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Introduction
• Utility of DL to HEP has been established in a variety of 

areas.


• This talk is not a comprehensive summary of all Deep 
Learning in HEP.


• Focus on next challenge: transition from feasibility to 
production


• Attempt to speculate about the future…


• Disclaimer: I have a potential Conflict of Interest…



Menu
• Deep Learning


• DL in HEP


• 3 Areas:


• Reconstruction / Trigger


• Simulation


• Analysis


• Proposal


• Software and Technical Challenges


• DL+HEP Software Needs


• Future


• Science Fiction…



Deep Learning



Artificial Neural Networks
• Biologically inspired computation, (first attempts in 1943) 

• Probabilistic Inference: e.g. signal vs background 

• Universal Computation Theorem (1989) 

• Multi-layer (Deep) Neutral Networks: 

• Not a new idea (1965), just impractical to train. Vanishing 
Gradient problem (1991) 

• Solutions: 

• New techniques: e.g. better activation or layer-wise training 

• More training: big training datasets and lots of 
computation … big data and GPUs 

• Deep Learning Renaissance. First DNN in HEP (2014). 

• Amazing Feats: Audio/Image/Video recognition, captioning, 
and generation. Text (sentiment) analysis. Language 
Translation. Video game playing agents.   

• Rich field: Variety of architectures, techniques, and 
applications. 

Images from Wikipedia

http://link.springer.com/article/10.1007%2FBF02551274
https://en.wikipedia.org/wiki/Deep_learning#cite_note-ivak1965-25
https://en.wikipedia.org/wiki/Deep_learning#cite_note-HOCH2001-36
https://arxiv.org/abs/1402.4735
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Abstract

Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for
analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis
and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of
deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews
are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal,
musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and
directions for future research.

Keywords: deep learning, convolutional neural networks, medical imaging, survey

1. Introduction

As soon as it was possible to scan and load medi-
cal images into a computer, researchers have built sys-
tems for automated analysis. Initially, from the 1970s
to the 1990s, medical image analysis was done with se-
quential application of low-level pixel processing (edge
and line detector filters, region growing) and mathe-
matical modeling (fitting lines, circles and ellipses) to
construct compound rule-based systems that solved par-
ticular tasks. There is an analogy with expert systems
with many if-then-else statements that were popular in
artificial intelligence in the same period. These ex-
pert systems have been described as GOFAI (good old-
fashioned artificial intelligence) (Haugeland, 1985) and
were often brittle; similar to rule-based image process-
ing systems.

At the end of the 1990s, supervised techniques, where
training data is used to develop a system, were becom-
ing increasingly popular in medical image analysis. Ex-
amples include active shape models (for segmentation),
atlas methods (where the atlases that are fit to new data
form the training data), and the concept of feature ex-
traction and use of statistical classifiers (for computer-
aided detection and diagnosis). This pattern recogni-
tion or machine learning approach is still very popular

and forms the basis of many successful commercially
available medical image analysis systems. Thus, we
have seen a shift from systems that are completely de-
signed by humans to systems that are trained by com-
puters using example data from which feature vectors
are extracted. Computer algorithms determine the opti-
mal decision boundary in the high-dimensional feature
space. A crucial step in the design of such systems is
the extraction of discriminant features from the images.
This process is still done by human researchers and, as
such, one speaks of systems with handcrafted features.

A logical next step is to let computers learn the fea-
tures that optimally represent the data for the problem at
hand. This concept lies at the basis of many deep learn-
ing algorithms: models (networks) composed of many
layers that transform input data (e.g. images) to outputs
(e.g. disease present/absent) while learning increasingly
higher level features. The most successful type of mod-
els for image analysis to date are convolutional neu-
ral networks (CNNs). CNNs contain many layers that
transform their input with convolution filters of a small
extent. Work on CNNs has been done since the late sev-
enties (Fukushima, 1980) and they were already applied
to medical image analysis in 1995 by Lo et al. (1995).
They saw their first successful real-world application in
LeNet (LeCun et al., 1998) for hand-written digit recog-
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Figure 3: Collage of some medical imaging applications in which
deep learning has achieved state-of-the-art results. From top-left to
bottom-right: mammographic mass classification (Kooi et al., 2016),
segmentation of lesions in the brain (top ranking in BRATS, ISLES
and MRBrains challenges, image from Ghafoorian et al. (2016b), leak
detection in airway tree segmentation (Charbonnier et al., 2017), di-
abetic retinopathy classification (Kaggle Diabetic Retinopathy chal-
lenge 2015, image from van Grinsven et al. (2016), prostate segmen-
tation (top rank in PROMISE12 challenge), nodule classification (top
ranking in LUNA16 challenge), breast cancer metastases detection in
lymph nodes (top ranking and human expert performance in CAME-
LYON16), human expert performance in skin lesion classification (Es-
teva et al., 2017), and state-of-the-art bone suppression in x-rays, im-
age from Yang et al. (2016c).

