 0, $q_{S_0}(n=0) = 2(S_0+B)$ $p_{CL_s} = \frac{p_{S_0}}{p_0} = \frac{1-\Phi(\sqrt{q_{S_0}(n=0)})}{1-\Phi(\sqrt{q_{S_0}(n=0)}-\sqrt{q_{S_0}(n=B)})} = 5\%$

⇒ S_{up} ~ 2, exact value depends on B
⇒ Asymptotics not valid in this case – need to use exact results, or toys

Expected Limits: Toys

Expected results: median outcome under a given hypothesis

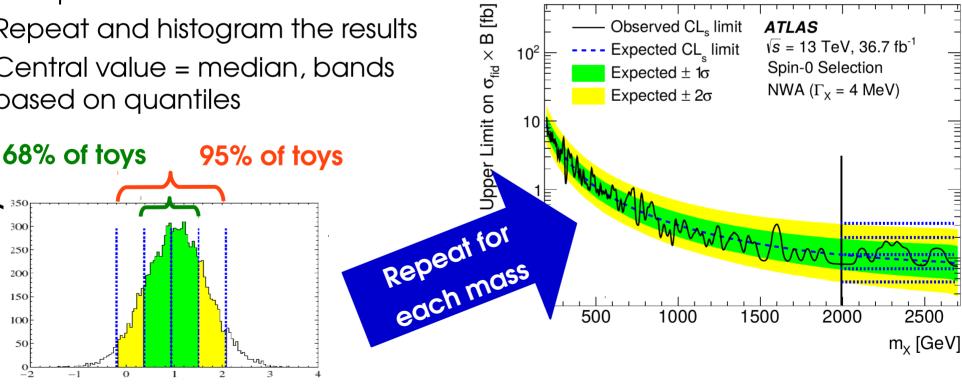
 \rightarrow usually B-only by convention, but other choices possible.

Two main ways to compute:

- \rightarrow Pseudo-experiments (*toys*):
- Generate pseudo-data in B-only hypothesis
- Compute limit

Number of Toys

- Repeat and histogram the results
- Central value = median, bands based on quantiles



Eur.Phys.J.C71:1554,2011 **Computed limit** Phys. Lett. B 775 (2017) 105

Expected Limits: Asimov

Expected results: median outcome under a given hypothesis

 \rightarrow usually B-only by convention, but other choices possible.

Two main ways to compute:

→ Asimov Datasets

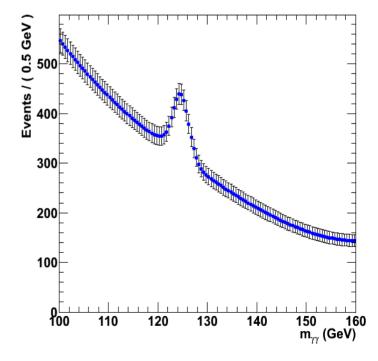
- Generate a "perfect dataset" e.g. for binned data, set bin contents carefully, no fluctuations.
- Gives the median result immediately: median(toy results) ↔ result(median dataset)
- Get bands from asymptotic formulas: Band width

$$\sigma_{S_0,A}^2 = \frac{S_0^2}{q_{S_0}(\text{Asimov})}$$

⊕ Much faster (1 "toy")⊖ Relies on Gaussian approximation

Strictly speaking, Asimov dataset if $\hat{X} = X_0$ for all parameters X,

where X_0 is the generation value



CL: Gaussian Bands

Usual Gaussian counting example with known B: 95% CL₂ upper limit on S:

$$S_{up} = \hat{S} + \left[\Phi^{-1} \left(1 - 0.05 \Phi \left(\hat{S} / \sigma_s \right) \right) \right] \sigma_s$$

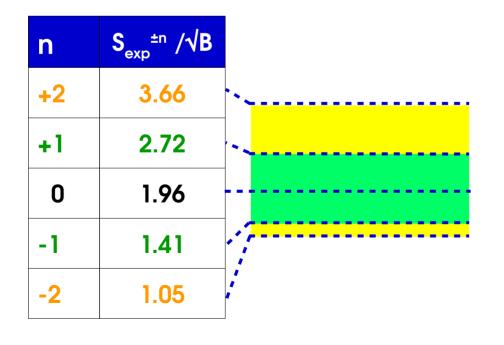
Compute expected bands for S=0:

 \rightarrow Asimov dataset $\Leftrightarrow \hat{S} = 0$: \rightarrow ± n σ bands:

$$S_{up,exp}^{0} = 1.96 \sigma_{s}$$

$$S_{up,exp}^{\pm n} = \left(\pm n + \left[1 - \Phi^{-1}(0.05 \Phi(\mp n))\right]\right) \sigma_{s}$$

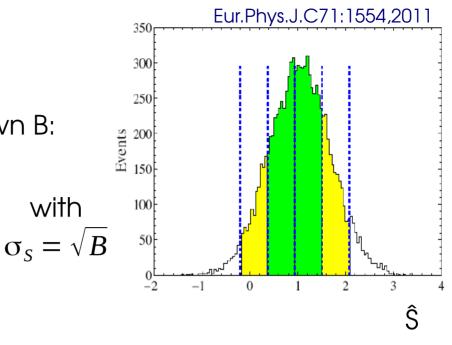
with



CLs :

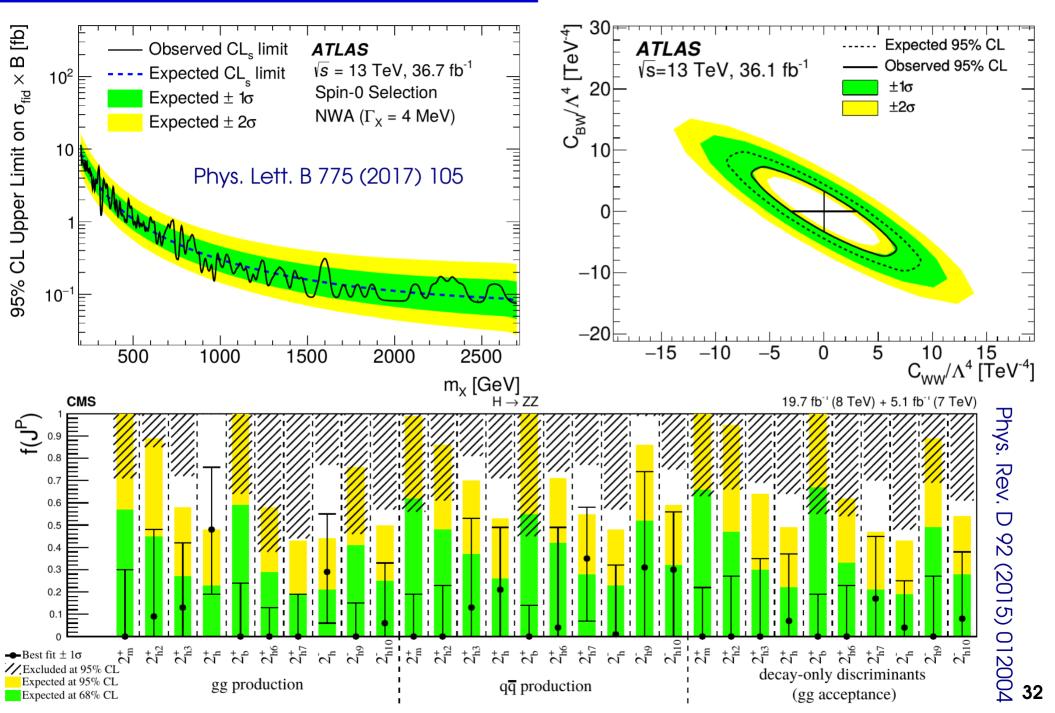
- Positive bands somewhat reduced,
- Negative ones more so

Band width from $\sigma_{S,A}^2 =$ $q_s(Asimov)$ depends on S, for non-Gaussian cases, different values for each band... 31



Upper Limit Examples

ATLAS 2015-2016 4I aTGC Search

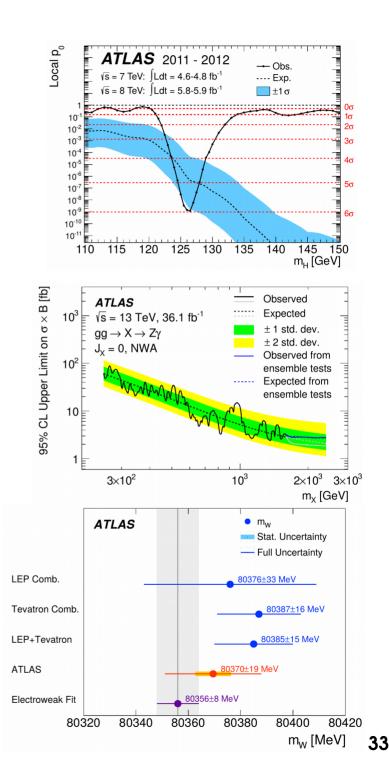


Usual Statistical Results

Discovery: we see an excess – is it a (new) signal, or a background fluctuation ?

Upper limits: we don't see an excess – if there is a signal present, how small must it be ?

 Parameter measurement: what is the allowed range ("confidence interval") for a model parameter ?



Outline

Computing statistics results:

Limits

Confidence intervals

Profiling

Look-Elsewhere Effect

Bayesian methods

Confidence Intervals

Gaussian Inversion

If $\hat{\mu} \sim G(\mu^*, \sigma)$, known quantiles :

 $P(\mu^* - \sigma < \hat{\mu} < \mu^* + \sigma) = 68\%$

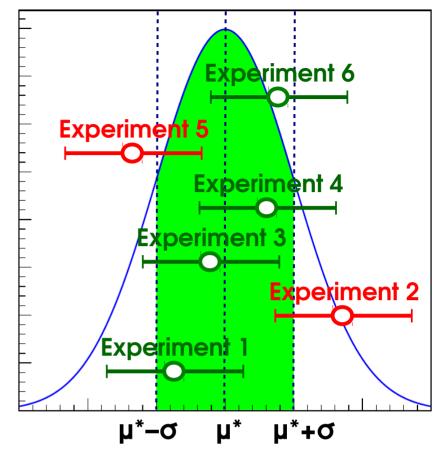
This is a probability for $\hat{\mu}$, not $\frac{1}{\mu}$! $\rightarrow \mu^*$ is a fixed number, not a random variable

But we can invert the relation:

$$P(\mu^* - \sigma < \hat{\mu} < \mu^* + \sigma) = 68\%$$

$$\Rightarrow P(|\hat{\mu} - \mu^*| < \sigma) = 68\%$$

$$\Rightarrow P(\hat{\mu} - \sigma < \mu^* < \hat{\mu} + \sigma) = 68\%$$



→ This gives the desired statement on μ^* : *if we repeat the experiment many times,* $[\hat{\mu} - \sigma, \hat{\mu} + \sigma]$ will contain the true value 68% of the time. This is a statement on the interval $[\hat{\mu} - \sigma, \hat{\mu} + \sigma]$ abtained for each experiment.

