Beyond the Standard Model Theory

Gino Isidori
[University of Zürich]
Beyond the Standard Model Theory hopes
from flavor physics & possible implications

Gino Isidori
[University of Zürich]

Introduction [Open problems, common lore, recent hopes]
Bottom-up approaches to describe the anomalies
Speculations on UV completions
Possible future implications
Conclusions
Introduction

The Standard Model has proven to be successful over an unprecedented range of energies. However, despite all its phenomenological successes, this Theory has some deep unsolved problems:

- EW hierarchy problem
- Flavor puzzle
- Neutrino masses
- U(1) charges
- Strong CP problem
- Dark-matter
- Dark-energy
- Inflation
- Quantum gravity

The SM should be regarded as an effective theory, i.e. the limit – in the accessible range of energies and effective couplings – of a more fundamental theory, with new degrees of freedom.
Introduction

The Standard Model has proven to be successful over an unprecedented range of energies. However, despite all its phenomenological successes, this Theory has some deep unsolved problems:

- EW hierarchy problem
- Flavor puzzle
- Neutrino masses
- U(1) charges
- Strong CP problem
- Dark-matter
- Dark-energy
- Inflation
- Quantum gravity

problem associated to...

- Fermi scale
- No well-defined energy scale
- Cosmological implementation of the SM
- General problem of any QFTs
Introduction

This “main avenue” has led to very appealing BMS constructions...

\[\mathcal{L}_{\text{SM}} = \mathcal{L}_{\text{gauge}}(A_a, \psi_i) + \mathcal{L}_{\text{Higgs}}(\phi, A_a, \psi_i) \]

“Common lore” (I):

Understanding what stabilizes the Higgs sector (EW hierarchy problem) is the natural “main avenue” to discover New Physics.
Introduction

This “main avenue” has led to very appealing BMS constructions...

...however, so far these do not find experimental confirmation (making these theories less and less appealing...) \(\rightarrow\) worth to explore new directions.

- EW hierarchy problem
- Flavor puzzle
- Neutrino masses
- U(1) charges
- Strong CP problem
- Dark-matter
- Dark-energy
- Inflation
- Quantum gravity

Secluded sectors,
Light NP, ALPs, ...

A direction that is definitely worth to explore, keeping in mind that the possible interesting parameter range is huge (with a large fraction beyond the reach of particle-physics exp.)
Introduction

This “main avenue” has led to very appealing BMS constructions...

...however, so far these do not find experimental confirmation (making these theories less and less appealing...) → worth to explore new directions.

EW hierarchy problem

Flavor puzzle
Neutrino masses
U(1) charges
Strong CP problem

A direction which seems to be suggested by recent b-physics data ...

Dark-matter
Dark-energy
Inflation

Quantum gravity
Introduction \[\text{the flavor structure of the SM} \]

The SM flavor sector (\(= \text{the Yukawa sector} \)) contains a large number of free parameters (fermion masses \& mixing angles), which do not look at all accidental...

\[
Y_U \sim \begin{pmatrix}
& & & \\
& & & \\
& & & \\
\end{pmatrix}
\]

\[
y_t = \frac{\sqrt{2} m_t}{\langle \phi \rangle} \approx 1
\]

The “old” flavor puzzle...
Introduction [the flavor structure of the SM & beyond]

“Common lore” (II):

The flavor structures are generated at some very heavy energy scale → No chance to probe their dynamical origin

This idea was supported by considering the SM as an effective theory, trying to determine the NP impact on rare flavor-changing processes:

\[\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_n \frac{c_n}{\Lambda^2} O_n^{d=6} \]

Possible large impact in processes such as meson-antimeson mixing which are in good agreement with the SM predictions.
Introduction [the recent hopes...]

