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Introduction

Utility of DL to HEP has been established in a variety of
areas.

This talk is not a comprehensive summary of all Deep
Learning in HEP.

Focus on next challenge: transition from feasibility to
production

e Attempt to speculate about the future...

Disclaimer: | have a potential Conflict of Interest...



* Deep Learning
e DL in HEP
e 3 Areas:
e Reconstruction / Trigger
e Simulation
e Analysis
e Proposal
e Software and Technical Challenges
e DL+HEP Software Needs
* Future

e Science Fiction...



Deep Learning



Artificial Neural Networks

* Biologically inspired computation, (first attempts in 1943)
* Probabilistic Inference: e.g. signal vs background
» Universal Computation Theorem (1989)

* Multi-layer (Deep) Neutral Networks:

* Not a new idea (1965), just impractical to train. Vanishing
Gradient problem (1991)

* Solutions:
 New techniques: e.g. better activation or layer-wise training

* More training: big training datasets and lots of
computation ... big data and GPUs

 Deep Learning Renaissance. First DNN in HEP (2014).
* Amazing Feats. Audio/Image/Video recognition, captioning,

and generation. Text (sentiment) analysis. Language
Translation. Video game playing agents.

* Rich field: Variety of architectures, technigues, and
applications.

Images from Wikipedia


http://link.springer.com/article/10.1007%2FBF02551274
https://en.wikipedia.org/wiki/Deep_learning#cite_note-ivak1965-25
https://en.wikipedia.org/wiki/Deep_learning#cite_note-HOCH2001-36
https://arxiv.org/abs/1402.4735
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A Survey on Deep Learning in Medical Image Analysis

Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco Ciompi,
Mohsen Ghafoorian, Jeroen A.W.M. van der Laak, Bram van Ginneken, Clara I. Sanchez

Diagnostic Image Analysis Group
Radboud University Medical Center
Nijmegen, The Netherlands
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https://arxiv.org/pdf/ 1 702.05747.pdf



Style Transfer

Deeplakes

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_lmage_Style_Transfer_CVPR_2016_paper.pdf



DL in HEP?



HEP Experlments

e 5 technical components to HEP experiment:

* Accelerator. e.g. LHC collisions creating quickly decaying heavy
particles. Extremely high rate: 40 * O(50) Million collisions/sec.

» Detector. a big camera. ~ e.g. LHC 1.5 MB/event (60 TB/s)

* Pictures of long-lived decay products of short lived heavy/
interesting particles.

e Sub-detectors parts: Tracking, Calorimeters, Muon system,
Particle ID (e.g. Cherenkov, Time of Flight)

DAQ/Trigger: Hardware/software

Simulation: Integral to design, SW development, analysis, ...

« Software: Reconstruction (Raw data -> particle “features”) / Analysis

Computing: GRID Monarch Model “Cloud” Computing/Data
Management (software/hardware)




Why go Deep?

 DNN-based classification/regression generally out perform hand crafted algorithms.

» Better Algorithms

e In some cases, it may provide a solution where algorithm approach doesn’t exist or fails.
* Unsupervised learning: make sense of complicated data that we don’t understand or expect.
» Easier Algorithm Development. Feature Learning instead of Feature Engineering

* Reduce time physicists spend writing developing algorithms, saving time and cost. (e.g. ATLAS >
$250M spent software)

* Quickly perform performance optimization or systematic studies.

» Faster Algorithms

After training, DNN inference is often faster than sophisticated algorithmic approach.

DNN can encapsulate expensive computations, e.g. Matrix Element Method.

Generative Models enable fast simulations.

Already parallelized and optimized for GPUs/HPCs.

Neuromorphic processors.
11



Where i1s ML needed?

* Traditionally ML Techniques in HEP
» Applied to Particle/Object Identification

e Signal/Background separation

* Here, ML maximizes reach of existing data/detector... equivalent to additional integral
luminosity.

e There is lots of interesting work here... and potential for big impact.
 Now we hope ML can help address looming computing problems of the next decade:
- Reconstruction
1. Intensity Frontier- LArTPC Automatic Algorithmic Reconstruction still struggling

2. Energy Frontier- HL-LHC Tracking- Pattern Recognition blows up due to
combinatorics

- Simulation

3. LHC Calorimetry- Large Fraction of ATLAS CPU goes into shower simulation.



Reconstruction



LHC Computing




Trigger
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The Computing Model &
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Reconstruction

Service
Starts with raw inputs (e.g.Voltages)
Cell
Low level Feature Extraction:e,g, Builder
Energy/Time in each Calo Cell
Pattern Recognition: Cluster adjacent cionA . Cell
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LHC — HL-HLC



HL-LHC
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Higher Granularity + High Trigger Rates é o
 ~10x higher input rates. g 2.0E+34

 Trigger Needs: HOR
e Better Calorimetry o
* Tracking
 Low New Physics x-sections, need:
» Detail Physics: NLO / NNLO
 Faithful Simulation: Geant

* High Pileup: O(200) proton collision / crossing

e Tracking Pattern Recognition

Run 1

Trigger-
Rate:
~500 Hz H

3500
. HLHC ]
Run 2 Run 3 Run 4 Run 5 Run 6
- St T 3000
L B ® -0 -0 ®: 0 -0
2500 &2,
Trigger Trigger ¢ é"
-Rate: -Rate: 2000 8
~1 kHz . | ~1kHz £
- QN } Y - C E
=
Trigger- 1500 -
Rate: e
2 7.5kH B
e @' ® ~Io Kz 1000 &b
2
o Trigger- £
Rate: 500
~7.5 kHz
|
_/
0
10 11 12 13 14 15 1A 17 18 19 20 21 22 73 24 75 7A 27 7R 79 20 21 2V 32 34 35 36 37 38
— Run 3
0 50 100 150 200 250

Time/Event [a.u.]

# of interactions / crossing

. CMS Simulation, s = 13 TeV, tt + PU, BX=25ns

60? —=— Full Reco —e— Track Reco
50
a0~
30i
20

10—

PU140

\|J6

Luminosity [10* cm2 s°1]
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Computlng

* HEP Reco is Embarrassingly parallel problem — Single threaded and
memory-heavy software

Past few decades: scaling via ever faster / denser commodity linux
boxes

* Moore’s law has stalled.
Cost of adding more transistors/silicon area no longer decreasing.
* Trend towards more cores and slower memory access.
Co-processors: MiC, GPUs, FPGA,
» Storage Scaling also a problem...

 HL-LHC computing budget many times larger than LHC.

Performance
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Solutions

Framework Evolution: Multiple Events in Flight = Multiple Algs on same event —
Parallelism within Algs — Offload to accelerators

Optimizing Data and Algs for Parallelization:
e Multi-thread: Really about memory
* \lectorization
* Co-processor: Significant rewriting of algorithms
Great deal of work to evolve current frameworks to address these issues.
e General feeling that restarting from scratch is not feasible.
Real time analysis

Machine Learning...



DL for LHC Reco
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@ATLAS

EXPERIMENT
http://atlas.ch

Run: 204769
Event: 71902630
Date: 2012-06-10
Time: 13:24:31 CEST




Neutrinos...



