High Level applications development status

H. Guler for the ThomX commissioning group

Programme Investissements d'avenir de l'Etat ANR-10-EQPX-51. Financé également par la Région Ile-de-France. Program « Investing in the future » ANR-10-EQOX-51. Work also supported by grants from Région Ile-de-France.

Some rules

- Interfaces to be implemented into MML (MATLAB) and / or directly using Taurus (Python)
- High level interfaces design should be done by machine experts and could evolve
 - > Periods of training and development is necessary
 - > Easy installation, versioning, and user manuals are needed
- General single common scripts for raw signal analysis :
 - Beam charge extraction (from Wavecatcher)
 - > YAG : Spot analysis tool (extract size, position, ...)
 - ➢ BPMs ...
- High level variables (Calibrations, Twiss parameters, ...) coming from calculation should be included in Tango
 - > No differences for same variable should appear in different IHM
- Single programing language is not mandatory (MATLAB, Python)
 - TANGO binding should prevent any incompatibility

High level applications are done with MML

- MML : communication with TANGO and a Simulation tool (Accelerator Toolbox)
 - Binding MATLAB / TANGO done
 - Fested on multi-platform (Windows, MacOS, and Linux)
- MML : At platform used to develop and test high level interfaces
- MML : simulation tool used for the Transfer lines and the Ring
 - > And Linac beam dynamics analysis
- Next need :
 - Connect MML to simulation TANGO variables
 - Simulation TANGO variable will be very useful also during commissioning to test newly developed tools before using them on
 - Connect MML to final TANGO variables

MML/AT current status

Control applications for commissioning and operation are under development using the Matlab Middle Layer (MML).

MML status:

- Installation of the MML and AT software together with other applications. New version of AT (v 2.0) is tested. Next step: test a new realease of MML (from G. Portmann / May 2018).
- Test version of the master files (thomxinit, TLinit, setoperationalmode, updateatindex, magnetcoefficient...) for the machine (TL and SR) is ready. Next step: put appropriate tango names/variables (collection is ongoing) + <u>many many tests with Tang</u>o.
- Eventually switch from « personal PC/working locally » style to the dedicated ThomX/MML server (as it will be during the operation, more easy to maintain and track changes/modifications).

High level applications with MML

There are already a lot of functions for accelerator control and measurements but mainly for the damped SR.

In the ThomX SR the e- beam is stored only for 20 ms => can be a difficulty for some type of measurements => specificities to be addressed in the case of the ThomX SR

The work now is focused on the *applications for the Dav-ONE*:

- Save/Restore the machine configuration
- BPM GUI/test programs

First turns applications (orbit correction,

tune/chromaticity measurements)

Orbit/signal-sum measurements

- Done (version 0):
- Orbit correction (global)
- Beta function measurement
- Lattice symmetry restoration (LOCO)
- Display (plotfamily)
- Injection matching
- Emittance measurement ThomX MAC Meeting

- Ongoing:
- Orbit correction (local)
- Dispersion measurement
- RM measurements (orbit, tune, chromaticity)
- Quadrupole centering (BBA)

To be addressed:

- Tune display and control
- Beam diagnostics (beam size, bunch length...)
- Analysis of nonlinearities
- Analysis of the collective effects

Hayg GULER (LAL) - June 21-22 2018

Need for trend plots : easy to compute and very useful

Interfaces needed for beam tuning for single pass (Linac-TL-EL)

- During the Linac + TL + EL commissioning
 - To help the beam tuning
 - Useful for beam alignment
 - Follow trends for ICT, BPMs
 - > For example Trend of the beam charge / position

Example of interface used at PHIL

Get beam charge / position at different locations Plot trends Eile Edit View Insert Tools Desktop Window Help 1) 🖆 🖬 🌭 | 📐 🔍 🔍 🕲 🖉 🔏 - 🗔 📘 📰 💷 🛄 12-Mar-2018 CA.BTV0215 -15 -10 -5 0 5 10 15 $FWHM_{x} = 5.33 \text{ mm} (0.053)$ $\sigma X = 3.847 \text{ mm} (0.078)$ X= -3.3 mm (0.04) Beam positions -5.27 mm (0.05) -10 17:55:3617:56:2117:57:0617:57:5117:58:36 17:55:3617:56:2117:57:0617:57:5117:58:36 Gun beam= 0.114 nC (0 Beam Charge BPMs B220 = 0.01 (0) B240 = 0 (0) 1.5 B260 = 0.01B310 = 0.02 (0) B3.80 = 0 (0) B410 = 0 (0) 0.0 0.5 17:55:3617:56:2117:57:0617:57:5117:58:36 17:55:3617:56:2117:57:0617:57:5117:58:36 Laser= 0 microl (nb of bunches = 11. 1. 1 P

Choose screen

Plots trends

Measure beam spot size, position

Trend plots for vacuum

- During RF conditioning for RF-Gun or Linac Section.
- Very useful for conditioning

117

Scan measurements : To be adapted for ThomX

Example of Scan interfaces to be included in MML Charge phase scan (from CLEAR)

Script to adapt for ThomX (could be done in MML or Taurus)

Hayg GULER (LAL) - June 21-22 2018

Example scan for energie steerer

Example of solenoide scan

Interface with RF-Signals

- Could be very useful to understand the Timing status
- Need to keep the possibility to access the analog signals (scope)

ThomX MAC Meeting

Interfaces roadmap (< 6 months)

Upgrade MML test-version to add operating points :

- > Linac-TL-EL, Linac-TL-Ring-EL, and Linac
- > Already existing Lattices (MadX and Beta)
- Trends :
 - > For vacuum
 - > For beam charge, position ...
- Diagnostics
 - > General interface :
 - Diag stations (Yag)
 - ICTs
 - ► BPMs
 - > Automatic measurements
 - Charge:Phase, Energy steerer, Solenoid scan, energy dispersion
 - Alignment, orbit correction