This point of view is challenged by the recent “anomalies” in B physics, i.e. the observation of a different (non-universal) behavior of different lepton species in specific semi-leptonic processes:

- (I) $b \rightarrow c$ charged currents: τ vs. light leptons (μ, e)
- (II) $b \rightarrow s$ neutral currents: μ vs. e
Introduction [the recent hopes... (I) b → c ℓν]

Test of LFU in charged currents [τ vs. light leptons (μ, e)]:

\[R(X) = \frac{\Gamma(B \rightarrow X \tau\bar{\nu})}{\Gamma(B \rightarrow X \ell\bar{\nu})} \]

\(X = D \) or \(D^* \)

- **SM prediction quite solid:** hadronic uncertainties cancel (to large extent) in the ratio and deviations from 1 in \(R(X) \) expected only from phase-space differences
- Consistent results by 3 different exps. \(\rightarrow 3.6-3.9\sigma \) excess over SM (\(D + D^* \))
Introduction [the recent hopes... (I) b → c ℓν]

Test of LFU in charged currents [τ vs. light leptons (μ, e)]:

\[R(X) = \frac{\Gamma(B \rightarrow X \tau \bar{\nu})}{\Gamma(B \rightarrow X \ell \bar{\nu})} \]

\(X = D \) or \(D^* \)

- SM prediction quite solid: hadronic uncertainties cancel (to large extent) in the ratio and deviations from 1 in \(R(X) \) expected only from phase-space differences
- Consistent results by 3 different exps. \(\rightarrow 3.6–3.9\sigma \) excess over SM (\(D + D^* \))
- The two channels are well consistent with a universal enhancement (~30%) of the SM \(b_L \rightarrow c_L \tau_L \nu_L \) amplitude
Introduction [the recent hopes... (II) \(b \rightarrow s \ell \ell \)]

- The largest anomaly is the one in the \(P_5' [B \rightarrow K^{*}\mu\mu] \) angular distribution (which is not a LFU test). Correlated anomalies present also in other \(B \rightarrow K^{(*)}\mu\mu \) observables (all BR too low).

- Most notably: **theoretically clean** deviations from the SM in \(\mu/e \) ratios:

\[
R_H = \frac{\int d\Gamma(B \rightarrow H \mu\mu)}{\int d\Gamma(B \rightarrow H \ell\ell)}
\]

\[
R_K [1-6 \text{ GeV}^2] = 0.75 \pm 0.09 \quad \text{(LHCb, '14)}
\]

(vs. 1.00±0.01 SM)

Overall significance ~ 3.8\(\sigma \)

(\(LFU \) ratios only)

\[
q^2 [\text{GeV}^2/c^4]
\]

N.B: here the underlying process is the rare \(b \rightarrow s \ell\ell \) (loop-induced in the SM)
Introduction [the recent hopes... (II) b → s ll]

Several groups performed global fits of all the available b→s ll observables.

No complete consensus on the significance of the non-LFU observables, but full consensus that:

- All effects (LFU + non-LFU) well described by NP of short-distance origin only in b→s\(\mu\mu\) and (& not in ee)

- LH structure on the quark side:

\[
O_9 = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \ell) \\
O_{10} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu_5 \ell)
\]

Descotes-Genon, Matias, Virto '13, '15
Capdevila *et al.* '17; D'Amico *et al.* '17
Altmannshofer & Straub '13, '15
Ciuchini *et al.* '17; Hurth *et al.* '16, '17
Many others...
Introduction [more about LFU violations]

Recent data provide “convincing” indications of a *non-universal* behavior among different lepton species in b (3rd gen.) \rightarrow c,s (2nd) semi-leptonic processes:

- $b \rightarrow c$ charged currents: τ vs. light leptons (μ, e)
- $b \rightarrow s$ neutral currents: μ vs. e

IF taken together... this is probably the largest “coherent” set of NP effects in present data...

The “new” flavor puzzle...

What is particularly interesting, is that these anomalies are challenging an assumption (**Lepton Flavor Universality**), that we gave for granted for many years (*without many good theoretical reasons...*)

Interesting *new avenue in BSM constructions* (with implications beyond flavor physics)
Introduction [more about LFU violations]

Suppose we could test matter only with long wave-length photons...

We would conclude that these two particles are "identical copies" but for their mass...
Introduction [more about LFU violations]

Suppose we could test matter only with long wave-length photons...

\[
\begin{align*}
\gamma & \quad \text{We would conclude that these two particles are} \\
U(1)_Q & \quad \text{“identical copies” but for their mass...}
\end{align*}
\]

That's exactly the same (misleading) argument we use to infer LFU...

\[
\begin{align*}
\gamma, \, g, \, W, \, Z & \quad \text{These three (families) of particles} \\
\text{SU(3)×SU(2)×U(1)} & \quad \text{seems to be “identical copies”} \\
& \quad \text{but for their mass...}
\end{align*}
\]