Works in the same way for other interval sizes: $[\hat{\mu} - Z\sigma, \hat{\mu} +]Z\sigma$ ith

Neyman Construction

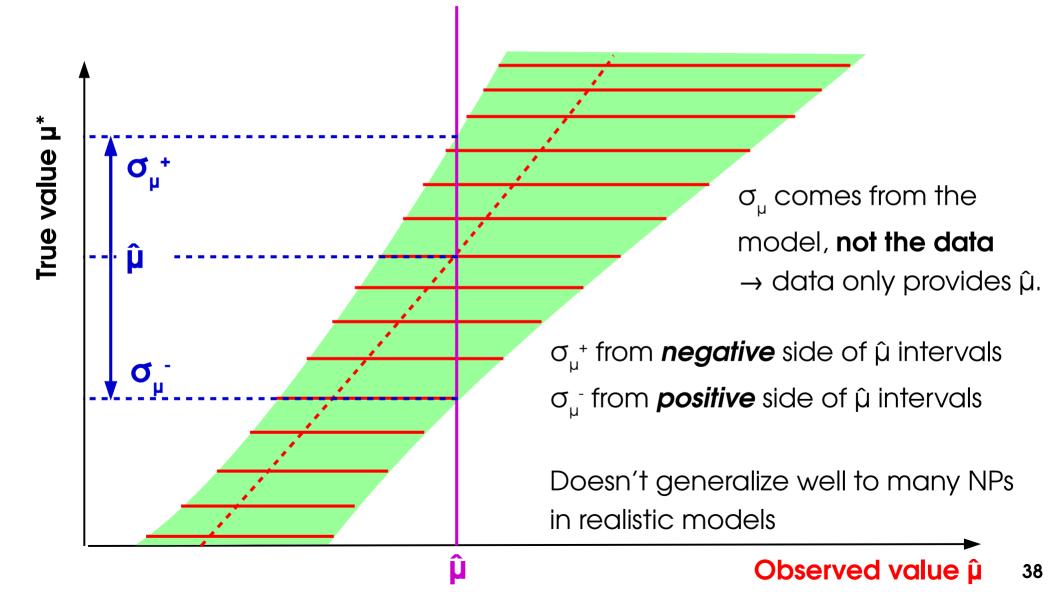
General case: Build 1σ intervals of observed values for each true value → Confidence belt



Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\mu}$, get $P(\hat{\mu} - \sigma_{\mu}^{-} < \mu^{*} < \hat{\mu} + \sigma_{\mu}^{+}) = 68\%$

 \rightarrow Same as before for Gaussian, works also when P($\mu^{obs} | \mu$) varies with μ .



Likelihood Intervals

Confidence intervals from L:

- Test $H(\mu_0)$ against alternative using
- Two-sided test since true value can be higher or lower than observed

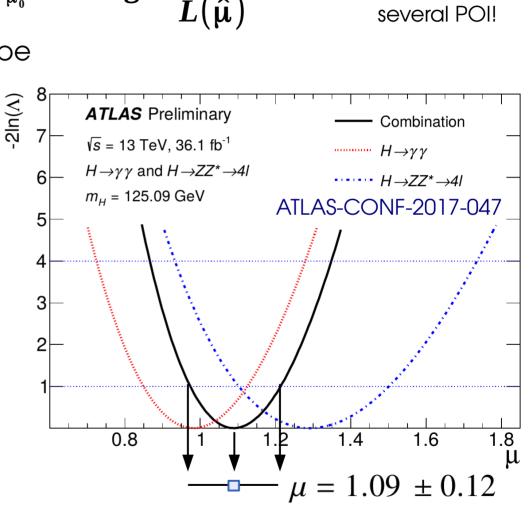
Asymptotics:

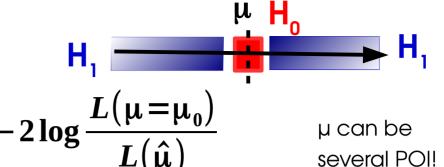
- $t_{\mu} \sim \chi^2(N_{POI})$ under $H(\mu_0)$
- $\sqrt{t_u} \sim G(0,1)$ (Gaussian with $d=N_{P(n)}$)

In practice:

- Plot t_u vs. µ
- The minimum occurs at $\mu = \hat{\mu}$
- Crossings with $\mathbf{t}_{\mathbf{u}} = \mathbf{Z}^2$ give the **\pmZo uncertainties** (for N_{POI}=1)

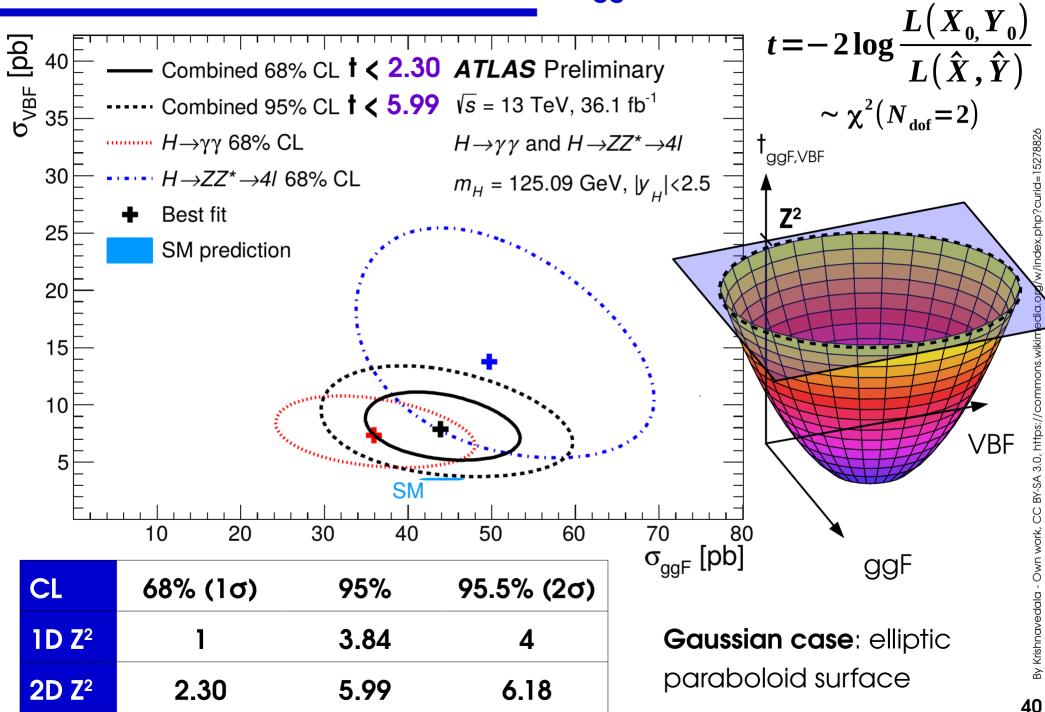
 $\mu = 1.09 \pm 0.12$ \rightarrow Gaussian case: parabolic profile, $t_{\mu} = \left(\frac{\mu - \hat{\mu}}{\sigma}\right)^2 \Rightarrow \mu_{\pm} = \hat{\mu} \pm \sigma$ at $t_{\mu} = 1$ same result as Neyman construction, also robust against non-Gaussian effects.





2D Example: Higgs σ_{vBF} **vs.** σ_{ggF}

ATLAS-CONF-2017-047

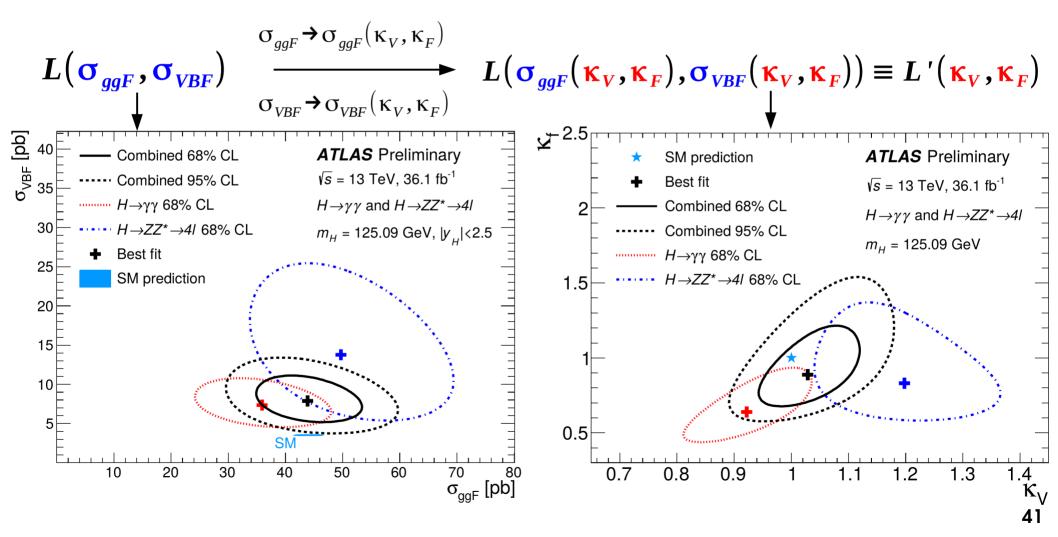


Reparameterization

Start with basic measurement in terms of e.g. $\sigma \times B$

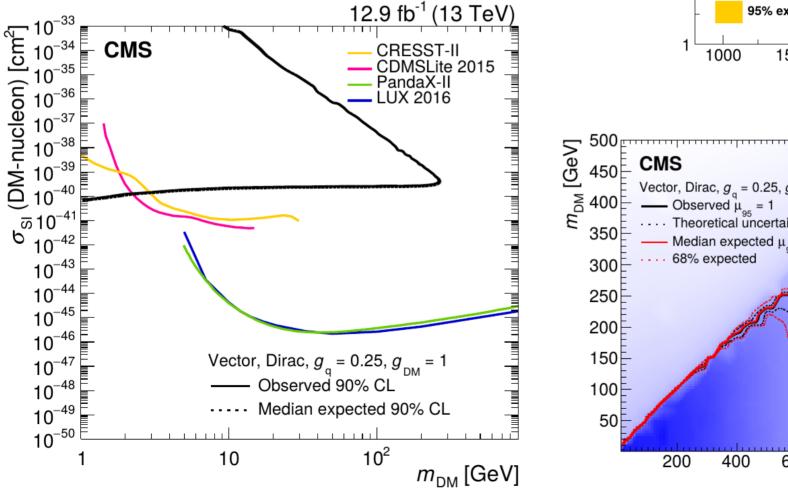
 \rightarrow How to measure derived quantities (couplings, parameters in some theory model, etc.)? \rightarrow just reparameterize the likelihood:

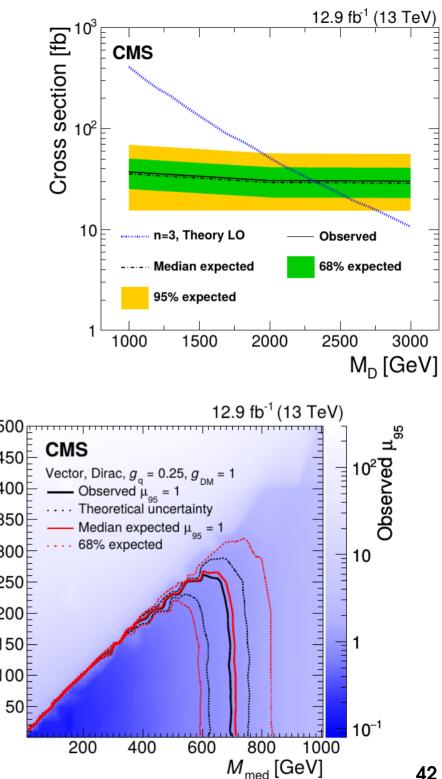
e.g. Higgs couplings: σ_{qqF} , σ_{VBF} sensitive to Higgs coupling modifiers κ_{V} , κ_{F} .