Neutrino Detection

In neutrino experiments, try to determine flavor and estimate energy of
iIncoming neutrino by looking at outgoing products of the interaction.

Typical neutrino event Outgoing lepton:

Flavor: CC vs. NC, u* vs. u,evs.y
Energy: measure

Incoming neutrino:
Flavor unknown

Energy unknown

Mesons:
Final State Interactions

Energy? ldentity?

Target nucleus:
Nucleus remains intact for low Q2
N-N correlations

Outgoing nucleons:
Visible? Energy?

Jen Raaf



Neutrino Detectors

* Need large mass/volume to maximize chance of neutrino interaction.
» Technologies:
« Water/Oil Cherenkov
¢ Segmented Scintillators
Liquid Argon Time Projection Chamber: promises ~ 2x detection efficiency.
» Provides tracking, calorimetry, and ID all in same detector.
» Chosen technology for US’s flagship LBNF/DUNE program.
e Usually 2D read-out... 3D inferred.

« After many years of trying, good automatic reconstruction still not demonstrated.
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LArTPC Reco

* Neutrino Physics has a long history of hand
scans Decompression > 3D Track Finding
! | |

« QScan: ICARUS user assisted Event Splitting 3D Vertex Fiading

reconstruction. l |
Filtering and Shower ID
. . Deconvolution

 Full automatic reconstruction has yet to be / \ |

demonstrated. Calorimetry
Hit-Finding Flash-Finding ‘

« LArSoft project: art framework + LArTPC ! | particle ID
reconstruction algorithms developed by Disamblguation |
LArIAT MicroBooNE, DUNE, ... ! Event Selection

2D Clustering v ‘ and Classification
\‘{ Flash-Cluster l
e Still... full neutrino reconstruction is still far Association fnergy
from expected performance. Reconstruction
Vertex Properties | Position and Links‘ |
Primary Yes <
Source c lass CNGS nu _"l
Reaction type DIS _’l
Reaction curren t cC LI
Incoming particle nu mu Il
Source Object not set ;’l
: |_| Save ADC on wires I
oK I Cancel I/A




Neutrino PnysICS

Core Physics requires just measuring neutrino flavor and energy. HFadionic
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http://arxiv.org/pdf/1604.01444.pdf
http://arxiv.org/pdf/1604.01444.pdf
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Why Convolutional N | gt .

Networks?

» That means that any oscillation analysis can benefit fror
precise identification of the interaction in two ways:
» Estimating the lepton flavor of the incoming neutrino.
« Correctly identifying the type of neutrino interaction, t
better estimate the neutrino energy, aka is it a quasi
elastic event or a resonance event?

* Qur detectors are also often the perfect domain:
* Large ~uniform volumes where spatially invariant
response is a benefit.
* Usually only one or two detector systems.

t-SNE projection of final features to 2D

However our CNN achieves 73% efficiency and 76% purity on -
Ve selection at the s/vs+ b optimized cut.
Equivalent to 30% more exposure with the old PIDs.
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| earning Representations

« Example: Daya Bay Experiment (Evan Racah, et al)

o Input: 8 x 24 PMT unrolled cylinder. Real Data (no simulation)

e 2 Studies:

Supervised CNN Classifier

e Labels from standard analysis: Prompt/Delayed Inverse Beta Decay,

Muon, Flasher, Other.

e Convolutional Auto-encoder (semi-supervised)

» Clearly separates muon and |IBD delay without any physics knowledge.

» Potentially could have |ID’ed problematic data (e.g. flashers) much earlier.
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Calorimetry with Deep Learning: Particle
Classification, Energy Regression, and Simulation for
High-Energy Physics

Federico Carminati, Gulrukh Khattak, Maurizio Pierini Amir Farbin
CERN Univ. of Texas Arlington
Benjamin Hooberman, Wei Wei, and Matt Zhang Vitéria Barin Pacela
Univ. of Illinois at Urbana-Champaign Univ. of Helsinki

California Institute of Technology

Sofia Vallecorsafac Maria Spiropulu and Jean-Roch Vlimant
Gangneung-Wonju National Univ. California Institute of Technology
Abstract

We present studies of the application of Deep Neural Networks and Convolutional
Neural Networks for the classification, energy regression, and simulation of parti-
cles produced in high-energy particle collisions.We train cell-based Neural Nets
that provide significant improvement in performance for particle classification and
energy regression compared to feature-based Neural Nets and Boosted Decision

Trees, and Generative Adversarial Networks that provide reasonable modeling of
several but not all shower features.




1. e/y Particle Identification (Classification)

® Photon/lepton ID requires factor ~10000 jet rejection
e Jet like photon/lepton classification tasks:
® Task 1: Electrons vs Electromagnetic i+~ (HCAL/ECAL Energy < 0.025)
® Task 2: Photons vs Merging i (2v opening angel < 0.01 rad)
o Comparison:
® Feature based BDT and DNN
® (Cell-based DNN (fully connected).

® Significant Improvement with cell-based DNNss.
0

Y VS. T evs. T
Model acc. AUC Aegy ARpke | ace. AUC A6y  ARpkge
BDT 83.1% 89.8% - 93.8% 98.0% - -

DNN (features) | 82.8% 90.2% 0.9% 0.95 93.6% 98.0% -0.1% 0.95
DNN (cells) 872% 93.5% 9.4% 1.63 9.4% 999% 4.9% 151

Table 1: Performance parameters for BDT and DNN classifiers.

ROC curve for y vs. ©t° classifier ROC curve for e vs. n* classifier
5 1.0] 2 1.0] ~
= = [
3 8
2 0.8 9 0.9
= =
2 5
= 0.61 =
20 o0
wn _ ‘T
Z 0.4 g 0.7
0.21 — DNN (cells) 0.6 — DNN (cells)
DNN (features) ' DNN (features)
0.0 —— BDT 05 — BDT
00 02 04 06 08 1.0 T00 01 02 03 04 05

n® background efficiency n* background efficiency



2. Energy Calibration (Regression)

® Energy resolution improves with energy:.

e 0(E)/ E = aNE ® b/IE ® c.

® g =sampling, b = noise, ¢ = leakage.

o Comparison:

e Simple calibration: Sum energies (no noise) and scale.

® CNN calibration: Cells — Particle energy
® Significant Improvement with CNN

Simple Linear Model
Particle Type a b c
Photons 55.5 1.85 1245
Electrons 42.3 131 1037
Neutral pions 55.3 1.71 1222

Charged pions 442 25 11706
CNN Model
Particle Type a b C

Photons 18.3 0.75 131
Electrons 18.7 0.574 111
Neutral pions 19.3  0.45 231
Charged pions 114  1.02 893

102 -

Energy resolution

»- Linear fit: Photons
%+ Linear fit: Electrons
i+ Linear fit: Neutral Pions

Linear fit: Charged Pions

® CNN: Photons

# CNN: Electrons

m CNN: Neutral Pions
CNN: Charged Pions

100 200 300 400

True Energy (GeV)

500



3. Simulation (Generative Model)

® Physics measurements typically require extremely detailed and precise
simulation,

® Software packages (e.g. Geant4) simulated the well understood micro-
physics governing the interaction of particles with matter.