The SM quantum numbers of the three families could be an “accidental” low-energy property: the different families may well have a very different behavior at high energies, as **signaled by their different mass**.
Introduction [more about LFU violations]

So far, the vast majority of BSM model-building attempts

- Concentrate only on the Higgs hierarchy problem
- Postpone (ignore) the flavor problem, implicitly assuming the 3 families are “identical” copies (but for Yukawa-type interactions)

“Common lore” (I)

“Common lore” (II)

W,Z + H

large (more interesting…)

small (less interesting…)
Introduction [more about LFU violations]

So far, the vast majority of BSM model-building attempts

- Concentrate only on the Higgs hierarchy problem
- Postpone (ignore) the flavor problem, implicitly assuming the 3 families are “identical” copies (but for Yukawa-type interactions)

The recent flavor anomalies seem to suggest a new avenue in BSM approaches:

- We should not ignore the flavor problem [→ new (non-Yukawa) interactions at the TeV scale distinguishing the different families]
- A (very) different behavior of the 3 families (with special role for 3\(^{\text{rd}}\) gen.) may be the key to solve/understand also the gauge hierarchy problem

\[W, Z + H \]
\[\text{NP} \]
\[\text{large (more interesting...)} \]
\[\text{small (less interesting...)} \]

\[\text{NP} \]
\[\text{3}\(^{\text{rd}}\) \]
\[\text{large (more interesting...)} \]

\[\text{NP} \]
\[\text{3}\(^{\text{rd}}\) \]
\[\text{3}\(^{\text{rd}}\) \]

\[\text{NP} \]
\[\text{3}\(^{\text{rd}}\) \]
\[\text{3}\(^{\text{rd}}\) \]
Bottom-up approaches to describe the anomalies [from EFT to simplified models]
EFT-type considerations

- Anomalies are seen only in semi-leptonic (quark×lepton) operators
- Data largely favor non-vanishing **left-handed** current-current operators

 \[\text{the Fermi-like SU}(2)_{\text{L}} \text{ triplet contributes to both charged \\ & neutral curr.}],\n
 although other contributions are also possible

\[Q_L \quad L_L \quad Q_L \quad L_L\]

Bhattacharya et al. '14
Alonso, Grinstein, Camalich '15
Greljo, GI, Marzocca '15
(+many others...)
EFT-type considerations

- Anomalies are seen only in semi-leptonic (quark × lepton) operators
- Data largely favor non-vanishing left-handed current-current operators [the Fermi-like SU(2)\textsubscript{L} triplet contributes to both charged & neutral curr.], although other contributions are also possible

\[\Lambda_{ij\alpha\beta} = (\delta_{i3} \times \delta_{3j}) \times (\delta_{\alpha3} \times \delta_{3\beta}) + \text{small terms for 2nd (\& 1st) generations} \]

Diagram:

- Large coupling (competing with SM tree-level) in $bc \rightarrow l_3 \nu_3$
- Small non-vanishing coupling (competing with SM FCNC) in $bs \rightarrow l_2 l_2$

Link to pattern of the Yukawa couplings!
EFT-type considerations

- Anomalies are seen only in semi-leptonic (quark\(\times\)lepton) operators.
- Data largely favor non-vanishing left-handed current-current operators, although other contributions are also possible:

\[
\begin{align*}
Q_L^i & \to L_L^\alpha \\
Q_L^j & \to L_L^\beta
\end{align*}
\]

Long list of constraints [FCNCs + semi-leptonic b decays + \(\pi, K, \tau\) decays + EWPO]

E.g:

- [Calibbi, Crivellin, Ota, '15 (+many others...)]

Feruglio, Paradisi, Pattori '16

+ many more...
EFT-type considerations \([\text{The } U(2)^n \text{ flavor symmetry}]\)

A good fit to all data + natural link with the origin of the Yukawa couplings, is obtained building the EFT on the hypothesis of an approximate \(U(2)\)-type chiral flavor symmetry

E.g. up-sector: \(U(2)_q \times U(2)_u\)

\[
Y_U = y_t \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix} \leftarrow U(2)_q
\]

\[
\Delta \\
V
\]

\[
\begin{array}{ccc}
\text{U(2)}_u \\
\text{unbroken} \\
\text{symmetry}
\end{array}
\]

\[
\begin{array}{ccc}
\text{after} \\
\text{symmetry} \\
\text{symmetry}
\end{array}
\]

\[
\begin{aligned}
&|V| \approx |V_{ts}| = 0.04 \\
&|\Delta| \approx y_c = 0.006
\end{aligned}
\]