Reparameterization: Limits

CMS Run 2 Monophoton Search: measured N_s in a counting experiment reparameterized according to various DM models





Takeaways

Limits : use LR-based test statistic:

 \rightarrow Use CL_{s} procedure to avoid negative limits

Poisson regime, n=0 : S_{up} = 3 events Gaussian regime, n=0 : S_{up} = 1.96 σ_{Gauss}

Uncertainty bands: obtain from toys or from Asimov

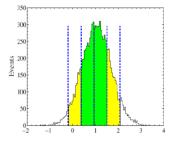
Confidence intervals: Use
$$t_{\mu_0} = -2 \log \frac{L(\mu = \mu_0)}{L(\hat{\mu})}$$

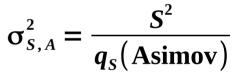
$$\rightarrow$$
 1D: crossings with $t_{\mu 0} = Z^2$ for $\pm Z\sigma$ intervals

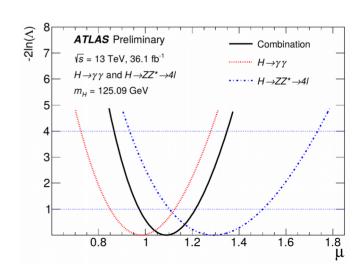
Gaussian regime: $\mu = \hat{\mu} \pm \sigma_{Gauss}$ (1 σ interval)

43

$$\widetilde{q}_{\mu_{0}} = \begin{vmatrix} \mathbf{0} & \widehat{\mu} \geq \mu_{0} \\ -2\log \frac{L(\mu = \mu_{0})}{L(\widehat{\mu})} & 0 \leq \widehat{\mu} \leq \mu_{0} \\ -2\log \frac{L(\mu = \mu_{0})}{L(\mu = 0)} & \widehat{\mu} < 0 \end{vmatrix}$$

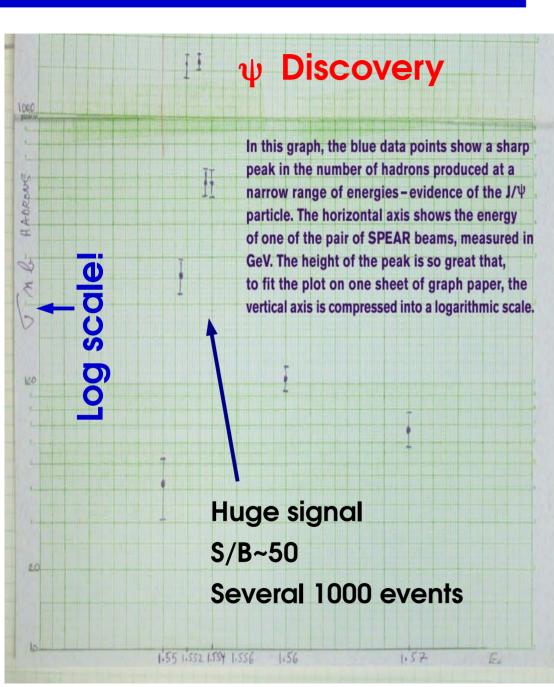




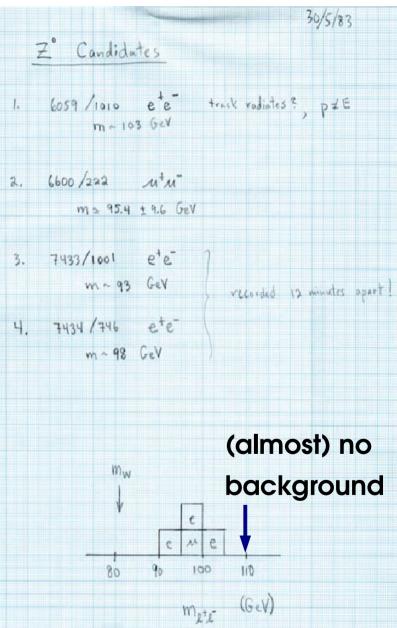


Historical Aside

Classic Discoveries (1)



Z⁰ Discovery



Logbook of J. Rohlf, 1983-05-30

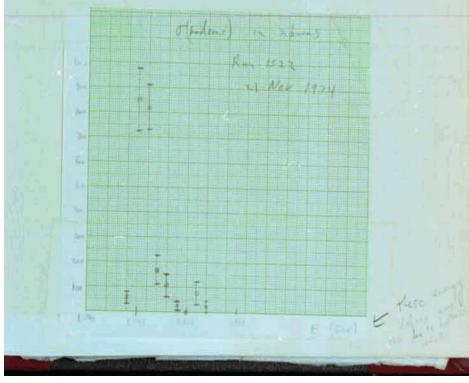
Classic Discoveries (2)

OB:20 SON OF GLORY Chuck Mondram, Allen Little, Bob Stega Jo it a

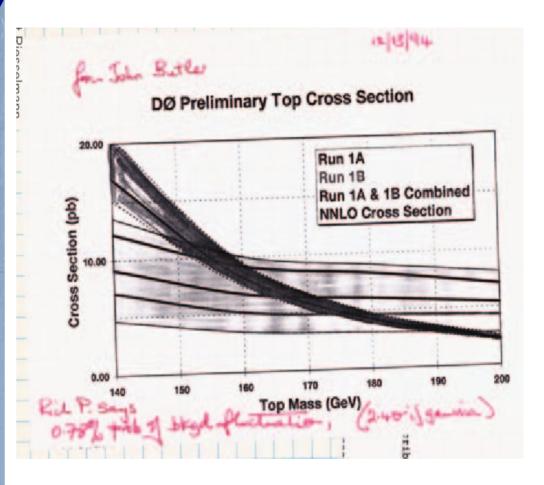
NOTES THE RESCAN (Rain 1922) AN SHRIED AN "1975" OBALNED BY RUNNING SOME NOOM 1.963, SO EURRARY (DAL'S DON'T CHELONARD TO WELL AT RUN 1522

15 GOP. DUMP | Raki

- WIB Preside on at 1.817 a
- Mich has compared months as the fill. That I shall
- 30 DAMN LINAL RACK LIP. DUMP & RAGA.



ψ' : discovered online by the (lucky) shifters

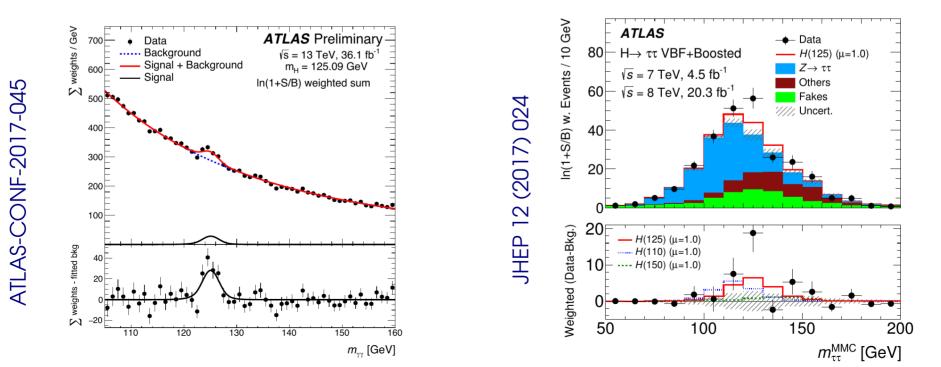


First hints of top at D0: O(10) signal events, a few bkg events, 2.4σ

And now ?

Short answer: The high-signal, low-background experiments have been done already (although a surprise would be welcome...) *e.g.* at LHC:

- High background levels, need precise modeling
- Large systematics, need to be described accurately
- Small signals: need optimal use of available information :
 - Shape analyses instead of counting
 - Categories to isolated signal-enriched regions



Discoveries that weren't

UA1 Monojets (1984)

Volume 139B, number 1,2

PHYSICS LETTERS

3 May 1984

At the present time we can only speculate about the origin of this new effect. The missing transverse energy can be due either to: (i) One or more prompt neutrinos. (ii) Ann: invitible 70 while $e^{-70} = v \overline{u} \overline{d}eeay$, while

(ii) Any invisible Z⁰, such as Z⁰ $\rightarrow \nu \overline{\nu}$ decay, which is expected to have a large (18%) branching ratio. Note that the corresponding decays into charged lepton pairs Z⁰ $\rightarrow e^+e^-$, Z⁰ $\rightarrow \mu^+\mu^-$ have lower branching ratios (~3%) and may not have yet been produced within the present statistics.

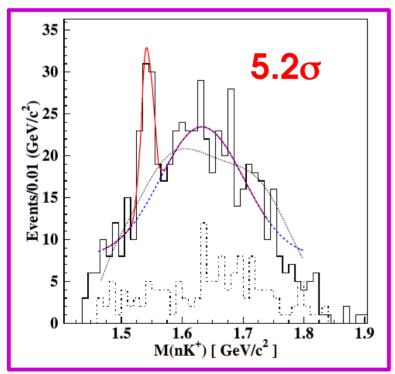
(iii) New, non-interacting neutral particles. The jets appear somewhat narrower and with lower multiplicities than the corresponding QCD jets, although it might be premature to draw conclusions on such limited statistics.

A number of theoretical speculations [9] may be elevant to these results. We mention briefly the possibilities of excited guarks or leptons and of composite or coloured or supersymmetric W's and Higgs. A recent calculation [10] *8 has been made in the context of the present collider experiment, on the rate of events with large missing transverse energy from gluino pair production with each gluino decaying into a quark, antiquark, and photino. The non-interacting photinos may produce large apparent missing energy. For instance, the calculation gives an expectation of about 100 single-jet events with $\Delta E_{\rm M} > 20 \,{\rm GeV}$ for a gluino mass of 20 GeV/c2. Taking our excess of 5 events above background as an upper limit for such a process, we deduce that the gluino mass must be greater than about 40 GeV/c2

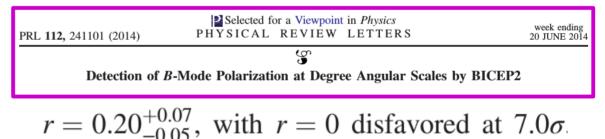
EXPERIMENTAL OBSERVATION OF EVENTS WITH LARGE MISSING TRANSVERSE ENERGY ACCOMPANIED BY A JET OR A PHOTON (S) IN pp COLLISIONS AT $\sqrt{s} = 540$ GeV

UA1 Collaboration, CERN, Geneva, Switzerland

Pentaquarks (2003)



BICEP2 B-mode Polarization (2014)



Avoid spurious discoveries!

 \rightarrow Treatment of modeling uncertainties, systematics in general

Phys. Rev. Lett. 91, 252001 (2003)

Computing statistics results:

Limits

Confidence intervals

Profiling

Look-Elsewhere Effect

Bayesian methods

Profiling

Nuisances and Systematics

Likelihood typically includes

- Parameters of interest (POIs) : S, σ×B, m_w, …
- Nuisance parameters (NPs) : other parameters needed to define the model

 \rightarrow Ideally, constrained by data like the POI

e.g. shape of $H \rightarrow \mu\mu$ continuum bkg

What about systematics ?

= what we don't know about the random processs

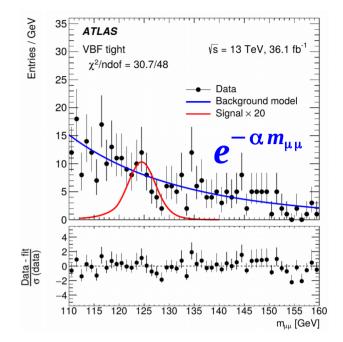
\Rightarrow Parameterize using additional NPs

\rightarrow By definition, not constrained by the data

⇒ Cannot be free, or would spoil the measurement (lumi free ⇒ no $\sigma \times B$ measurement!)

 \Rightarrow Introduce a constraint in the likelihood:

Phys. Rev. Lett. 119 (2017) 051802



"Systematic uncertainty is, in any statistical inference procedure, the uncertainty due to the incomplete knowledge of the probability distribution of the observables.