® Generally very CPU intensive

o Example: ATLAS experiment uses half of the experiment’s computing
resources for simulation.

® Task: CNN GAN conditioned on particle energy
® Accelerate simulation by many orders of magnitude.

e Promising start... but not yet faithfully reproducing all commonly used
features extracted from generated images.

— GAN 030] —— GAN
Geant ozs| ’ Geant

. . 3 . 4.
ECAL 2nd y moment [N_;] ECAL 2nd z moment [N ;]



GANSs for (fast) simulation

Sofia Vallecorsa for the GeantV team

DS@HEP. FNAL. Mav 2017
Preliminary

Some Images

O Slice energy spectrum , l

O Start with photons & electrons i



GAN generated electrons
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LHCb PID Compression

|
O
\

Compressable

10 |
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1 - False Positive Rate

0.2 1

0.0

0.6 1
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- orig AUC 0.978
— 1 AUC 0.960
- 3 AUC0.971
- 6 AUC 0.975
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Simulate

Constantin Weisser, Mike Williams
LHCb / MIT

Recon-

MicrophysicsD I Dstruction
f Standard Path ¢
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Event With encoding ? Features
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https://github.com/weissercn/LHCb_PID_Compression/blob/master/Presentation/
Autoencoder_ MIT_Weisser.pdf



Simulation



Approximating the Likelihood [:.cwwimm.

in Quantum Field Theory

e Physics is all about establishing a very precise “model” of the underlying

phenomena... so we can model our data very well.

Lepton/
Quark 4-vectors

* Enables multi-step ab-initio simulations:

. _ _ Soft QCD: Quark Fragmentation
1. Generation: Standard Model and New Physics are expressed in and Hadronization

language of Quantum Field Theory.

= Feynman Diagrams simplify perturbative prediction of HEP

interactions among the most fundamental particles (leptons, quarks) jarele
2. Hadronization: Quarks turn to jets of particles via Quantum
Chromodynamics (QCD) at energies where theory is too strong to Simulation: Particle
compute perturbatively. Interactions with
= Use semi-empirical models tuned to Data.
3. Simulation: Particles interact with the Detector via stochastic processes Energy

Deposits in Detector

= Use detailed Monte Carlo integration over the “micro-physics”

4. Digitization: Ultimately the energy deposits lead to electronic signals in - Digitizatiogrp?eteclt\cj_r |
the O(100 Million) channels of the detector. esponse and Fiieup Vlixing

= Model using test beam data and calibrations.

Detector Response

* Qutput is fed through same reconstruction as real data.



—1

Standard Model / New Physics
in Quantum Field Theory

Lepton/
Quark 4-vectors

—1

Soft QCD: Quark Fragmentation
and Hadronization

Particle
4-vectors

—1

Simulation: Particle
Interactions with

Energy
Deposits in Detector

1

Digitization: Detector
Response and Pileup Mixing

Detector Response

Simulation

Simulation in HEP is a multi-step process...

Hadronization and Simulation steps are irreversible.
Therefore we cannot formally evaluate the likelihoods.

Rely on Monte Carlo Method to perform Probability
Density Estimation

The simulation step is extremely time consuming...
O(1 hr) / collision... LHC produces 40 million/sec

 ATLAS simulation takes O(50%) of ATLAS resource
* Lager fraction than CMS because of calorimeter

For HL-LHC, NLO and NNLO generation will become
even more relevant... these can be time consuming
too.



Generative Models @ LHC

 Every Experiment is Exploring: ATLAS, CMS, LHCDb, ALICE

Generative models for fast cluster simulation @ALICE

Most computational expensive step in
simulation is the particle propagation
=- avoiding the step using generative

models
Method MSE(mm) speedup
GEANT3 0.085 1
Random (estimated) 166.155 N/A FaSt Calorlmeter S|mU|at|On @ LHCb
GAN-MLP 55.385 104
) RMS E_calo/E_init / <E_calo/E_init>
GAN-LSTM 54.395 104 00030 | =
VAE 37.415 104 * P, = target
T e Sampler
DCGAN 26.18 102 . — n
& noise ¥y = G(x¢e6) ~p(y|x)
CVAE 13.33 10 e
proGAN 0.88 30 o5 ]

0 20 40 60 80 100

Energy resolution

https://indico.cern.ch/event/681549/contributions/2930939/attachments/

1664416/2667649/MachinelLearning_LHC.pdf



Learning Particle Physics by Example:

Location-Aware Generative Adversarial Networks for

Physics Synthesis

Luke de Oliveira®, Michela Pag

“ Lawrence Berkeley National Lab
® Department of Physics, Yale Un

F-mail: 1ukedeoliveira@lbl.

ABSTRACT: W provide a bridg
and simulated physical processe
Adversarial Network (GAN) are
cnergy depositions from particle
the Location- Aware Generative A
from simulated high cnergy partic
span over many orders of magnit
jet mass, n-subjettiness, ete.). W
of image quality and validity of {
a basc for further explorations of

CaloGAN: Simulating 3D High Energy Particle
Showers in Multi-Layer Electromagnetic Calorimeters
with Generative Adversarial Networks

Michela Paganini®®, Luke de Oliveira®, and Benjamin Nachman®

[

Liwrence Berkeley Naliond Loboradory, T Cyclotron Bd, Berkeley, CA. 42720, USA
" Department of Phusies, Yale University, New Haven, OT 06520, USA

E-nul: michela.pagenini8yale.edu, lukedeoliveira@lbl.gov, bnachman@cern.ch

ARsTRACT: Simulation is a kev component of physics analysis in particle physics and nuclear physics.
The most computationally expensive siimulation step is the detailed modeling of particle showers inside
calorimeters. Full detector simulations are too slow to meet the growing demands resulting from large
quantities of data; current fast simulations are nat precise enough to serve the entire physics program.
Therefore, we mtroduce CALOGAN, a new fast siinulation based on generalive adversarial neural
networks ((GANs). We apply the CALOGAN to model electromagnetic showers in a longitudinally
sepmented calorimeter. This represents a significant stepping stone toward a full neural network-hased
detector simulation that could save significant computing time and enable many analyses now and
in the future. In particular, the CALOGAN achieves speedup factors comparable to or better than
existing fast sunulation technigues on CPU (100x-1000x) and even faster on GPU (up tu ~ 109x))
and has the capability of faithfully repreducing many aspects of key shower shape variables for & variety

ol particle types.

https://arxiv.org/pdf/1701.05927 . pdf

https://arxiv.org/pdf/1705.02355.pdf



https://arxiv.org/pdf/1701.05927.pdf
https://arxiv.org/pdf/1705.02355.pdf
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Timing

M. Paganini et al., 1705.02355

Generation Method | Hardware | Batch Size | milliseconds/shower
GEANT4 CPU N/A
T
CPU 10 5.11
128 2.19
1024 2.03
CALOGAN 7 A
4 3.68
GPU 128 0.021
512 0.014
1024 0.012 €—