Main idea: the same symmetry-breaking pattern control the mixing \(3^{rd} \rightarrow 1^{st}, 2^{nd}\) gen. for the NP responsible for the anomalies

N.B.: this symmetry & symmetry-breaking pattern was proposed well-before the anomalies appeared \([\text{it is not ambulance chasing...!}]\)
EFT-type considerations [“The Zurich's guide”]

A good fit to all data + natural link with the origin of the Yukawa couplings, is obtained building the EFT on the hypothesis of an approximate U(2)-type chiral flavor symmetry

Assumption of NP in left-handed semi-leptonic operators only [at the high-scale]

\[\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} - \frac{1}{v^2} \lambda_{ij}^q \lambda_{\alpha\beta}^{\ell} \left[C_T (\bar{Q}^i_L \gamma_{\mu} \sigma^a Q^j_L)(\bar{L}^\alpha_L \gamma^\mu \sigma^a L^\beta_L) + C_S (\bar{Q}^i_L \gamma_{\mu} Q^j_L)(\bar{L}^\alpha_L \gamma^\mu L^\beta_L) \right] \]

four free parameters...

\[
\begin{bmatrix}
C_T, C_S \\
\lambda_{bs} = O(V_{cb}) \\
\lambda_{\mu\mu} = O(|V_{\tau\mu}|^2)
\end{bmatrix}
\]

...and a long list of constraints

[FCNC and CC semi-leptonic processes, tau decays, EWPO]
EFT-type considerations [“The Zurich's guide”]

Excellent fit to both anomalies, passing all existing constraints with no fine tuning

- The virtue of this EFT approach is the demonstration that is possible to find a “combined” *(motivated)* explanation of the two set of anomalies.
- The EFT solution is not unique [e.g. sub-leading RH currents can be added], but large variations are possible only if the R_D anom. goes away completely.
Simplified dynamical models [“The Return of the LeptoQuark”...]

If we ask which tree-level mediators can generate the effective operators required by the EFT fit, we have not many possibilities...

Three main options
(for the combined explanation):

- **SU(2)$_L$ singlet**
 - Vector LQ: U_1
 - Scalar LQ: S_1
 - Colorless vector: B'

- **SU(2)$_L$ triplet**
 - Vector LQ: U_3
 - Scalar LQ: S_3
 - Colorless vector: W'

The U_1 option fits quite nicely... but of course models with more than one mediators are possible.
Three main options (for the combined explanation):

SU(2)$_L$

- Singlet
- Triplet

Vector LQ: \(U_1 \) \(U_3 \)

Scalar LQ: \(S_1 \) \(S_3 \)

Colorless vector: \(B' \) \(W' \)

LQ (both scalar and vectors) have an additional clear advantage concerning constraints from non-semilpetonic processes:

Similarly, 3rd gen. LQ are in very good shape also as far as direct searches are concerned (contrary to \(Z' \)...):
Speculations on UV completions
Speculations on UV completions

Two main approaches

Non-perturbative
TeV-scale dynamics
[non-renormalizable models]

- Scalar LQ as PNG
 Gripaios, '10
 Gripaios, Nardecchia, Renner, '14
 Marzocca '18

- Vector LQ (or W',Z') as techni-fermion resonances
 Barbieri et al. '15, Buttazzo et al. '16
 Barbieri, Murphy, Senia, '17
 Blanke, Crivellin, '17

- W', Z' as Kaluza-Klein excitations
 [e.g. from warped extra dim.]
 Megias, Quiros, Salas '17
 Megias, Panico, Pujolas, Quiros '17

Perturbative
TeV-scale dynamics
[renormalizable models]

- Renormalizable models with scalar mediators [LQ, but also RPV-SUSY]
 Hiller & Schmaltz, '14
 Becirevic et al. '16, Fajfer et al. '15-'17
 Dorsner et al. '17
 Crivellin, Muller, Ota '17
 Altmannshofer, Dev, Soni, '17
 + ...