G. Punzi, What is systematics ?

$$L(\mu, \theta; data) = L_{measurement}(\mu, \theta; data) C(\theta)$$
POI Systematics Measurement NP Constraint term
$$NP \qquad Likelihood \Rightarrow penalty for \theta \neq \theta^{nominal} 51$$

Frequentist Constraints

Prototype: NP measured in a separate *auxiliary* experiment e.g. luminosity measurement

 \rightarrow Build the combined likelihood of the main+auxiliary measurements

 $L(\mu, \theta; data) = L_{main}(\mu, \theta; main data) L_{aux}(\theta; aux. data)$

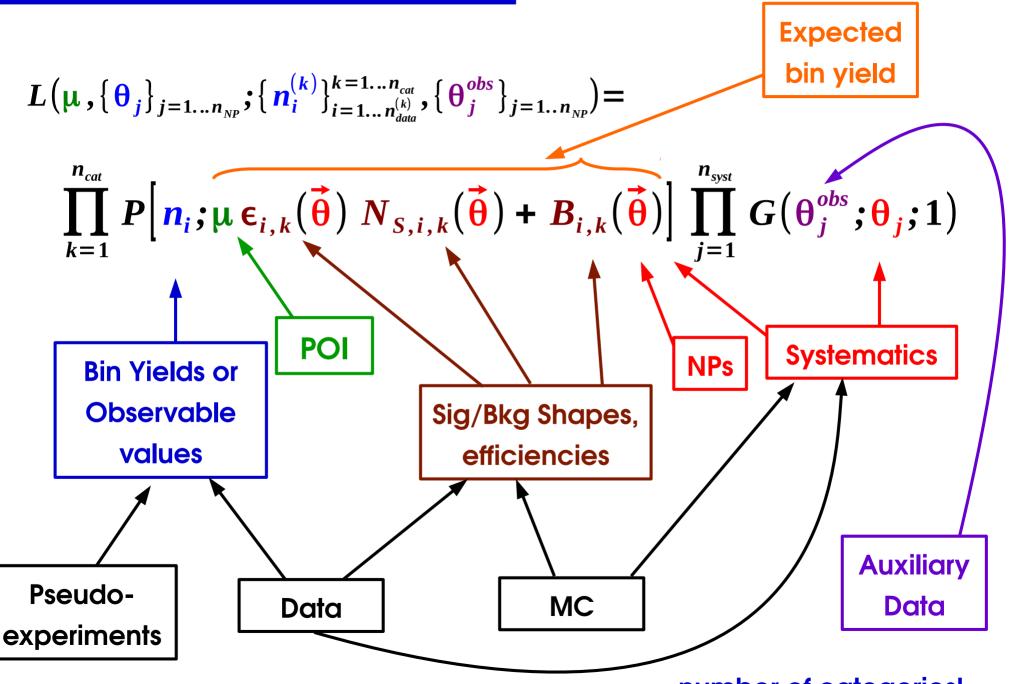
Independent measurements: ⇒ just a product

Gaussian form often used by default: $L_{aux}(\theta; aux. data) = G(\theta^{obs}; \theta, \sigma_{syst})$

In the combined likelihood, systematic NPs are constrained \rightarrow now same as other NPs: all uncertainties statistical in nature

→ Often no clear setup for auxiliary measurements
 e.g. theory uncertainties on missing HO terms from scale variations
 → Implemented in the same way nevertheless ("pseudo-measurement")

Likelihood, the full version (binned case)



× number of categories! 53

Wilks' Theorem

The likelihood usually has NPs:

- Systematics
- Parameters fitted in data
- \rightarrow What values to use when defining the hypotheses ? \rightarrow H(µ=0, θ =?)

Answer: let the data choose \Rightarrow use the best-fit values (*Profiling*)

⇒ Profile Likelihood Ratio (PLR)

$$t_{\mu_0} = -2\log\frac{L(\mu = \mu_0, \hat{\hat{\theta}}_{\mu_0})}{L(\hat{\mu}, \hat{\theta})}$$

 $_{\mu_0}$ best-fit value for $\mu = \mu_0$ (conditional MLE)

ô overall best-fit value (unconditional MLE)

Wilks' Theorem: PLR also follows a χ^2 ! $f(t_{\mu_0} | \mu = \mu_0) = f_{\chi^2(n_{dof} = 1)}(t_{\mu_0})$

also with NPs present

- \rightarrow Profiling "builds in" the effect of the NPs
- \Rightarrow Can treat the PLR as a function of the POI only

Effect of Profiling

Systematics still affect the result even after profiling their NPs!

e.g. Simple counting experiment: $N(S,\theta) = S + \theta$, measure N_{obs} , constraint on θ .

1. No NP: N(S) = S

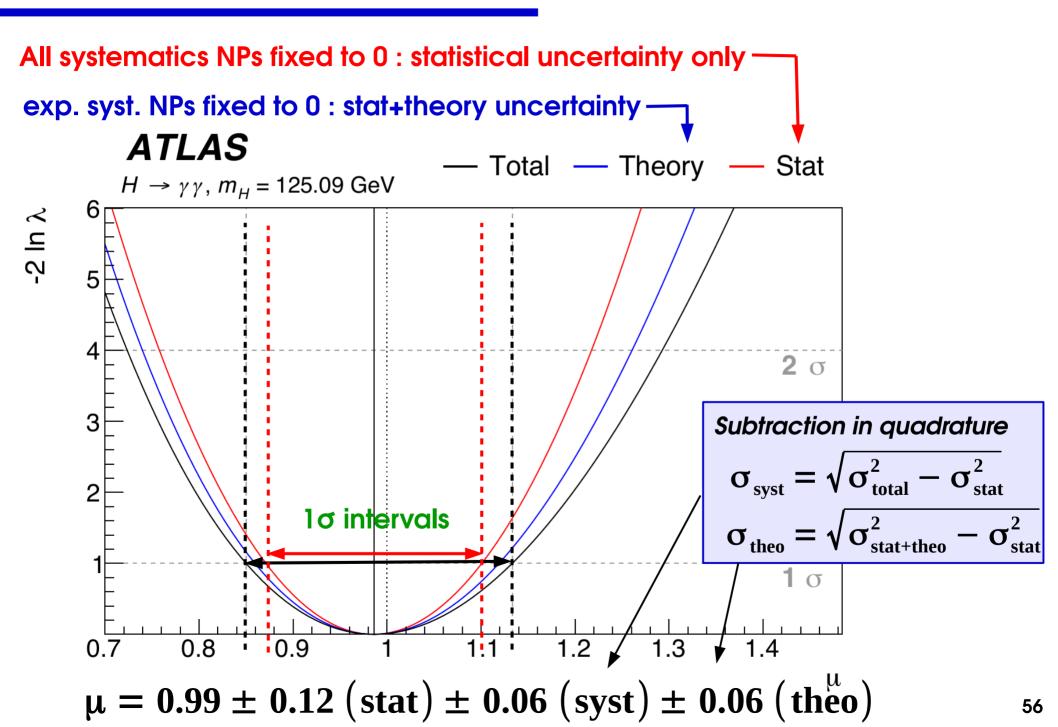
$$\rightarrow \hat{S} \text{ fit}: \text{ adjust S to } N(\hat{S}) = \hat{S} = n_{obs}$$
 $t_{S_0} = -2 \log \frac{L(S_0; n_{obs})}{L(\hat{S}; n_{obs})}$

→ S=S₀ fit: S=S₀ fixed ⇒ N(S₀) = S₀, cannot adjust ⇒ tension between N(S₀)=S₀ and S_{obs} ⇒ large t_{s0} ⇒ strong exclusion of H(S₀)

2. With NP:
$$N(\mu,\theta) = S + \Theta$$

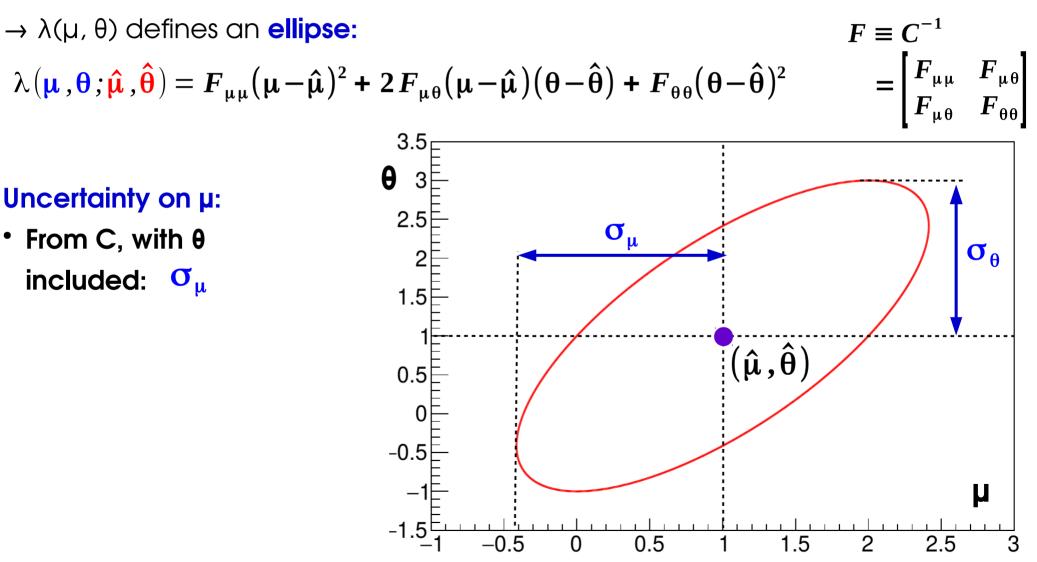
 $\Rightarrow \hat{S}$ fitadjust $N(\hat{S}, \hat{\theta}) = N(\hat{S}, \hat{\theta}=0) = n_{obs}$ using S only (avoid penalty on θ)
 $\Rightarrow S = S_0$ fit: $S = S_0$ fixed, but $\hat{\theta}_{s_0}$ can still pull $N(S_0, \hat{\theta}_{\mu 0})$ towards N_{obs}
 \Rightarrow smaller $t_{s_0} \Rightarrow$ reduced exclusion of $H(S_0)$

Uncertainty decomposition



Gaussian measurement with 1 POI μ and 1 NP θ :

$$L(\mu, \theta; \hat{\mu}, \hat{\theta}) = \exp\left[-\frac{1}{2} \begin{pmatrix} \mu - \hat{\mu} \\ \theta - \hat{\theta} \end{pmatrix}^T C^{-1} \begin{pmatrix} \mu - \hat{\mu} \\ \theta - \hat{\theta} \end{pmatrix}\right] \qquad C = \begin{bmatrix} \sigma_{\mu}^2 & \gamma \sigma_{\mu} \sigma_{\theta} \\ \gamma \sigma_{\mu} \sigma_{\theta} & \sigma_{\theta}^2 \end{bmatrix}$$



aussi n Profili G

Caussian Profiling

$$c = \begin{bmatrix} \sigma_{\mu}^{2} & y\sigma_{\mu}\sigma_{\theta} \\ y\sigma_{\mu}\sigma_{\theta} & \sigma_{\theta}^{2} \end{bmatrix}$$

$$\lambda(\mu,\theta;\hat{\mu},\hat{\theta}) = F_{\mu\mu}(\mu-\hat{\mu})^{2} + 2F_{\mu\theta}(\mu-\hat{\mu})(\theta-\hat{\theta}) + F_{\theta\theta}(\theta-\hat{\theta})^{2} \qquad F = \begin{bmatrix} F_{\mu\mu} & F_{\mu\theta} \\ F_{\mu\theta} & F_{\theta\theta} \end{bmatrix}$$
Profiled θ (minimize λ at fixed μ):

$$\hat{\theta}(\mu) = \hat{\theta} - F_{\theta\theta}^{-1}F_{\theta\mu}(\mu-\hat{\mu})$$

$$\lambda(\mu,\hat{\theta}(\mu);\hat{\mu},\hat{\theta}) = \left(F_{\mu\mu} - F_{\mu\theta}F_{\theta\theta}^{-1}F_{\theta\mu}\right)(\mu-\hat{\mu})^{2} = C_{\mu\mu}^{-1}(\mu-\hat{\mu})^{2} = \left(\frac{\mu-\hat{\mu}}{\sigma_{\mu}}\right)^{2}$$

$$F_{\mu\mu} \neq C_{\mu\mu}^{-1} \parallel \qquad 3.5$$
Profiled θ crosses ellipse at vertical tangents by definition (L is lower at other points on the tangent)

$$\lambda(\mu, \theta; \hat{\mu}, \hat{\theta}) = F_{\mu\mu}(\mu - \hat{\mu})^{2} + 2F_{\mu\theta}(\mu - \hat{\mu})(\theta - \hat{\theta}) + F_{\theta\theta}(\theta - \hat{\theta})^{2}$$

$$F \equiv C^{-1} = \frac{1}{1 - \gamma^{2}} \begin{bmatrix} \frac{1}{\sigma_{\mu}^{2}} & \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} \\ \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} & \frac{1}{\sigma_{\theta}^{2}} \end{bmatrix}$$

$$F \equiv C^{-1} = \frac{1}{1 - \gamma^{2}} \begin{bmatrix} \frac{1}{\sigma_{\mu}^{2}} & \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} \\ \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} & \frac{1}{\sigma_{\theta}^{2}} \end{bmatrix}$$