Analysis



HEP Searches
(SUSY Example)



SUSY at LHC

10 150 X 250 500 350 400 450 500




Inclusive Signatures

Signature

Motivating Model(s)

Comments

| Jet + 0 Lepton + MET

* Large Extra Dim (ExoGraviton)
e strong qG production, G propagate in extra Dim
* Planck Scale is MD in 4+0 dim
e Normal Gravity >> R

e SUSY

e qg—ISR + 2 Neutralino or squark + Neutralino

* Not primary discovery
channel for SUGRA, GMSB,
AMSB... but helps in
characterization

* Possible leading discovery
for neutralino NLSP with
nearly degenerate gluino

2,3,4 [b]-Jet + O Lepton
+ MET

e Squark/gluino production
* squark—q+LSP, gluino— q+squark+LSP

e Possible leading squark/
gluino discovery channel

e Must manage QCD bkg

2,3,4 [b]-Jet + | Lepton
+ MET

e squark/gluino production with cascades which include electroweak
(or partner) decays
* high tan B leads to more b/t/T’s

* Lepton requirement
suppresses QCD
* T’s partially covered by e/

2 lepton + MET

e Same sign: gluino cascade can have either sign lepton... squark/gluino
prod can produce same sign.

e Opposite sign: squark/gluino decay mediated by Z (or partner)

e Same flavor: 2 leptons from same sparticle cascade must be same
flavor

e Reduced SM backgrounds
for same sign

e Opposite Sign-Flavor
Subtraction

3 lepton + MET

e SUSY events ending in Chargino/neutralino pair decays
* Weak Chargino/Neutralino production
 Exotic sources

e Low SM bkgs

2 photon + MET

e GMSB models with gravitino LSP and neutralino or stau NLSP
* UED- each KK partons cascade to LKP which decays to graviton + Y

* No SUSY limit (not
sensitive at the time)




O Lepton Event Selections

No leptons (medium electrons and muons) >10 GeV

4 signal regions defined to maximize Msquark-Mgluino

coverage :

At least 2 Jets

® | ow mass squark anti-squark (A)

® High mass squark anti-squark (B)

At least 3 Jets

® Direct gluino pairs (C)

® Associated gluino-squark (D)

® Higher x-section — Tighter cuts!

e = > PP + BRI

i—1

(pT ’ pT ’ pT)

min
qT qT _EITIl"a"s

A B C D
5 Number of required jots 2 2 =3 >3
E Leading jor pp [GeV] = 120 = 120 = 1200 = 120
f Other jet{s) pr [GeV = A0 = 10 10 = A0
X l. .-m.:* GoVo = 100 = 100 = 1000 = 100
2 Ad(jet, ) w04 »04 »04 =04
B 03 — 025 %025
2 e [GoV] =500 - > 500 > 1000
E mepa [GeV — > 300 - —

{max (”?T (pT , q‘”), mr (p{Tj}, ﬂfj))}

H’lT (p(f) (1) 2|p(f)||q(l)| . 2p(1) )

(1)
T



Standard SUSY Anal

e Require:
e Large Et (> 100 GeV) : N
* 4 Hard Jets U O O O O =
+ Sphericity? iro=gi. i AERRRRREEE
* Look at: Mur= S pr + £r  [UMRACCAR Y RN
for N=0,1,2 (SS/OS) leptons IR i B R

vent

SES
2Same Sign

: SY (B)
1 : = = = = Sum of all BG
3. LePtOns .............. Sp— T —— e tbaredets [
: : : : : : Do

w

100 200 300 400 500 600 800 900 1000
e

oo fooooot o OO SO ¢ TRty o ¥y oot ¥ O s ¥ ¥ 3 I ¢ 7 ¢ e

b e =

""""""""""""" 50010001500 2000 2500 300035004000 OAddlng Leptons reduces

7 s o o e QCD Background
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Razor variables

e Razor variables (C. Rogan arXiv:1006.2727) are kinematical variables to identify SUSY-like events

e Variables take advantage of symmetric decay of SUSY events by forming two hemispheres (aka
mega-jets) using all final state visible objects

q G—gX

LAB FRAME

e define variables that take advantage of the symmetry of the SUSY event:

BOOST

4

v

R-FRAME

rough-approximation frame
CM of two heavy produced
particles same as rest frame
of individual heavy particles

YrM R contains longitudinal event information, related to the SUSY mass scale
MR contains transverse event information
R = MmR/yrMr a signal-to-background discriminant
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The Ist ATLAS SUSY paper

MSUGRA/CMSSM: tanfi = 3, A = 0. u=0
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* heavy colored particles production fully benefits
from the LHC energy

if SUSY: gluinos & squarks

surpassed Tevatron with only 0.035 fb-!

one of the top-cited LHC papers



ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 26, 2013)

MSUGRA/CMSSM : 0 lep +j's + E s
MSUGRA/CMSSM : 1 lep +j's + E e
Pheno model : O lep +j's + E g (m@) <2 TeV, Ilghtx ) ATLAS
Pheno model : O lep +j's + E s ass (m@<2Tev, Ilghtx ) Preliminary
Gluino med. %" (§—a@y’) : 1 lep + j's +E gmass  (m@)<200GeV,m’) %m(’i )+m(@))

GMSB (I NLSP) : 2 lep (OS) +j's + E; .o gmass (tanp<15)
GMSB (t LSP) 121 + j 's + ET oo | L2077 8 Tev 1210.1314] 1.40Tev. g Mass (tang > 18)
GGM (bino NLSP) :yy + E gmass  (m()>50GeV)

GGM (wino NLSP) :y + lep + E;::SS § mass det =(4.4-20.7) fb"
GGM (higgsino-bino NLSP) 1y +b +E m gmass  (m)>220 GeV) (s=7 8TeV
GGM (higgsino NLSP) : Z + jets + E 1 e 9 mass  (m(H) > 200 GeV) S=1 e
Gravitino LSP : monolet' +E 7 iss F ' scale (m(G) > 10" eV)
g mass m(>z <200 GeV)
T miss | L=207 fb”, 8 TeV [ATLAS-CONF-2013-007] 900GeV. g mMass (any m(;( 8 TeV, all 2012 data

- 0 lep + multl-j s+E gmass (m@ )<3oo GeV)
XL. T,miss ~
g mass (m(;“( ) <200 GeV)