- Gauge models
 Cline, Camalich '17
 Calibbi, Crivellin, Li, '17
 Assad, Fornal, Grinstein, '17
 Di Luzio, Greljo, Nardecchia, '17
 Bordone, Cornella, Fuentes-Martin, GI, '17
 + ...
Speculations on UV completions

In the following I will now concentrate on one (class of) option(s) that I find particularly interesting.

Starting observation: the Pati-Salam model predicts a massive vector LQ with the correct quantum numbers to fit the anomalies (best single mediator):

Pati-Salam group: \(\text{SU}(4) \times \text{SU}(2)_L \times \text{SU}(2)_R \)

Fermions in SU(4):

\[
\begin{bmatrix}
Q_L^\alpha \\
Q_L^\beta \\
Q_L^\gamma \\
L_L
\end{bmatrix}
\quad \quad \quad
\begin{bmatrix}
Q_R^\alpha \\
Q_R^\beta \\
Q_R^\gamma \\
L_R
\end{bmatrix}
\]

LQ \([U_1]\) from \(\text{SU}(4) \rightarrow \text{SU}(3)_c\)

The problem of the “original PS model” are the strong bounds on the LQ couplings to 1\(^{\text{st}}\) & 2\(^{\text{nd}}\) generations [e.g. \(M > 200\ \text{TeV}\) from \(K_L \rightarrow \mu e\)].

Interesting recent attempts to solve this problem adding extra fermions and/or modifying the gauge group [Calibbi, Crivellin, Li, '17; Di Luzio, Greljo, Nardecchia, '17]
\[\text{Main idea: at high energies the 3 families are charged under 3 independent gauge groups (gauge bosons carry a flavor index!)} \]

- **Unification** of quarks and leptons [natural explanation for \(U(1)_Y \) charges]

- \(\text{De-unification} \) (= flavor deconstruction) of the gauge symmetry

- **Key advantages:**
 - Light LQ coupled mainly to 3\(^{\text{rd}}\) gen.
 - Accidental \(U(2)^5 \) flavor symmetry
 - Natural structure of SM Yukawa couplings
The PS3 model

\[
[\text{PS}]^3 = [\text{SU}(4) \times \text{SU}(2)_L \times \text{SU}(2)_R]^3
\]

This construction can find a “natural” justification in the context of models with extra space-time dimensions.

The 4D description is apparently more complex, but it allow us to derive precise low-energy phenomenological signatures (4D renormalizable gauge model).
The PS3 model

High-scale \(\sim 10^3 \text{ TeV} \)
“vertical” breaking \([\text{PS} \rightarrow \text{SM}]\)

\[
\begin{align*}
\text{PS}_1 & \left[\text{SU}(4)_1 \times \text{SU}(2)^R_1 \right] \\
\downarrow \\
\text{SM}_1 & \left[\text{SU}(3)_1 \times \text{U}(1)^Y_1 \right]
\end{align*}
\]

The breaking to the diagonal SM group occurs via appropriate “link” fields, responsible also for the generation of the hierarchy in the Yukawa couplings.

The 2-3 breaking gives a TeV-scale LQ \([+ Z' & G']\) coupled mainly to 3rd gen. [similar to “4321” (Di Luzio et al. ’17) but “natural” flavor structure: no ad-hoc mixings]
The PS3 model

Below ~ 100 TeV
U(2)5 flavor symmetry (but for link fields)

Leading flavor structure:

- Yukawa coupling for 3$^{\text{rd}}$ gen. only
- “Light” LQ field (from PS$_3$) coupled only to 3$^{\text{rd}}$ gen.
- U(2)5 symmetry protects flavor-violating effects on light gen.
The PS3 model

Below ~ 100 TeV

U(2)5 flavor symmetry

(but for link fields)

Sub-leading Yukawa terms from higher dim ops:

$$Y_U = \begin{bmatrix}
\Delta & V \\
y_t & \end{bmatrix}
$$

$$\langle \Phi^R_{\ell_3} \Phi^L_{\ell_3} \rangle \\
(\Lambda_{23})^2$$

$$\langle \Omega_{\ell_3} \rangle \\
\Lambda_{23}$$

$\rightarrow W'_L + W'_R [\sim 5\text{-}10\text{ TeV}]$

$\rightarrow LQ [U_1] + Z' + G' [\sim 2\text{-}3\text{ TeV}]$
The PS3 model

Collider phenomenology and flavor anomalies are controlled by the last-but-one step in the breaking chain. Despite the apparent complexity, the construction is highly constrained.