$$\lambda(\mu, \theta = \hat{\theta}; \hat{\mu}, \hat{\theta}) = F_{\mu\mu}(\mu - \hat{\mu})^{2} = \begin{pmatrix} \frac{\mu - \hat{\mu}}{\sigma_{\mu}\sqrt{1 - \gamma^{2}}} \end{bmatrix}^{2}$$
Uncertainty on μ :
$$\begin{cases} \theta & 3 \\ 2.5 \\ 2.5 \\ 1$$

$$\lambda(\mu,\theta;\hat{\mu},\hat{\theta}) = F_{\mu\mu}(\mu-\hat{\mu})^{2} + 2F_{\mu\theta}(\mu-\hat{\mu})(\theta-\hat{\theta}) + F_{\theta\theta}(\theta-\hat{\theta})^{2}$$

$$F \equiv C^{-1} = \frac{1}{1-\gamma^{2}} \begin{bmatrix} \frac{1}{\sigma_{\mu}^{2}} & \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} \\ \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} & \frac{1}{\sigma_{\theta}^{2}} \end{bmatrix}$$

$$F \equiv C^{-1} = \frac{1}{1-\gamma^{2}} \begin{bmatrix} \frac{1}{\sigma_{\mu}^{2}} & \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} \\ \frac{\gamma}{\sigma_{\mu}\sigma_{\theta}} & \frac{1}{\sigma_{\theta}^{2}} \end{bmatrix}$$

$$\lambda(\mu,\theta=\hat{\theta};\hat{\mu},\hat{\theta}) = F_{\mu\mu}(\mu-\hat{\mu})^{2} = \begin{pmatrix} \frac{\mu-\hat{\mu}}{\sigma_{\mu}\sqrt{1-\gamma^{2}}} \end{bmatrix}^{2}$$
Uncertainty on μ :
$$2.5$$

$$2 = 0$$
From C: σ_{μ}
From PLR: σ_{μ}
From A(μ): $\sigma_{\mu}\sqrt{1-\gamma^{2}}$
Stat uncertainty
$$\sigma_{\mu} = \sqrt{(\sqrt{1-\gamma^{2}}\sigma_{\mu})^{2} + (\gamma\sigma_{\mu})^{2}}$$

$$\mu$$

Back to $N(S,\theta) = S + \theta$:

- \rightarrow Measure N_{obs} ~ G(N*, σ_N)
- \rightarrow constraint **G(\theta, \sigma_{\theta})** on θ
- \rightarrow everything still Gaussian:

Then:
$$\sqrt{1 - \gamma^2} \sigma_{\mu} = \sigma_N$$
 Stat. uncertainty
 $\gamma \sigma_{\mu} = \sigma_{\theta}$ Syst. uncertainty $\sigma_{\mu} = \sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}$

 \Rightarrow Stat uncertainty (on N) and syst (on θ) add in quadrature as expected

Executive summary:

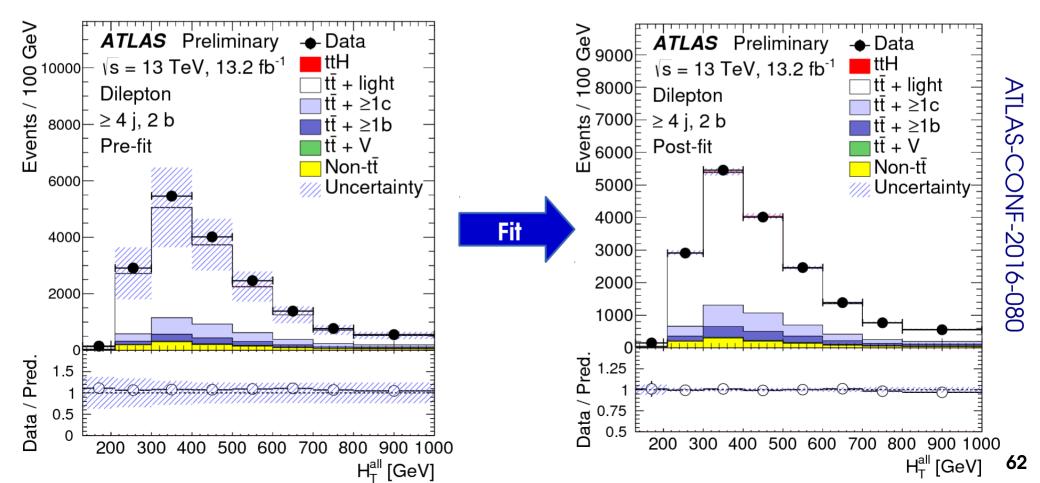
- → Systematic = NP with an external constraint (auxiliary measurement)
- \rightarrow Profiling systematics includes their effect into the total uncertainty, as desired
- → No special treatment for systematics: treated like any other NP, automatically accounted for through profiling.
- → Guaranteed to work only as long as everything is Gaussian, but typically robust against non-Gaussian behavior.

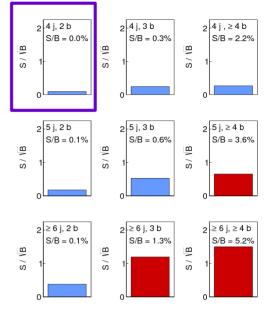
Profiling Example: ttH→bb

Analysis uses low-S/B categories to constrain backgrounds.

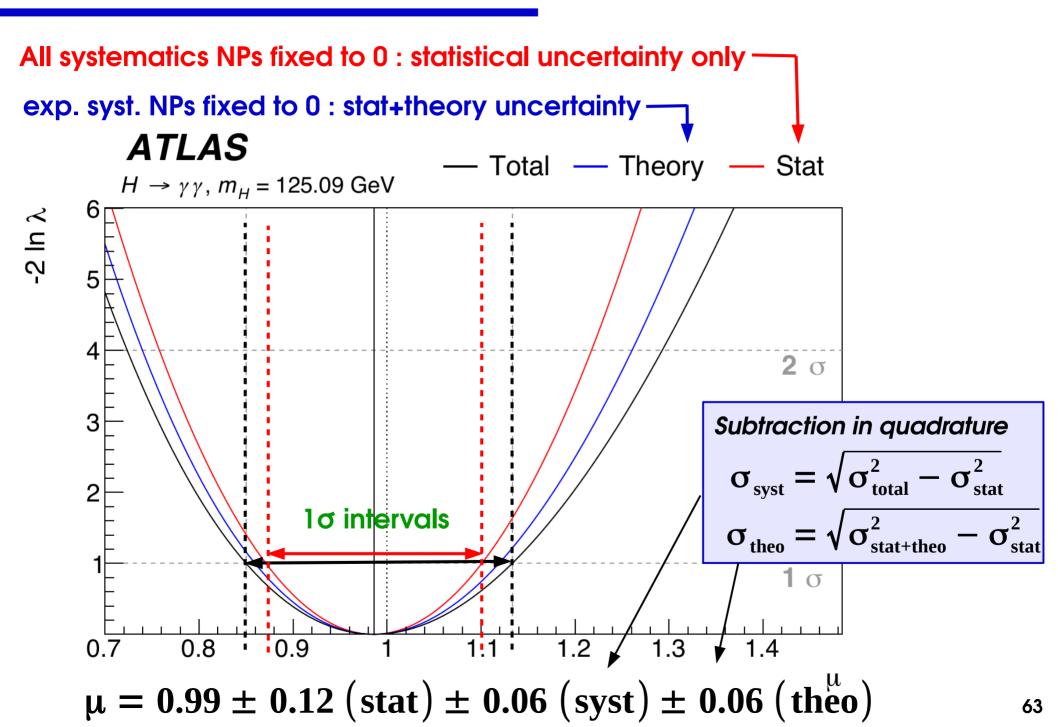
- \rightarrow Reduction in large uncertainties on tt bkg
- \rightarrow Propagates to the high-S/B categories through the statistical modeling
- ⇒ Care needed in the propagation (e.g. different

kinematic regimes)





Uncertainty decomposition



Pull/Impact plots

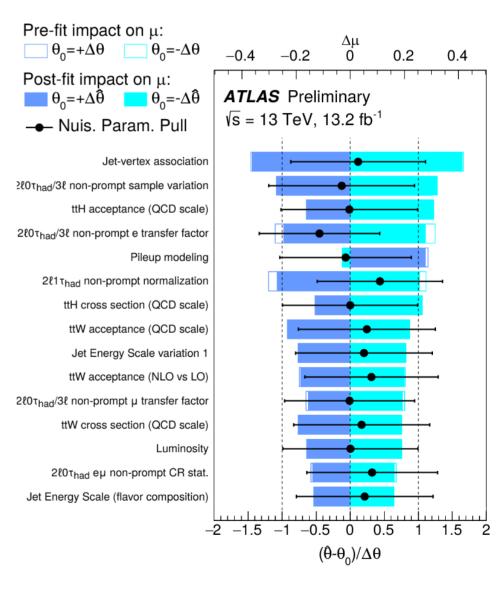
ATLAS-CONF-2016-058

Systematics are described by NPs included in the fit. Nominally:

- **NP central value = 0** : corresponds to the pre-fit expectation (usually MC)
- **NP uncertainty = 1** : since NPs normalized to the value of the syst. : $N = N_0 (1 + \sigma_{syst} \theta), \theta \sim G(0, 1)$

Fit results provide information on impact of the systematic on the result:

- If central value ≠ 0: some data feature absorbed by nonzero value ⇒ Need investigation if large pull
- If uncertainty < 1 : systematic is constrained by the data
 ⇒ Needs checking if this legitimate or a modeling issue
- Impact on result of $\pm 1\sigma$ shift of NP



Pull/Impact plots

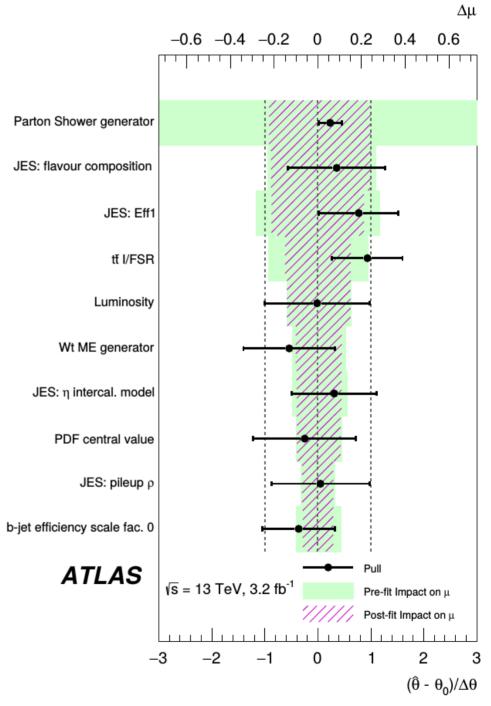
Systematics are described by NPs included in the fit. Nominally:

- NP central value = 0 : corresponds to the pre-fit expectation (usually MC)
- **NP uncertainty = 1** : since NPs normalized to the value of the syst. : $N = N_0 (1 + \sigma_{syst} \theta), \theta \sim G(0, 1)$

Fit results provide information on impact of the systematic on the result:

- If central value ≠ 0: some data feature absorbed by nonzero value ⇒ Need investigation if large pull
- If uncertainty < 1 : systematic is constrained by the data
 ⇒ Needs checking if this legitimate or a modeling issue
- Impact on result of $\pm 1\sigma$ shift of NP

13 TeV single-t XS (arXiv:1612.07231)



Takeaways

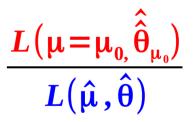
Systematics: uncertainties on the **form of the statistical model** (as opposed to the uncertainties encoded in the model itself)

- \rightarrow Implemented using additional nuisance parameters in the model
- \rightarrow Constrained by adding *auxiliary measurements* (sometimes fictitious ones) to the model usually represented by a single Gaussian for each NP.