T,miss

Inclusive searches

T,miss

.Qﬁt.tx :0lep+3bjs +E; ~
BB, B.—by’ 1 0lep + 2-b-jets + £ . bmass (@) <120 Gev)
bb b —>t')“(+ 2 éS -lep + (0-3b-)j's + E ., [£=2071b" 8 TeV [ATLAS-CONF-2013-007] " 430Gev. b mass (mk) 2m(>2
tt (Ilght) t—>12§z: 172 lep (+ b-jet) + E; tmass  (m@)=55Gev)
T (medlum) t—>bx1 ~1 lep + b-jet + E Tmiss | =207 6", 8 TeV [ATLAS-CONF-2013-037] 160-410Gev  t mass (m&?) =0 GeV, m(x;) = 150 GeV)
T (medlum),t—>bx :2lep + ET miss | L=13.0 1", 8 TeV [ATLAS-CONF-2012-167] NiEoaaeEeW t mass (m(;z =0 GeV, m(t )-m(x) = 10 GeV)
T (heavy) t—>tX0 1 Iep + b-jet+ E L=20.7 fb™, 8 TeV [ATLAS-CONF-2013-037] 200-610Gev  t mass (m(;“(
Tt (heavy), T—t7°:0 Iép + 6(2b-)jets + E . . |L=20.5b", 8 TeV [ATLAS-CONF-2013-024] 320-660Gev t mass m(f(
1t (natural GMSB) Z(—ll) + b-jet + E L=20.7 fb", 8 TeV [ATLAS-CONF-2013-025] 500Gev t mass (m(x;) > 150 GeV)
(X3 t,—t +Z Z(—>|I) +1 Iep + b-jet + E Fmiss. | 207 fb™, 8 TeV [ATLAS-CONF-2013-025] » 520 GeV t mass (m(ﬂ) =m(>2‘1’) +180 GeV)

----------- 22 LT |—>fX‘ :2lep+E L=4.7 fb", 7 TeV [1208.2884] [gsHescev! | mass m()Z
')242(4, % +—>Iv(|v} 2lep+E L=4.7 fb™, 7 TeV [1208.2884] . 110-340 GeV X mass m(;} ) <10 GeV, m(i, jz.-m(;‘( +m(>2 ))
Ay Ko Xy 2TV (tv) 12T+ E, | |L=207 1" 8 Tev [ATLAS-CONF-2013-028] 180-330 GeV x mass (m(z) <10 GeV, m(‘ 2 (M) + m(;z
TR | vl |(VV1) |V| I(Vv) :3lep + E o |L=207 " 8 Tev [ATLAS-CONF-2013-035] 600 GeV. . mass m()z =m@), m@;) =0, m(Iv)as above)
}?5{ =W *X Z(* 320 : ' | =207 b", 8 TeV [ATLAS-CONF-2013-035] 315 GeV X mass mex) = m& mG( ) 0, sleptons decoupled)
: long- I|ved X X mass (1 <)) <10ns)
Stable § g, R- hadrons low B, [3y g mass
GMSB, stableT : low p v Tmass <tan[5 <20)
GMSB, X —>yG non- pomtlng photons X, mass (0.4 <(7.) )<2ns)
q mass (1 mm<crt<1m,gdecoupled)
LFV : pp—>v +X,V_ —e+u resonance vV.Mmass  (i,=0.10,2,,=0.05)
LFV : pp—v_ +X,v,—e(u)+t resonance V. Mmass (i, =0.10,4,,=0.05)
Blllnear RPV CMSSM 1lep +7j's + Er s g=gmass (g, <1 mm)
x Yo X —>W%§1 —eev euv_:4 lep + E L=20.7 fb", 8 TeV [ATLAS-CONF-2013-036] 760 GeV x mass (m(Z)) > 300 GeV, ., >0)

~1+~ T,miss

Ao e X —>1:1:V erv 13 Iep +1t+E T miss L=20.7 fb", 8 TeV [ATLAS-CONF-2013-036] 350GeV| . mass (m()Z ) >80 GeV, A, >0)

9— qqq 3-Jet resonance pair g mass
—it, T—bs : 2 SS-lep + (0-3b-)j's + E _ L=20.7 fb”, 8 TeV [ATLAS-CONF-2013-007] 880 GeV mass  (any m()
j miss-
Scalar %uon 2- jet resonance palr L=4.6 fb™, 7 TeV [1210.4826] [Ho02876ev sgluon mass  (incl. limit from 1110.2693)

WIMP interaction ( irac ) : ‘monojet' + £ _ _— M* Srtale (m,, <80 GeV, limit of < 687 GeV for D8) |
’ | | L 1 1 11 | | | L1 | | | I I |

T,miss

3rd gen. squarks
direct production

T,miss

T,miss

10" 1 10

*Only a selection of the available mass limits on new states or phenomena shown. Mass scale [TeV]
All limits quoted are observed minus 1o theoretical signal cross section uncertainty.

Higgs is at 125 GeV and no sign of new physics at LHC — Nature is not “natural’?




Data Analysis

Objectives:
 Searches (hypothesis testing): Likelihood Ratio Test (Neyman-Pearson lemma)

* Limits (confidence intervals): Also based on Likelihood P(z|H;)
P(z|Ho)

> ko

e Measurements: Maximum Likelihood Estimate

Likelihood

n

p({x}|0) = Pois(n|v(9)) | [ p(z.|0)

e=1

 nlIndependent Events (e) with Identically Distributed Observables ({x})

e Significant part of Data Analysis is approximating the likelihood as best as we
can.

Likelihood is estimated via Monte Carlo sampling using highly faithful Simulation



| ikelihood Approximations

Need F({xe}|0) of an observed event (e). The better we do, the more sensitive our measurements.
Monte Carlo can only be done in the forward mode because of Hadronization and Simulation
= cannot evaluate the likelihood.
So we simulate a lot of events and use a Probability Density Estimator (PDE), e.g. a histogram.
* {xe} = {100M Detector Channels} or even { particle 4-vectors } are too high dimension.
* |nstead we derive {xe} = { small set of physics motivated observables }| = Lose information.
» [Isolate signal dominating regions of {xe} = Lose Efficiency.
e Sometimes use classifiers to further reduce dimensionality and improve significance
* Profile the likelihood in 1 or 2 (ideally uncorrelated) observables.
Alternative, try to brute force calculate via Matrix Element Method.

P(p"**la) = = [ d®dxydxs| M, (p)|*W (p, p***)

But it's technically difficult, computahonally expensive, mistreats hadronization, and avoids
simulation by highly simplifying the detector response.
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LIKELIHOOD-BASED COMBINATIONS

fiot (Dsim, G| at) = H Pois(n.|v.(a)) H fe(Teela) | - H folaplay)

cEchannels e=1 pPES




Collaborative Statistical Modeling
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DEEP LEARNING IN HEP e
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Opening the black box of neural nets:
case studies in stop/top discrimination

Thomas Roxlo and Matthew Reece
Department of Physics, Harvard University, Cambridge, MA, 02138

April 26,2018

Abstract

We introduce techniques for exploring the functionality of a neural network and extracting
simple, human-readable approximations to its performance. By performing gradient ascent on
the input space of the network, we are able to produce large populations of artificial events
which strongly excite a given classifier. By studying the populations of these events, we then
directly produce what are essentially contour maps of the network’s classification function.
Combined with a suite of tools for identifying the input dimensions deemed most important
by the network, we can utilize these maps to efficiently interpret the dominant criteria by which
the network makes its classification.