The fit to low-energy data is rather good (slightly smaller NP effects in R_D, mainly because of radiative constraints).

Important difference with respect to all other models: RH couplings of the LQ.
Possible future implications

“It is very difficult to make predictions, especially about the future”

[attributed to Niels Bohr]
Implications for low-energy flavor physics

If the anomalies are due to NP, we should expect to see several other BSM effects in low-energy observables.

Main message: “super-reach” flavor program for LHCb, but also other flavor physics facilities (Belle-II, Kaons, CLFV).

E.g: Possible large $\tau \to \mu$ LFV transitions

Glashow, Guadagnoli, Lane '15
Implications for high-p_T physics

Some general considerations:

Independently of the details of the UV models, the anomalies point to NP in the ball-park of direct searches @ LHC

- $R_{D(*)}$ necessarily points to a low NP scale: $M \sim g \times (1.0 \text{ TeV})$

- $R_{K(*)}$ also points to a low NP scale, but for (unnaturally) large flavor-violating couplings

This NP could have escaped detection so far only under specific circumstances (that are fulfilled by the proposed UV completions):

- Coupled mainly to 3$^\text{rd}$ generation (\rightarrow no large coupl. to proton valence quarks)
- No narrow peaks in dilepton pairs (including tau pairs)

Significant room for improvement for the corresponding searches @ HL-LHC
But only HE-LHC would be able to rule out all reasonable models
Implications for high-p_T physics

This NP could have escaped detection so far only under specific circumstances:

- Coupled mainly to 3rd generation (→ no large coupl. to proton valence quarks)
- No narrow peaks in dilepton pairs (including tau pairs)
Implications for high-\(p_T\) physics

Also as far as direct searches are concerned, 3rd gen. LQ are in good shape:

N.B.: The single production might be quite relevant
Implications for high-\(p_T\) physics

Additional considerations for direct searches:

I. The production of all type of mediators occurs predominantly in conjunction with b quarks \(\rightarrow b\)-tag might help

II. The \(R_D\) anomaly unambiguously points out to large \(pp \rightarrow \tau\tau\) (independently of the mediator), but narrow peaks in \(\tau\tau\) disfavored

III. BR into \(\mu\) pairs (or \(\mu\tau\)) always expected but naturally suppressed vs. taus [O(0.1) @ amplitude level for each muon – larger model dependence] except in models addressing only \(R_K\)
Implications for high-p_T physics

Additional considerations for direct searches:

I. The production of all type of mediators occurs predominantly in conjunction with b quarks → b-tag might help

II. The R_D anomaly unambiguously points out to large $pp \rightarrow \tau\tau$ (independently of the mediator), but narrow peaks in $\tau\tau$ disfavored

III. BR into μ pairs (or $\mu\tau$) always expected but naturally suppressed vs. taus

[$O(0.1) @$ amplitude level for each muon – larger model dependence]

except in models addressing only R_K

VI. Large BRs into top pairs naturally expected in most models, especially when considering also “additional” heavy states
Implications for high-p_T physics

E.g.: The “Coloron”

In models such as PS3 or the 4321, the LQ is accompanied by a (non-universal) heavy gluon, coupled mainly to 3$^{\text{rd}}$ gen.

Di Luzio, Fuentes-Martin, Greljo, Nardecchia, Renner [to appear]
Implications for high-\(p_T\) physics

E.g.: The “Coloron”

In models such as PS\(^3\) or the 4321, the LQ is accompanied by a (non-universal) heavy gluon, coupled mainly to 3\(^{\text{rd}}\) gen.
Conclusions

- If these LFU anomalies were confirmed, it would be a fantastic discovery, with far-reaching implications.

- If interpreted as NP signals, both set of anomalies are not in contradiction among themselves & with existing low- & high-energy data. Taken together, they point out to NP coupled mainly to 3rd generation, with a flavor structure connected to that appearing in the SM Yukawa couplings.

- Simplified models with LQ states seem to be favored. However, realistic UV for these models naturally imply a much richer spectrum of states at the TeV scale (and possibly above...).

- The PS³ model I have presented is particularly interesting as example of the change of approach in model building that these anomalies could imply. But many points/possible-variations remains to be clarified/explored...