 $L(\mu, \theta; data) = L_{main}(\mu, \theta; main data) G(\theta^{obs}, \theta, 1)$

⇒ Systematics treated in the same way as statistical uncertainties, although we still keep track of systematics NPs for bookkeeping purposes

Profiling: when testing a hypothesis, use the best-fit values of the nuisance parameters: *profile likelihood ratio*.



Wilks' Theorem: the PLR has the same asymptotic properties as the LR without systematics: can profile out NPs and just deal with POIs.

 \rightarrow NPs still show up in the PLR as increased uncertainties – Gaussian case:

$$\sigma_{\rm total} = \sqrt{\sigma_{\rm stat}^2 + \sigma_{\rm syst}^2}$$

Profiling can have unintended effects – need to carefully check behavior 66

Summary of Statistical Results Computation

Methods provide:

- \rightarrow Optimal use of information from the data under general hypotheses
- \rightarrow Arbitrarily complex/realistic models (up to computing constraints...)

\rightarrow No Gaussian assumptions in the measurements

Still often assume Gaussian behavior of PLR – but weaker assumption and can be lifted with toys

Systematics treated as auxiliary measurements – modeling can be tailored as needed

\rightarrow Single PLR-based framework for all usual classes of measurements

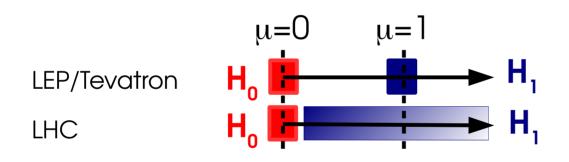
Discovery testing Upper limits on signal yields Parameter estimation

Comparison with LEP/TeVatron definitions

Likelihood ratios are not a new idea:

- LEP: Simple LR with NPs from MC
 - Compare μ =0 and μ =1
- Tevatron: PLR with profiled NPs

Both compare to $\mu=1$ instead of best-fit $\hat{\mu}$

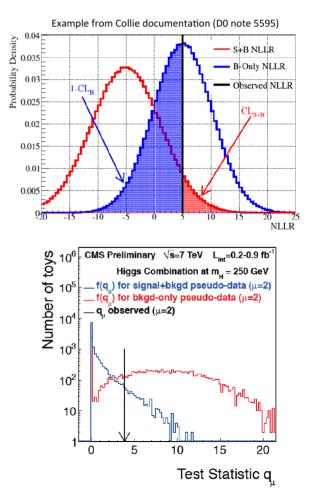


 \rightarrow Asymptotically:

- **LEP/Tevaton**: q linear in $\mu \Rightarrow \text{-Gaussian}$
- LHC: q quadratic in $\mu \Rightarrow ~\chi 2$

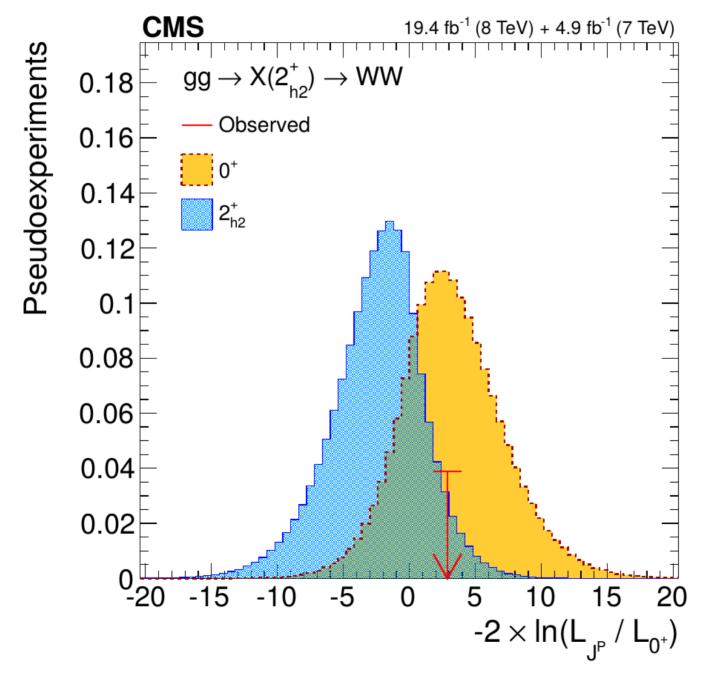
 \rightarrow Still use TeVatron-style for discrete cases

$$q_{LEP} = -2\log\frac{L(\mu=0,\widetilde{\theta})}{L(\mu=1,\widetilde{\theta})}$$
$$q_{Tevatron} = -2\log\frac{L(\mu=0,\widehat{\theta}_0)}{L(\mu=1,\widehat{\theta}_1)}$$



Spin/Parity Measurements

Phys. Rev. D 92 (2015) 012004



Beyond Asymptotics: Toys

Asymptotics usually work well, but break down in some cases – e.g. **small event counts.**

Solution: generate *pseudo data* (toys) using the PDF, under the tested hypothesis

 \rightarrow Also randomize the observable

PDF

120

130

140

150

m (GeV)

160

Vormalized events per GeV

0.025

0.02

0.015

0.01

0.005

100

110

(θ^{obs}) of each auxiliary experiment: $G(\theta^{obs}; \theta, \sigma_{syst})$

 \rightarrow Samples the true distribution of the PLR

⇒ Integrate above observed PLR to get the p-value → Precision limited by number of generated toys, Small p-values ($5\sigma : p \sim 10^{-7}!$) ⇒ large toy samples

3000

2500

2000

1500

1000

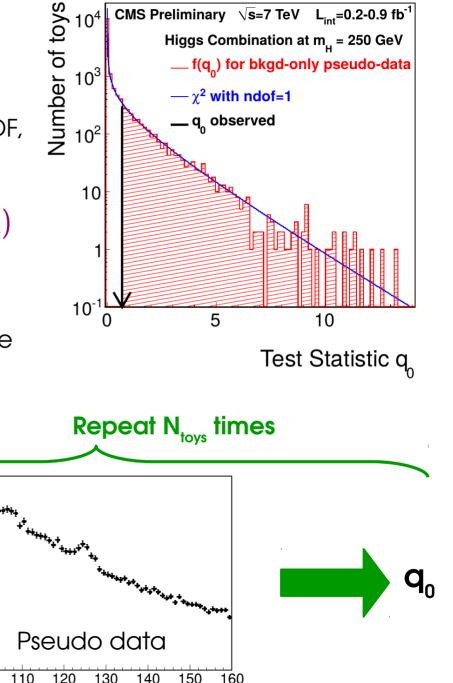
500

100

Vormalized events per GeV

p(data|x)

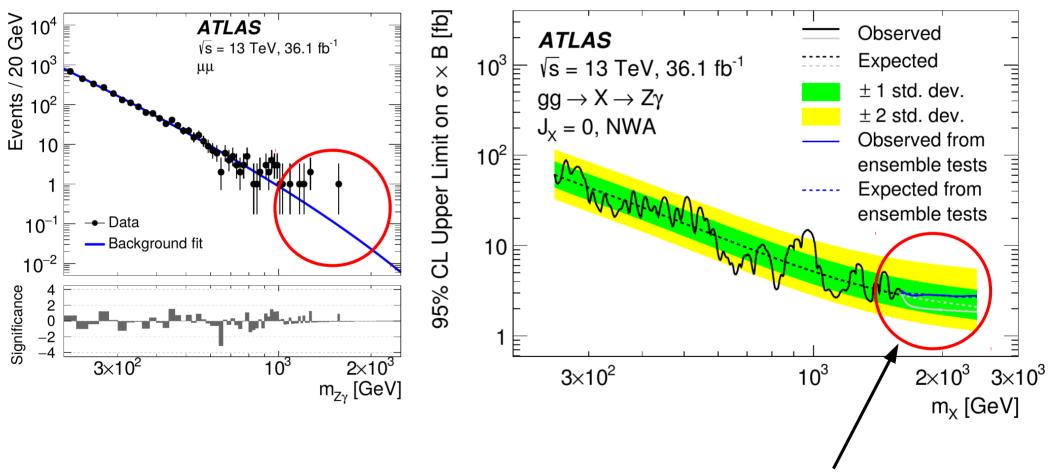
CMS-PAS-HIG-11-022



m (GeV)

Toys: Example

ATLAS X \rightarrow Z γ Search: covers 200 GeV < m_x < 2.5 TeV \rightarrow for m_x > 1.6 TeV, low event counts \Rightarrow derive results from toys



Asymptotic results (in gray) give optimistic result compared to toys (in blue)

Computing statistics results:

Limits

Confidence intervals

Profiling

Look-Elsewhere Effect

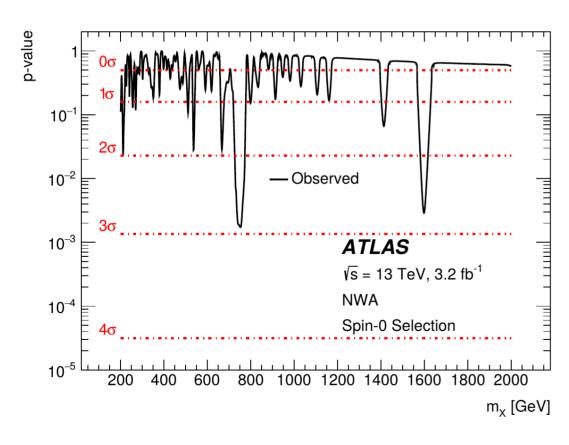
Bayesian methods

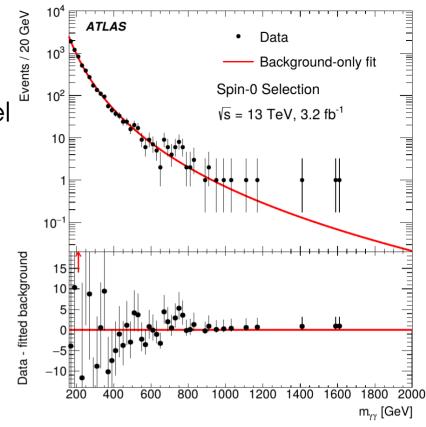
Look-Elsewhere Effect

Look-Elsewhere effect

Sometimes, unknown parameters in signal model

- e.g. p-values as a function of m_{χ}
- \Rightarrow Effectively performing **multiple**, **simultaneous searches**
- \rightarrow If e.g. small resolution and large scan range, many independent experiments





→ More likely to find an excess
 anywhere in the range, rather
 than in a predefined location
 ⇒ Look-elsewhere effect (LEE)

Testing the same H₀, but against different alternatives ⇒ different p-values

Global Significance

Probability for a fluctuation **anywhere** in the range \rightarrow **Global** p-value. at a given location \rightarrow **Local** p-value

Global
p-value
$$p_{global} = 1 - (1 - p_{local})^N \approx N p_{local}$$

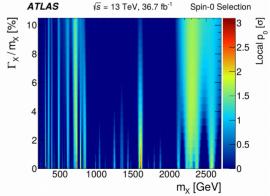
Local
p-value p_{local}

 $\rightarrow \mathbf{p}_{global} > \mathbf{p}_{local} \Rightarrow \mathbf{Z}_{global} < \mathbf{Z}_{local} - global fluctuation more likely \Rightarrow less significant$ $\frac{??}{Irials \ factor} : naively = \# \ of \ independent \ intervals:$ $N_{trials} = N_{indep} = \frac{scan \ range}{peak \ width}$

For searches over a parameter range, p_{global} is the relevant p-value

 \rightarrow Depends on the scanned parameter ranges e.g. X $\rightarrow \gamma\gamma$: 200 < m_x< 2000 GeV, 0 < Γ_x < 10% m_x^-

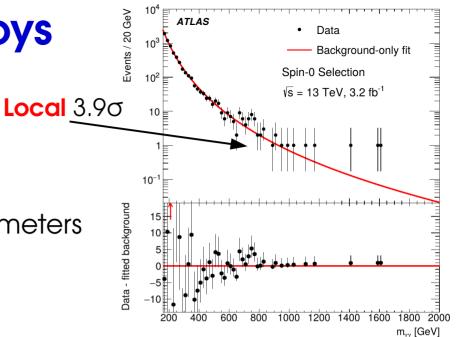
 \rightarrow However what comes out of the usual asymptotic formulas is p_{local}



How to compute p_{global} ? \rightarrow Toys (brute force) or asymptotic formulas.