As a test case, we study networks trained to discriminate supersymmetric stop production
in the dilepton channel from Standard Model backgrounds. In the case of a heavy stop de-
cagfing to a light neutralino, we find individual neurons with large mutual information with
ngz, a human-designed variable for optimizing the analysis. The network selects events with
significant missing pr oriented azimuthally away from both leptons, efficiently rejecting tt
background. In the case of a light stop with three-body decays to Wb and little phase space,
we find neurons that smoothly interpolate between a similar top-rejection strategy and an ISR-
tagging strategy allowing for more missing momentum. We also find that a neural network
trained on a stealth stop parameter point learns novel angular correlations.

https://arxiv.org/abs/1804.09278
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https://arxiv.org/abs/1804.09278

Observations

Given sufficient training data
e DNNs learn features
e Provide maximal signal vs background separation.
In principle, no need for extended feature studies and optimization.

In practice, gains wrt existing analyses (e.g. using BDTs) often not observed or
negligible.

* My guess: signal train sample size.
Small data sets
e Transfer learning

o Better architectures



Proposal



Goal

Develop techniques to find New Physics (a.k.a. Beyond Standard Model) without
specifying the New Physics at LHC, HL-LHC, HE-LHGC, ...

Address problems of
e insufficient data for training.
e consistency between analyses / experiments.
Setting up the problems enables us to also tackle auxiliary problems
* Fast Physics Generator Model
Proposal: factorize problem into
e Physics: kinematics

e Detector: systematics (beyond scope here?)



Problem Formulation: Data

e Dataset (Monte Carlo Simulation):
e Large samples of “background” processes.
e Signal to background in real data is 1 in 1011,
e Easily reduced a few orders of magnitude, but generally background >> signal.
e Signal processes
* Potentially N “free” physics model parameters, e.g. mass of new particle
o 2 strategies:
* One/Few processes: techniques that only look for deviation from Standard Model.
* Many processes: techniques that attempt to learn features.
e |Levels of realism:
e Generator: 4-vectors, perfect resolution, quarks not jets, all particles “observed”.
e Hadronized: turn quarks to jets + apply jet alg. Perfect resolution...
e Simulated: “smear” 4-vector quantities to sim
e Input:

e “Raw”: 3-vectors separated by particle type (electron, photon, muon, jet, b-jet, tau) + Missing Energy (2-
vector)

* “Features”: physics motivated functions of 3-vectors. e.g. M_T, M_eff, M_T2, Razor, ...

* Note, these are variable length.



Problem Formulation

e Supervised Classification: We simulate the data, so we have perfect labels (physics process)
e Baseline: the best an anomaly detection can do ...
* Helps in learning features ...
* Unsupervised Classification (clustering):
e Test if clusters ~ physics processes ... “e.g. recognizes SUSY though never told about SUSY”
e Qut of cluster = Anomaly
* Anomaly Detection:
* never-before-seen process can be detected.
e 2 proposed paths to compare:
e Raw — Learned Features — Clustering/Anomaly Detection

e Raw — Clustering/Anomaly Detection
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Generative Architecture

- Basically a Variational Auto-encoder

* Also enables unsupervised feature learning
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Clustering & Anomaly
Detection

* In both raw (4-vector) and Event Representation space.
e A variety of possible techniques:

e k-means, ...

e self-similarity test

e self organizing maps
* Challenge here is computational

e Most anomaly detect / clustering algs scale poorly.

* N = Billions



DL Software and
Technical Challenges



Basic DL Workflow

Prepare data- 80% of the work...

Build Model

Define Cost/Loss Function

Run training (most commonly Gradient Decent)
Assess performance.

Run lots of experiments...



numpy, [heano, Keras

 Numpy
* Provides a tensor representation.
» It's interface has been adopted by everyone.
* e.g. HDF5, Then, TensorFlow, ... all have their own tensors.
* You can use other tensors, for the most part interchangeably with numpy.
* Provides extensive library of tensor operations.
« D=A*B + C, immediately computes the product of A and B matrices, and then computes the sum with C.
e Theano (TensorFlow)
* Allows you write tensor expressions symbolically.
« A*B + Cis an expression.
« Compiles the expression into fast executing code on CPU/GPU: F(A,B,C)
* You apply the Compiled function to data get at a result.
« D=F(A,B,C)
» Keras
* Neutral Networks can be written as a Tensor mathematical expression.

» Keras writes the expression for you.



DNN Software

e Common features of modern DL Frameworks:

* Everything build by building mathematical expression for Model, Loss, Training from
primitive ops on Tensors

* Auto-differentiation: Symbolic derivatives for the Gradient Decent
» 2 Classes of DNN Software:

* Hep-Framework-Like: e.g. PyTorch, Torch, Caffe, ...

 C++ Layers (i.e. Algorithms) steered/configured via interpreted script. ( RelU J
* Allows dynamic network construction...
Add )
» Faster Research Workflow iteration.
« General Computation Frameworks: Theano and TensorFlow [MatMuI]

» Builds Directed Acyclic Graph of the computation, performs optimizations

» High-level tools make this look like HEP Frameworks (e.g. pylearn2, Lasagna, Keras,

)

* Optimizes for Production Workflow

* In practice performance is almost identical because majority of time spent in GPU
computation which use same libraries.

* Convergence:
* PyTorch: Mode

* TensorFlow: Eager Mode



Technical Challenges

e Jypically in HEP:

Datasets are too large to fit in memory.

Data comes as many files, each containing O(1000) events, organized into directories
by particle type.

Potentially O(10000) processes ~ classes... hard to book-keep.

For training, data needs to be read, mixed, “labeled”, possibly augmented, and
normalized.... can be time consuming.

« Very difficult to keep the GPU fed with data. GPU utilization often < 10%, rarely > 50%.

e Solutions:

Keras python multi-process generator mechanism has limitations...

PyTorch and TensorFlow very recently added parallel ETL (Extract, Transform, Load)
pipelines

o While significantly simplifiled, still can require custom code and hand tuning.

e Performance sub-par.



“Sample Specification”:

[ [ File [Dataset keys] Label Rate],
[ File [Dataset keys] Label Rate],

]

Filler
Process

Filler

¢ Reads a “Sample
Specification”

e Opens files.

e Applies filter.

¢ Not parallel so
not ideal.

e But typically fast
because on
simple quantities
in smaller tensor
in file.

e For each batch:

e Determines how
many events to
read from each
file.

e (enerates a “Batch

Specification”

—
—
“Batch
specification”:
e [oreach
class: a list of
File by index
and Indices O
to read from D)
file. )]
2| —
Readers:

Data Providers

Share Memory

Reference
Reader >
Shared
Process™ vemary | — |
Reader — >
are
ProcessT™ vemory | =
®
®
®
Reader
- Shared
Process ‘Memory
Shared
Memory:

e Fetch Data From files.

e |abel and shuffle.

e Apply a process function

e May produce completely
different tensors.

e (Caches File handles

)

\

» Store Tensors

e Shape known
until first
batch comes

through

( QueD@\

Generator

Model

Model

Generator

Model

Generator

Generator:

e Pull Share Memory Reference
from Queue.

e (Gets tensor from Shared

Memory (no copy)

Applies a “delivery function”,

building the data structure

expected by DL framework.

Delivers batch to model.

Processing happens on First Epoch Only!

Data Cached into file during first epoch.

e All of the processing only needs to be done
once.

Automatically use another instance of data

providers to read cache file for all other epochs.