A lot of fun ahead of us...
(both on the exp., the pheno, and model-building point of view)
G. Isidori – BSM hopes from flavor physics & possible implications

Higgs Hunting 2018, Paris, July 2018
Anomalies in $B \to K(\ast) \mu\mu / ee$ [LHCb]

Several groups performed global fits of all the available $b \to s ll$ observables.

No consensus on the significance of the non-LFU observables, but full agreement on the main aspects:

- All effects well described by NP of short-distance origin only in $b \to s \mu\mu$ and (& not in ee)
- LH structure on the quark side:

\[O_9 = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \ell) \]
\[O_{10} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \gamma_5 \ell) \]
Technical note: I don't think we should be too worried about the low-q^2 bin...

“dangerous” choice of the bin starting from the di-muon threshold

- SM including QED corrections & conservative th. error
 - Bordone, GI, Patttori '16

- Low q^2 region with the inclusion of $B \rightarrow K^\ast \eta (\rightarrow l^+l^-\gamma)$
 - $b \rightarrow c \bar{c} s$ (tree level)
Anomalies in $B \to K^{(*)} \mu\mu / ee$ [LHCb]

Pro NP: reduced tension in all the observables with a unique fit of non-standard short-distance Wilson coefficients

More precise data on the $q^2=m_{\mu\mu}$ distribution can help to distinguish NP vs. SM

Descotes-Genon, Matias, Virto '13, '15
Capdevila et al. '17; D'Amico et al. '17
Altmannshofer & Straub '13, '15
Ciuchini et al. '17; Hurth et al. '16, '17
Many others...
Implications for low-energy flavor physics

E.g: expectation of LFV processes in the PS3 model:

\[\left(\frac{\Delta R_D}{0.2} \right)^2 \left(\frac{\Delta R_K}{0.3} \right)^2 \approx 3 \left[\mathcal{B}(B \rightarrow K^{+}\mu^{-}) \right] \left[\mathcal{B}(\tau \rightarrow \mu \gamma) \right] \approx \left[\mathcal{B}(B_s \rightarrow \tau^{\pm}\mu^\mp) \right] \left[\mathcal{B}(\tau \rightarrow \mu \gamma) \right] \]
Implications for low-energy flavor physics

If the anomalies are due to NP, we should expect to see several other BSM effects in low-energy observables

E.g.: **correlations among down-type FCNCs** [using the results of U(2)-based EFT]:

<table>
<thead>
<tr>
<th></th>
<th>μμ (ee)</th>
<th>ττ</th>
<th>νν</th>
<th>τμ</th>
<th>μe</th>
</tr>
</thead>
<tbody>
<tr>
<td>b → s</td>
<td>R<sub>K</sub>, R<sub>K*</sub></td>
<td>R<sub>K</sub>, R<sub>K*</sub></td>
<td>R<sub>K</sub>, R<sub>K*</sub></td>
<td>R<sub>K</sub>, R<sub>K*</sub></td>
<td>R<sub>K</sub>, R<sub>K*</sub></td>
</tr>
<tr>
<td></td>
<td>O(20%)</td>
<td>→ 100×SM</td>
<td>O(1)</td>
<td>→ ~10⁻⁵</td>
<td>~10⁻⁵</td>
</tr>
<tr>
<td>b → d</td>
<td>B<sub>d</sub> → μμ</td>
<td>B<sub>d</sub> → π μμ</td>
<td>B<sub>d</sub> → π μμ</td>
<td>B<sub>d</sub> → π μμ</td>
<td>B<sub>d</sub> → π μμ</td>
</tr>
<tr>
<td></td>
<td>O(20%) [R<sub>K</sub>=R<sub>π</sub>]</td>
<td>O(20%) [R<sub>K</sub>=R<sub>π</sub>]</td>
<td>O(20%) [R<sub>K</sub>=R<sub>π</sub>]</td>
<td>O(20%) [R<sub>K</sub>=R<sub>π</sub>]</td>
<td>O(20%) [R<sub>K</sub>=R<sub>π</sub>]</td>
</tr>
<tr>
<td>s → d</td>
<td>long-distance pollution</td>
<td>NA</td>
<td>K → π νν</td>
<td>NA</td>
<td>K → μe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O(1)</td>
<td></td>
<td>→ ~10⁻¹²</td>
</tr>
</tbody>
</table>
Implications for low-energy flavor physics