Global Significance from Toys

- \rightarrow a generate pseudo-dataset
- → perform the search, scanning over parameters as in the data
- \rightarrow report the largest significance found
- \rightarrow repeat many times



 \Rightarrow The frequency at which a given Z₀ is found **is** the global p-value

e.g. X \rightarrow yy Search: Z_{local} = 3.9 σ (\Rightarrow p_{local} ~ 5 10⁻⁵), scanning 200 < m_x< 2000 GeV and 0 < Γ_x < 10% m_x

→ In toys, find such an excess 2% of the time ⇒ $p_{global} \sim 2 \ 10^{-2}$, $Z_{global} = 2.1 \sigma$ Less exciting...

Exact treatment

 Θ CPU-intensive especially for large Z (need ~O(100)/p_{alobal} toys)

Global Significance from Asymptotics

Principle: approximate the global p-value in the asymptotic limit \rightarrow reference paper: Gross & Vitells, EPJ.C70:525-530,2010

Asymptotic trials factor (1 POI):

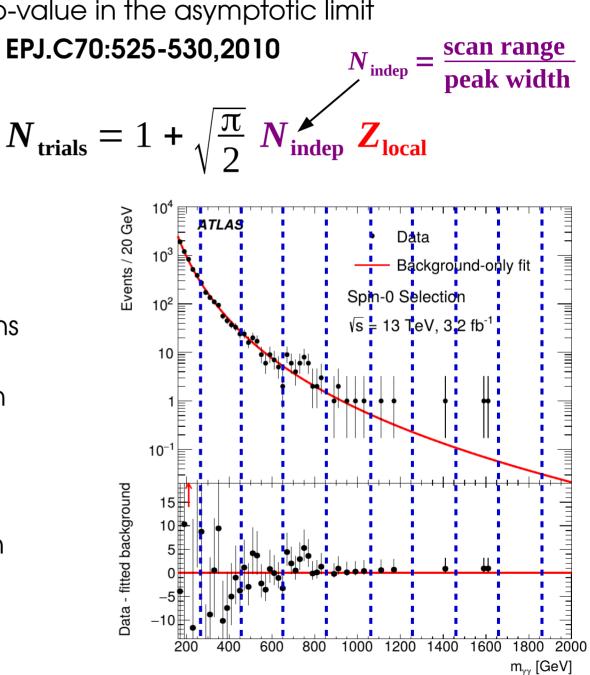
→ Trials factor is **not just N**_{indep}, also depends on Z_{local} !

Why?

- \rightarrow slice scan range into $N_{_{indep}}$ regions of size ~ peak width
- \rightarrow search for a peak in each region
- \Rightarrow Indeed gives N_{trials}=N_{indep}.

However this misses peaks sitting on edges between regions

 \Rightarrow true N_{trials} is > N_{indep}!



Global Significance from Asymptotics

Principle: approximate the global p-value in the asymptotic limit \rightarrow reference paper: Gross & Vitells, EPJ.C70:525-530,2010

Asymptotic trials factor (1 POI):

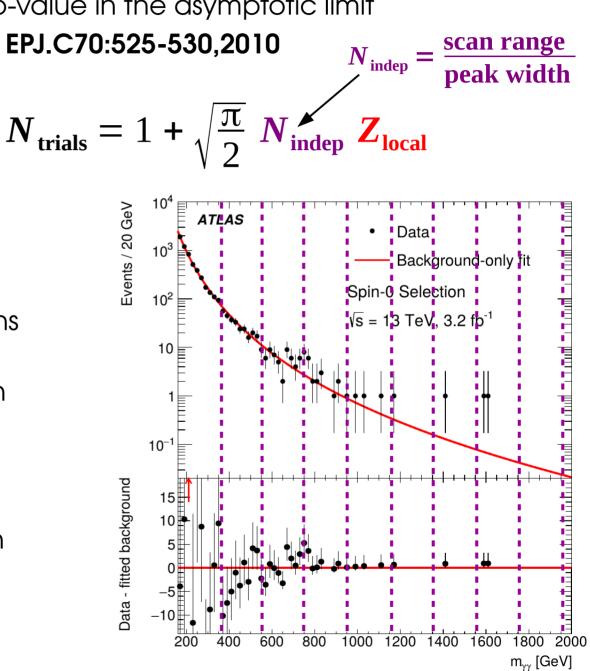
→ Trials factor is **not just N**_{indep}, also depends on Z_{local} !

Why?

- \rightarrow slice scan range into $N_{_{indep}}$ regions of size ~ peak width
- \rightarrow search for a peak in each region
- \Rightarrow Indeed gives N_{trials}=N_{indep}.

However this misses peaks sitting on edges between regions

 \Rightarrow true N_{trials} is > N_{indep}!



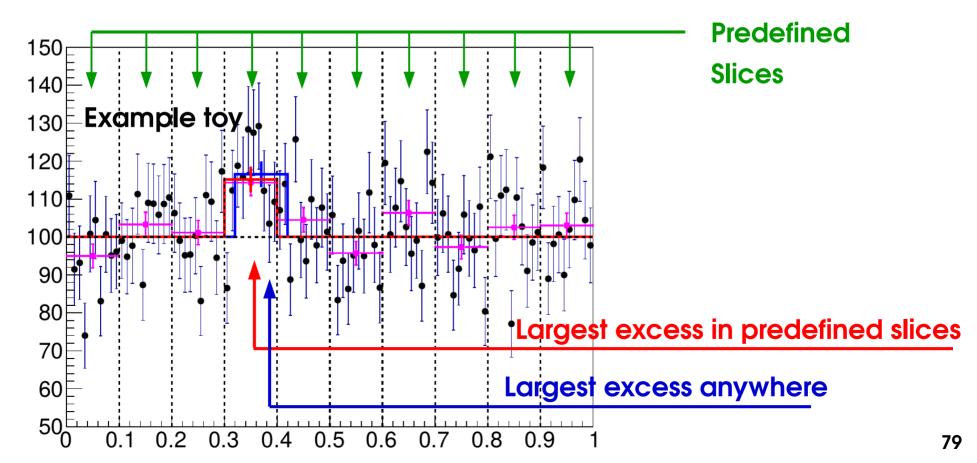
Illustrative Example

Test on a simple example: generate toys with

- \rightarrow flat background (100 events/bin)
- \rightarrow count events in a fixed-size sliding window, look for excesses

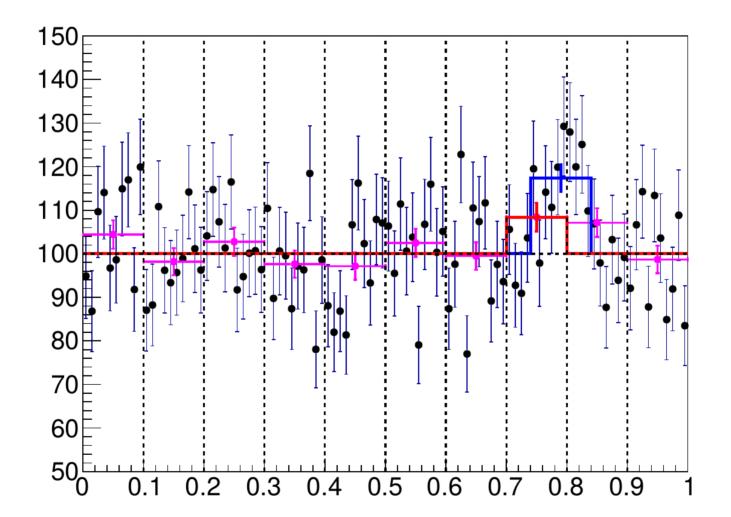
Two configurations:

- 1. Look only in 10 slices of the full spectrum
- 2. Look in any window of same size as above, anywhere in the spectrum



Illustrative Example (2)

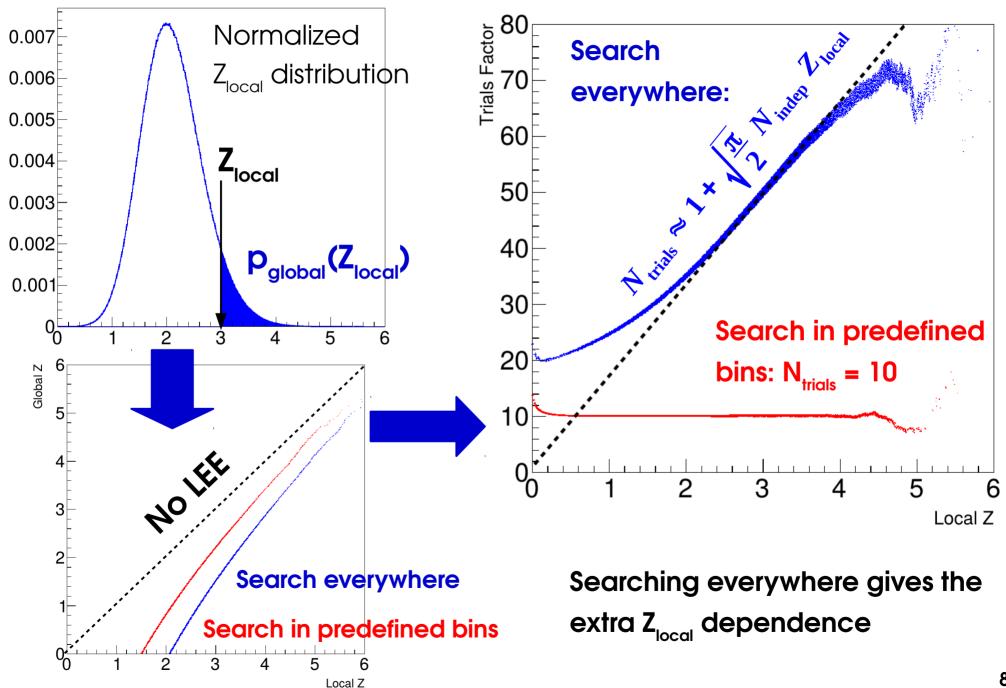
Very different results if the excess is **near a boundary :**



1. Look only in 10 slices of the full spectrum

2. Look in any window of same size as above, anywhere in the spectrum

Illustrative Example (3)



$Z_{Global} \text{ Asymptotics Extrapolation}$ Asymptotic trials factor (1 POI): $N_{trials} = 1 + \sqrt{\frac{\pi}{2}} N_{indep} Z_{local}$

How to get N_{indep} ? Usually work with a slightly different formula:

$$N_{trials} = 1 + \frac{1}{p_{local}} \langle N_{up}(Z_{test}) \rangle e^{\frac{Z_{local}^2 - Z_{test}^2}{2}}$$

Number of excesses with Z > Z_{test}

→ Get N_{up} From toys ? but high $Z_{local} \Rightarrow$ many toys needed ⇒ calibrate for small Z_{test} , apply result to higher Z_{local} .

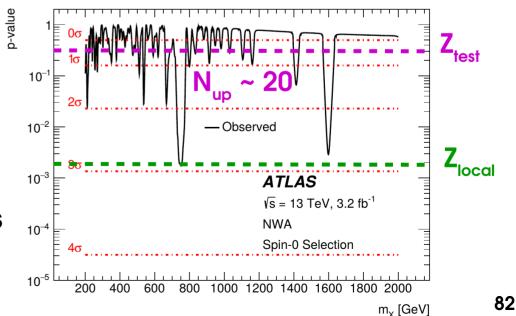
Can choose arbitrarily small Z_{test}

⇒ many excesses

 \Rightarrow can measure N_{up} in data (1 "toy")

Can also measure $\langle N_{up} \rangle$ in multiple toys

if large stat uncertainty from too few excesses

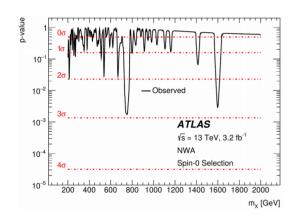


In 2D

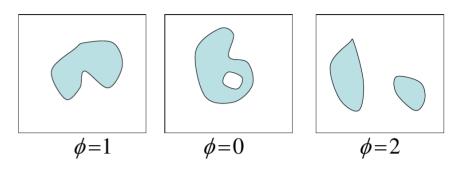
Generalization to 2D scans: consider sections at a fixed Z_{test} , compute its *Euler characteristic* ϕ , and use

 $p_{\text{global}} \approx E[\phi(A_u)] = p_{\text{local}} + e^{-u/2}(N_1 + \sqrt{u}N_2)$

→ Generalizes 1D bump counting



Now need to determine 2 constants N_1 and N_2 , from Euler ϕ measurements at 2 different Z_{test} values.