Note that for now, we have both train and test data

providers... better use of resources if we merge.
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* Hyper-parameter scan/optimization
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e T e e T e Supervised model training on any task on large dataset.

* Repurpose model for another task
* Fine-tune on small dataset

* Need to break model into graphs (modules) that can be repurposed
and combined

« Communicated Models between Data Science and Production Teams

* TensorFlowHub is an attempt to address these issues

Io [7): # Compare Nurbér of Lpzeha each model ran ronly 1ast run)
F_olLMalalala(H¥Modals. | Epochs 1)



ML2.07

How do these fit together?

Combine many of these ideas:
Large model, but sparsely activated
Single model to solve many tasks (100s to 1Ms)
Dynamically learn and grow pathways through large model
Hardware specialized for ML supercomputing
ML for efficient mapping onto this hardware

Outputs

Single large
model,
sparsely
activated

Tasks

Slide from Kyle Cranmer
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Future



DL Based Reco

* Immediate uses:
e “Imaging” detectors likely path:
1. Improved classification/regression with Convolutional NNs.
2. Fast Showers with Generative models.
3. Feature (particle) extraction with Regional NN and semantic segmentation.
4. Full event classification
» Recurrent networks
e Reinforcement training... turn reconstruction into a board game.
* Help with detector optimization:
» DL provides easily obtainable, consistent, and probably optimal metrics.
e Just simulate... no need to build reco tuned to every possibility.

» Understand the fundamental limits but turning on physics / detector effects one by one in
simulation.



NEXT Detector Optimization

* |dea 1: use DNNs to optimize detector.

 Simulate data at different resolutions

* Use DNN to quickly/easily assess best performance for given resolution.
Analysis Signal eff. (%) B.G. accepted (%)

DNN analysis (2 x 2 x 2 voxels) 86.2 4.7
Conventional analysis (2 x 2 x 2 voxels) 86.2 7.6
DNN analysis (10 x 10 x 5 voxels) 76.6 9.4
Conventional analysis (10 x 10 x 5 voxels) 76.6 11.0

* |dea 2: systematically study the relative importance of various physics/detector effects.

« Start with simplified simulation. Use DNN to assess performance.

e Turn on effects one-by-one.

2x2x2 voxels

Run description

Avg. accuracy (%)

Toy MC, ideal 99.8
Toy MC, realistic Ov 3/ distribution 98.9
Xe box GEANT4, no secondaries, no E-fluctuations 98.3
Xe box GEANT4, no secondaries, no E-fluctuations, no brem. 98.3
Toy MC, realistic Ov33 distribution, double multiple scattering 97.8
Xe box GEANT4, no secondaries 94.6
Xe box GEANT4, no E-fluctuations 93.0
Xe box, no brem. 92.4
Xe box, all physics 92.1
NEXT-100 GEANT4 91.6
10x10x5 voxels
NEXT-100 GEANT4 84.5
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DNN+HEP Software Needs (1/4)

1. Inference in HEP Frameworks:
* Need optimized and validated inference implementation.
* This problem is mostly addressed...
* ATLAS: Lightweight DNN Inference Framework
 CMS: TensorFlow integration into CMS-SW
 DNN weights can be Gigabytes, likely need
« Condition DB-like systems storage.
* Memory sharing between processes/threads.
* | canimagine a DL service similar to ATLAS APE GPU service:
* Processes are client of server(s) that talk to backends/accelerators.

* No reason for every experiment to reinvent the wheel here...



DNN+HEP Software Needs (2/4)

2. Training systems:
* Training DNNSs efficiently generally requires GPUs (or other future accelerators).
* Hyper-parameter scans / optimization critical part of DNN development workflow.
* Great use of GPUs on HPCs.

* Google and other clouds specifically target DL.

Today’s training samples can already be 10s of Terabytes, requiring massive parallelism.

e Data Parallelism: Bottlenecked by gradient syncing between GPUs or systems. Lots of Engineering in
Industry already. And some HEP solutions...

» Model Parallelism: Less sync’ing but only makes sense for large enough model.

* No more embarrassingly parallel. Must provision large number of machines.

As DNNs become essential, training them becomes part of software releases, simulation, reco,... cycle.

* New simulation/reco can require regenerating large training sets (various conditions) and running long
training before using reco.

* Somewhat analogous to calibration on express streams.

| can imagine Workflow and Data Management systems designed for DL training workflows on any available
resource.



Parallelism

1. Tensor operation parallelism:
GPUs, FPGA, and ASICs
(Google’s Tensor Processing Unit).

e Note additional HN, Data,
Model parallelism with multi-

3. Data Parallelism:

Each GPU or II II

Node computes

gradient on sub- :II :II
set ofldata. II II :II
Syncl’mg Model HP; :II
gradlents Model HPz:II
bottlenecked by s HP3:||
bus or network. Vool HPs

4. Model Parallelism: Large model spread
over many GPUs or nodes. Less network
traffic but only efficient for large models.

2. Hyper-parameter scan: II
simultaneously train
multiple models. e.g. 1
model per GPU or node. II
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DNN+HEP Software Needs (3/4)

3. Training Datasets...
* DL generally requires huge independent simulated training samples.

* But HEP Experimental data is private, making collaboration and rapid publication
difficult.

* Reconstruction DNNs will likely require Geant4. (i.e. CPU intensive)

* Collaboration with Machine Learning experts and among experiments require public data
sets.

* Publicly available simulation and reconstruction (for base-line).
* Some are now available...
* Need to store and distribute large data-sets to public.

* CERN Open Data?”



DNN+HEP Software Needs (4/4)

4. Event Processing within Deep Learning Frameworks
« DL will potentially become integral to our software and trigger
* We may replace code with weights.
* DL integrated into HEP frameworks. Not just an external. (example next slide)
* Many-core/FPGA/neuro-morphic accelerators may prolong Moore’s law
* Experiments like DUNE will run for 30 years and must keep up with emerging tech.

* Frameworks must [automatically] optimize and place computations on a variety of rapidly evolving
hardware and software.

* May need to distribute processing of individual events across cluster (like HEP trigger)
e Use network hardware for primitive operations during transfers.
» Partially process on specialized machines (specific accelerators, HPC, massive memory, ...)

* |Industry will highly optimize DL systems and provide services around them.



Weaving-in DNN Reco

*

Feature List = {Hity, Hit, ...} Raw Data .
From Alg

Sub-detector 1 Sub-detector 2
Feature Extraction Feature Extraction
DNN Alg

Feature/List Fegture Map Feature LAst Ferture Map

Pattern Recognition DNN Pattern Pattern Recognition DNN Pattern
Alg 1 Recognition 1 Alg 2 Recognition 2

Fitting Alg 1 Fitting Alg 2

Simultaneously
Train All DNNs

Combined DNN Combined

Reconstruction Alg Reconstruction




R&D Proposal

e Premise: We need new frameworks to take advantage of DL and emerging architectures.
= Build HEP Framework on top of a DL Framework.
* |f we envision new frameworks need to do R&D now, ver 1.0 by 2020, deployed by 2025.
 R&D Proposal (can we do traditional HEP Reco in DL Framework?):
» Build HEP Reco on top of Google’s OpenSource TensorFlow
« (General computation system, based on Directed Acyclic Graphs.
« Framework for Automatic optimizations (like Theano), though currently primitive.
e Supports all architectures and distributes computation across GPUs and clusters.
e Build a HEP Framework in python (like Keras) with C++ wrapped in TF ops.
e 3 project ideas:
e First steps of LArTPC reco: deconvolution, hit finding, ...
e Online Sparsification and compression of LArTPC data for protoDUNEs.

