Tianlai and Paon4

O. Perdereau

LAL, Univ. Paris-Sud, CNRS/IN2P3,

Université Paris-Saclay, Orsay, France

21cm group - Orsay - June 25th, 2018

イロト イポト イヨト イヨト

Tianlai

- A small pathfinder experiment to check the basic principles and designs, find out potential problems
- 3x15x40m cylinders, 96 dual polarization receiver units
- 16 x 6m dishes
- observe 700-800MHz, can be tuned in 600-1420MHz
- If successful: expand to full scale 120mx120m, 2500 units

21cm

(X. Chen slides @Aspen 02/2018)

25/6/18

2/12

イロト イポト イヨト イヨト

Forecasted sensivity

Xu et al arXiv :1410.7794

25/6/18 3 / 12

21cm

Tianlai on site

Observations started in fall 2016

4/12

Calibration source

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > □ Ξ

Sky reconstruction (cylinder array)

synthetic beam & array design (sensor positions)

sky reconstruction using spherical harmonics

Jiao Zhang et al arXiv :1606.03830

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Preliminary sky maps

(data from sept. 2016

Preliminary sky maps

(data from sept. 2016

A D N A B N A B N

Preliminary sky maps

(data from sept. 2016

All Day

Night Only

Large effect from the Sun during daytime

Calibration of dish array data

disentangling various componentes of the frequency response of each channel using transits

Fengquan Wu

イロト イロト イヨト イヨ

Calibration of dish array data(2)

disentangling various componentes of the frequency response of each channel

Auto23-23

Cross-correlation channel 2-22

🖌 🗆 🕨 🖌 🖓 🕨 🤞 🚊 🕨 🖌 🚊 Fengguan Mu 🔿

PAON4

Characteristics :

- 4 antennas (~ 3 deg beams) in Nancay (~ 200 km south of Paris)
- 2 polar./antenna
- Frequency band 1250 -1500 MHz (~ 1275 - 1480 MHz)
- ± 20 degrees from zeith
- transit observations;
 24h scans since 2015
- test bench for electronics, daq and on-line computing analysis

early maps with PAON4

Quick map making in 1420MHz

Jiao Zhang PhD

several improvements in hardware since then ...

< ∃→

Recent activities & prospects on PAON4

- improve daq software, electronic
- a long investigation to understand a perturbation
 - looks like an increase of noise
 - on one antena at a time, ~ every day
 - but only between sunsets and sunrises
 - ... due to a small bird (!)
- phase shifts in the electronics/cables
- test IDROGEN board (D. Charlet, LAL)