A similar table can be made also for charged currents, and in this case the predictions of the EFT are more simple/robust:

I) LH operators [universality of all $R^{\tau/\mu}(b \to c)$ ratios]:

\[
\frac{R_D}{(R_D)_{SM}} = \frac{\Gamma(B \to D^* \tau \nu)/\Gamma_{SM}}{\Gamma(B \to D^* \mu \nu)/\Gamma_{SM}} = \frac{\Gamma(B_c \to \psi \tau \nu)/\Gamma_{SM}}{\Gamma(B_c \to \psi \mu \nu)/\Gamma_{SM}} = \frac{\Gamma(\Lambda_b \to \Lambda_c \tau \nu)/\Gamma_{SM}}{\Gamma(\Lambda_b \to \Lambda_c \mu \nu)/\Gamma_{SM}} = \ldots
\]

II) U(2) symmetry [$R^{\tau/\mu}(b \to c) = R^{\tau/\mu}(b \to u)$ universality]:

\[
\frac{\Gamma(B \to \pi \tau \nu)/\Gamma_{SM}}{\Gamma(B \to \pi \mu \nu)/\Gamma_{SM}} = \frac{\Gamma(\Lambda_b \to \Lambda_c \tau \nu)/\Gamma_{SM}}{\Gamma(\Lambda_b \to \Lambda_c \mu \nu)/\Gamma_{SM}} = \frac{\Gamma(B_s \to K^* \tau \nu)/\Gamma_{SM}}{\Gamma(B_s \to K^* \mu \nu)/\Gamma_{SM}} = \ldots = \frac{R_D}{(R_D)_{SM}}
\]

N.B.: The only info on $b \to u \tau \nu$ we have is $\text{BR}(B_u \to \tau \nu)^{\text{exp}}/\text{BR}_{SM} = 1.31 \pm 0.27$

→ perfectly consistent with I+II

N.B.: The predictions for $R^{\mu/e}(b \to c)$ are more uncertain, but up to $O(2\%)$ possible

→ worth to improve

UTfit. '16
Implications for high-p_T physics

Also as far as direct searches are concerned, 3$^{\text{rd}}$ gen. LQ are in good shape:

At high masses $pp \rightarrow \tau\tau$ is the most effective search mode
Symmetry breaking pattern in PS^3

\[\Sigma_1 \quad \text{PS}_1 \quad \psi_1 \quad \langle \Sigma_1 \rangle \quad \text{SM}_1 \]

High-scale $[\sim 10^3 \text{ TeV}]$

“vertical” breaking $[\text{PS} \rightarrow \text{SM}]$

$\text{PS}_1 [\text{SU}(4)_1 \times \text{SU}(2)_{R_1}]$

\downarrow

$\text{SM}_1 [\text{SU}(3)_1 \times \text{U}(1)_{Y_1}]$

$\text{SU}(4)\times\text{SU}(2)_R\times\text{SU}(2)_L$

$LQ (6)$

$\text{SU}(3)\times\text{U}(1)_{B-L}$

$\text{U}(1)_R$

$\rightarrow W'_R (2)$

$Z' (1)$

$\text{U}(1)_Y$
Symmetry breaking pattern in PS³

\[\Lambda_1 > E > \Lambda_{12} \]

\[\langle \Sigma_1 \rangle \]

\[\langle \Phi_{12}^{L,R} \rangle \]

\[\langle \Omega_{12} \rangle \]

\[\Lambda_{12} > E > \Lambda_{23} \]

Below \(\sim 100 \text{ TeV} \)

U(2)\(^5\) flavor symmetry

(\text{but for link Yuk. coupl.})

VEVs

\[\Phi_{12}^{L} \sim (1,2,1)_1 \times (1,2,1)_2 \]

\[\Phi_{12}^{R} \sim (1,1,2)_1 \times (1,1,2)_2 \]

\[\Omega_{12} \sim (4,2,1)_1 \times (4,2,1) \]

\[\text{VEV} \rightarrow \text{SU}(2)^L_{1+2} \]

\[\text{VEV} \rightarrow \text{SU}(2)^R_{1+2} \]

\[\text{VEV} \rightarrow \text{SU}(4)_{1+2} \& \text{SU}(2)^L_{1+2} \]