 ATLAS GPU Trigger Demonstrator: Wrap the existing GPU/CPU kernels in TensorFlow Ops.



Science Fiction?”

* Imagine in next 10 years DNN lives up to the hype...

* We've proven DNNs gets us better, faster, easier
software... and hardware.

* Industry investment in DNNs has yielded significant

gain over Moore’s Law

e Custom DL/neuromorphic chips and HPCs
* Software Frameworks

* Cloud Services

e Consultants:

e Data Scientists: DL reduces need for domain-
specific expertise (e.g. in biology now).

* Data Engineers: low level optimization,
deployment, operation...

e Actually, all of these already exist!

Large portions of HEP code replaced by deep
neutral network architecture and weights.

 HEP Software Frameworks built on top of DL
Frameworks.

e Jo DL systems, our computing looks like
everyone else’s... e.q. other sciences.

Optimization, deployment, operations handled by
professional Data Engineers.

Trigger implemented in custom inference
systems built from heterogeneous commodity
hardware.

Computation performed on DL Clouds and
scientific HPCs.

DNNs designed and trained in collaboration with
professional Data Scientists.

HEP PhDs trained/funded by industry to apply DL
to HEP and then transition to industry.



~inal Thoughts

* Deep Learning can change how science is done.

Improve performance. Save time and money.

Mitigate stalling of Moore’s law.

Use most recent hardware.

Allow scientists to focus on concepts rather than implementation.

* Qver past few years the utility and feasibility of applying DL to solve HEP problems has be established in
many areas...

* Adding realism and moving into production is the next challenge.
* We can't forget that DL can complicated things:
* Systematics. Data/MC agreement.
* (GGenerate large independent training and calibration samples.
 New complicated “release”, production, and analysis cycles/work-flows.

* |f we want to be ready for the DL revolution in 10 years, we need to do R&D now.



Jet Physics with Deep
_earning
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JET SUBSTRUCTURE

Many scenarios for physics Beyond the Standard Model

include highly boosted W, Z, H bosons or top quarks

Low top pr High top pt

q
W _
g W boost .
t _
b
b

|dentitying these rests on subtle substructure inside jets

e an enormous number of theoretical effort in developing
observables and techniques to tag jets like this

b - /l_;// 0 vt. Rii
N = Y=\t
"\ mass drop ilter f‘.




T
Goal: Find W jets in}
an enormous sea of =
generic g/g jets

x4

W bosons are naturally boosted if they result
from the decay of something even heavier

V Searching for new particles

decaying into boosted W
2 bosons requires looking at the
" radiation pattern inside jets

like a digital image!




the Jet Image

J. Cogan et al. JHEP 02 (2015) 118
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Pre-processing & spacetime symmetries

One of the first typical steps is pre-processing

Can help to learn faster & smarter; but must be careful!
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Why images?

W - qq

there is information encoded in the
physical distance between pixels




Modern Deep NN'’s for Classification
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Exciting New Directions

So far only scratches the surface
...this is a very active field of research!
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Oliveira, et. al arXiv:1511.05190

D E E P I_ E A R N | N G V S . T H E O RY Whiteson, et al arXiv:1603.09349

While the DNN shows a significant improvement with
respect to the jet mass combined with single theory
inspired variable (eg. 21, D3), only a small improvement with
respect to a BDT using several theory-inspired variables

Other Problems: S 10—
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information 10k

e theory inspired variables work on _
set of 4-vectors & have 1

oo by by b by N
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important theoretical properties Signal efficiency



FROM IMAGES TO SENTENCES

Recursive Neural Networks showing great performance tor

Natural Language Processing tasks

e neural network’s topology given by parsing of sentence!
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Parsing sentences is RB RB JJR NN

so much more fun than

VBG
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QCD-INSPIRED RECURSIVE NEURAL NETWORKS

(arXiv:1702.00748)
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QCD-INSPIRED RECURSIVE NEURAL NETWORKS
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down-sampling by
projecting into images
looses information

RNN needs much less
data to train!



Neural Message Passing for Jet Physics
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Abstract

Supervised learning has incredible potential for particle physics, and one appli-
cation that has received a great deal of attention involves collimated sprays of
particles called jets. Recent progress for jet physics has leveraged machine learning
techniques based on computer vision and natural language processing. In this work,
we consider message passing on a graph where the nodes are the particles in a
jet. We design variants of a message-passing neural network (MPNN); (1) with a
learnable adjacency matrix, (2) with a learnable symmetric adjacency matrix, and
(3) with a set2set aggregated hidden state and MPNN with an identity adjacency
matrix. We compare these against the previously proposed recursive neural network
with a fixed tree structure and show that the MPNN with a learnable adjacency
matrix and two message-passing iterations outperforms all the others.



Table 1: Summary of classification performance for several approaches.

Network Iterations ROC AUC Re.—_509
RecNN-£; (without gating) [10] 1 0.9185 £ 0.0006 68.3 + 1.8
RecNN-£; (with gating) [10] | 0.9195 + 0.0009 74.3 + 2.4
RecNN-desc-pr (without gating) [10] 1 0.9189 4 0.0009 70.4 + 3.6
RecNN-desc-pr (with gating) [10] 1 0.9212 + 0.0005 83.3 + 3.1
RelNet 1 0.9161 £0.0029 67.69 £ 6.80
MPNN (directed) 1 0.9196 £0.0015 89.35 £ 3.54
MPNN (directed) 2 0.9223 £0.0008 98.26 + 4.28
MPNN (directed) 3 0.9188 4+ 0.0031  85.93 + 8.50
MPNN (undirected) 1 0.9193 £ 0.0015 86.41 4 3.80
MPNN (undirected) 2 0.8949 4+ 0.1004 97.27 +£5.02
MPNN (undirected) 3 0.9185 £ 0.0036  84.53 4 8.64
MPNN (set, directed) 1 0.9189 £ 0.0017  88.23 +=4.53
MPNN (set, directed) 2 0.9191 £0.0046 87.46 £ 14.14
MPNN (set, directed) 3 0.9176 £0.0049 88.33 +£9.84
MPNN (set, undirected) 1 0.9196 £ 0.0014  85.65 + 4.48
MPNN (set, undirected) 2 0.9220 £ 0.0007 94.70 £ 2.95
MPNN (set, undirected) 3 0.9158 £ 0.0054 75.94 4+ 12.54
MPNN (1d) 1 0.9169 4+ 0.0013  74.75 & 2.65
MPNN (1d) 2 0.9162 £0.0020 74.41 £ 3.50
MPNN (1d) 3 0.9158 £0.0029  74.51 £ 5.20