 $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ Spin-2 Selection ATLAS [™]0.3 [<u>0</u>] Ь -ocal significance 3.5 = 0 $\omega = 2$ 0.25 3 0.2 2.5 5 2 0.15 1.5 0.1 0.05 0.5n 600 800 1000 1200 1400 1600 1800 2000 m_{G*} [GeV]

Computing statistics results:

Limits

Confidence intervals

Profiling

Look-Elsewhere Effect

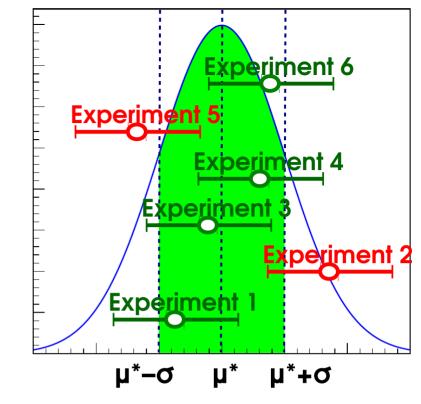
Bayesian methods

Bayesian Methods

Frequentist vs. Bayesian

All methods described so far are frequentist

- Probabilities (p-values) refer to outcomes if the experiment were repeated identically many times
- Parameters value are fixed but unknown
- Probabilities apply to measurements:
- \rightarrow "m_H = 125.09 ± 0.24 GeV" :



 \rightarrow i.e. [125.09 - 0.24 ; 125.09 + 0.24] GeV has p=68% to contain **the** true m_H.

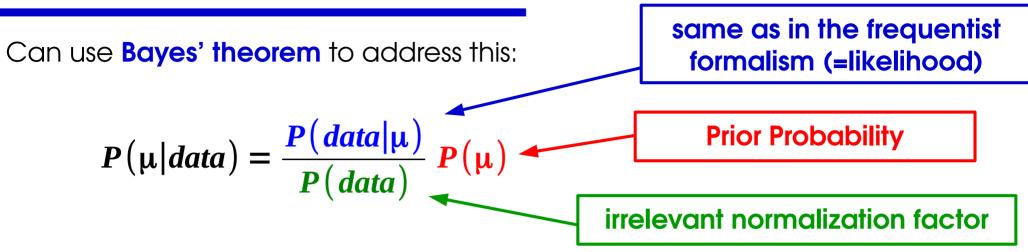
 \rightarrow if we repeated the experiment many times, we would get different intervals, 68% of which would contain the true $m_{\rm H}$

\rightarrow "5 σ Higgs discovery"

• if there is really no Higgs, such fluctuations observed in 3.10⁻⁷ of experiments

Not exactly the crucial question – what we would really like to know is What is the probability that the excess we see is a fluctuation → we want P(no Higgs | data) – but all we have is P(data | no Higgs)

Frequentist vs. Bayesian



Can compute P(µ|data), if we provide P(µ)

- \rightarrow Implicitly, we have now made μ into a random variable
 - Is m_{μ} , or the presence of H(125), randomly chosen ?
 - In fact, different definition of p: degree of belief, not from frequencies.
 - $P(\mu)$ **Prior degree of belief** critical ingredient in the computation

Compared to frequentist PLR: • answers the "right" question • answer depends on the prior "Bayesians address the questions everyone is interested in by using assumptions that no one believes. Frequentist use impeccable logic to deal with an issue that is of no interest to anyone." - **Louis Lyons**

Bayesian methods

Probability distribution (= likelihood) : same form as frequentist case, but P(θ) constraints now priors for the systematics NPs, P(θ) not auxiliary measurements P(θ^{mes} ; θ) $\textcircled{P}(\mu) = \int P(\mu, \theta) d\theta$ \rightarrow Use probability distribution P(μ) directly for limits, credibility intervals e.g. define 68% CL ("Credibility Level") interval (A, B) by: $\oiint_{A}^{B} P(\mu) d\mu = 68\%$ $\textcircled{P}(\mu) d\mu = 68\%$ $\textcircled{P}(\mu) d\mu = 68\%$

Priors : most analyses still using flat priors in the analysis variable(s)

- \Rightarrow **Parameterization-dependent**: if flat in $\sigma \times B$, then not flat in $\kappa ...$
- \rightarrow Can use the Jeffreys' or reference priors, but difficult in practice

Frequentist-Bayesian Hybrid methods ("Cousins-Highland")

- Integrate out NPs as in Bayesian measurements
- Once only POIs left, Use P(data | μ) in a frequentist way

→ "Bayesian NPs, frequentist POIs"

• Some use in Run 1, now phased out in favor of frequentist PLR.

Bayesian methods and CL_s: CL_s computation

Gaussian counting with systematic on background: $\mathbf{n} = \mathbf{S} + \mathbf{B} + \sigma_{syst} \mathbf{\theta}$ $L(n; S, \mathbf{\theta}) = G(n; S + B + \sigma_{syst} \mathbf{\theta}, \sigma_{stat}) G(\mathbf{\theta}_{obs} = \mathbf{0}; \mathbf{\theta}, \mathbf{1})$

MLE:
$$\hat{S} = n - B$$

Conditional MLE: $\hat{\hat{\theta}}(\mu) = \frac{\sigma_{\text{syst}}}{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2} (n - S - B)$

$$PLR: \lambda(\mu) = \left(\frac{S + B - n}{\sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}}\right)^2$$

Gaussian \Rightarrow from previous studies, CL_s limit is

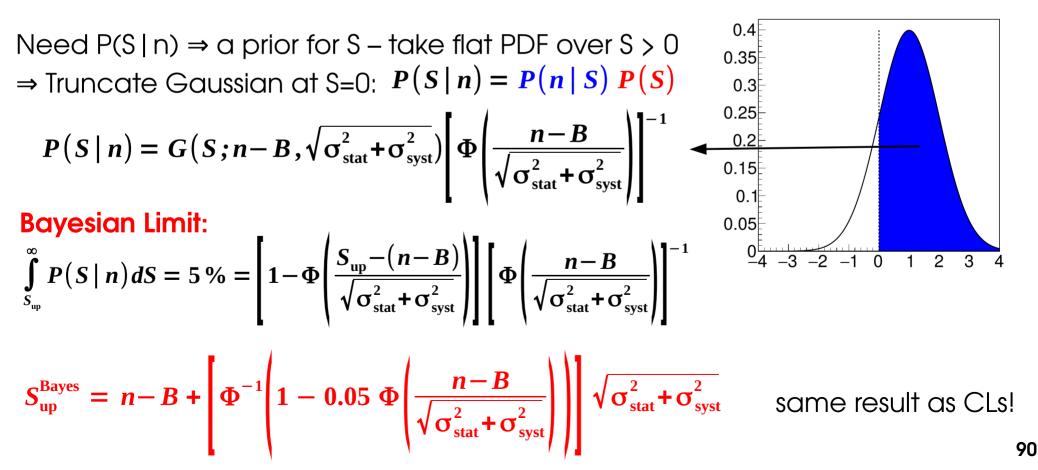
$$\mathbf{CL}_{s}: \quad S_{up}^{\mathrm{CL}_{s}} = n - B + \left[\Phi^{-1} \left(1 - 0.05 \Phi \left(\frac{n - B}{\sqrt{\sigma_{stat}^{2} + \sigma_{syst}^{2}}} \right) \right) \right] \sqrt{\sigma_{stat}^{2} + \sigma_{syst}^{2}} \right]$$

Bayesian methods and CL_s: Bayesian case

Gaussian counting with systematic on background: $\mathbf{n} = \mathbf{S} + \mathbf{B} + \sigma_{syst} \mathbf{\theta}$ $P(n \mid S, \mathbf{\theta}) = G(n; S + B + \sigma_{syst} \mathbf{\theta}, \sigma_{stat}) G(\mathbf{\theta} \mid \mathbf{0}, \mathbf{1})$

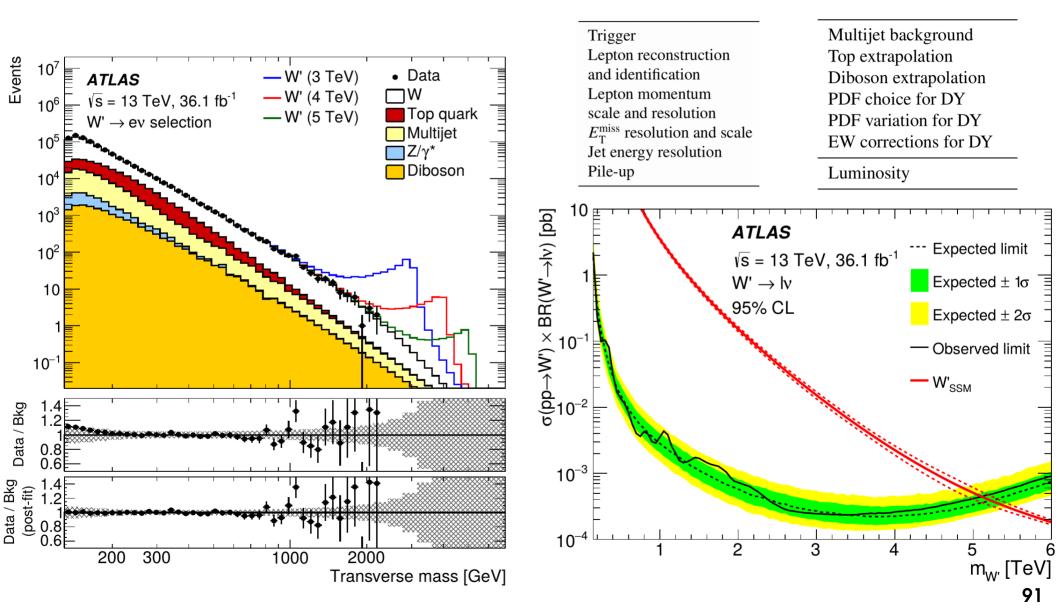
Bayesian: $G(\theta)$ is actually a *prior* on $\theta \Rightarrow$ perform integral (*marginalization*)

$$P(n \mid S) = G(S; n-B, \sqrt{\sigma_{stat}^2 + \sigma_{syst}^2})$$
 some effect as profiling!



Example: W'→Iv Search

- POI: W' $\sigma \times B \rightarrow \text{use}$ flat prior over $[0, +\infty[$.
- NPs: syst on signal ϵ (6 NPs), bkg (6), lumi (1) \rightarrow integrate over Gaussian priors



Why 5*σ* ?

One-sided discovery: $5\sigma \Leftrightarrow p_0 = 3\ 10-7 \Leftrightarrow 1\ chance\ in\ 3.5M$

- \rightarrow Overly conservative ?
- \rightarrow Do we even know the sampling distributions so far out ?

Reasons for sticking with 5 σ (from Louis Lyons):

 LEE : searches typically cover multiple independent regions
 ⇒ Global p-value is the relevant one

 $N_{trials} \sim 1000 : local 5\sigma \Leftrightarrow O(10^{-4})$ more reasonable

- Mismodeled systematics: factor 2 error in syst-dominated analysis ⇒ factor 2 error on Z...
- History: 3o and 4o excesses do occur regularly, for the reasons above
- "Subconscious Bayes Factor" : p-value should be at least as small as the subjective p(S): $P(fluct) = \frac{P(fluct|B)P(B)}{P(fluct|S)P(S) + P(fluct|B)P(B)}$

Extraordinary claims require extraodinary evidence \Rightarrow Stay with 5 σ ...