methods yet, but given the results in other areas it seems
only a matter of time. An interesting avenue of research
could be the direct training of deep networks for the re-
trieval task itself.

3.5.2. Image Generation and Enhancement
A variety of image generation and enhancement

methods using deep architectures have been proposed,
ranging from removing obstructing elements in im-
ages, normalizing images, improving image quality,
data completion, and pattern discovery.

In image generation, 2D or 3D CNNs are used to
convert one input image into another. Typically these
architectures lack the pooling layers present in classifi-
cation networks. These systems are then trained with a
data set in which both the input and the desired output
are present, defining the di↵erences between the gener-
ated and desired output as the loss function. Examples
are regular and bone-suppressed X-ray in Yang et al.

(2016c), 3T and 7T brain MRI in Bahrami et al. (2016),
PET from MRI in Li et al. (2014), and CT from MRI in
Nie et al. (2016a). Li et al. (2014) even showed that one
can use these generated images in computer-aided diag-
nosis systems for Alzheimer’s disease when the original
data is missing or not acquired.

With multi-stream CNNs super-resolution images
can be generated from multiple low-resolution inputs
(section 2.4.2). In Oktay et al. (2016), multi-stream net-
works reconstructed high-resolution cardiac MRI from
one or more low-resolution input MRI volumes. Not
only can this strategy be used to infer missing spatial in-
formation, but can also be leveraged in other domains;
for example, inferring advanced MRI di↵usion parame-
ters from limited data (Golkov et al., 2016). Other im-
age enhancement applications like intensity normaliza-
tion and denoising have seen only limited application of
deep learning algorithms. Janowczyk et al. (2016a) used
SAEs to normalize H&E-stained histopathology images
whereas Benou et al. (2016) used CNNs to perform de-
noising in DCE-MRI time-series.

Image generation has seen impressive results with
very creative applications of deep networks in signifi-
cantly di↵ering tasks. One can only expect the number
of tasks to increase further in the future.

3.5.3. Combining Image Data With Reports
The combination of text reports and medical image

data has led to two avenues of research: (1) leverag-
ing reports to improve image classification accuracy
(Schlegl et al., 2015), and (2) generating text reports
from images (Kisilev et al., 2016; Shin et al., 2015,
2016a; Wang et al., 2016e); the latter inspired by recent
caption generation papers from natural images (Karpa-
thy and Fei-Fei, 2015). To the best of our knowledge,
the first step towards leveraging reports was taken by
Schlegl et al. (2015), who argued that large amounts of
annotated data may be di�cult to acquire and proposed
to add semantic descriptions from reports as labels. The
system was trained on sets of images along with their
textual descriptions and was taught to predict semantic
class labels during test time. They showed that semantic
information increases classification accuracy for a va-
riety of pathologies in Optical Coherence Tomography
(OCT) images.

Shin et al. (2015) and Wang et al. (2016e) mined se-
mantic interactions between radiology reports and im-
ages from a large data set extracted from a PACS sys-
tem. They employed latent Dirichlet allocation (LDA),
a type of stochastic model that generates a distribution
over a vocabulary of topics based on words in a docu-
ment. In a later work, Shin et al. (2016a) proposed a sys-
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Figure 1: Breakdown of the papers included in this survey in year of publication, task addressed (Section 3), imaging modality, and application
area (Section 4). The number of papers for 2017 has been extrapolated from the papers published in January.

techniques and architectures that we found in the medi-
cal image analysis papers surveyed in this work.

2.1. Learning algorithms

Machine learning methods are generally divided into
supervised and unsupervised learning algorithms, al-
though there are many nuances. In supervised learning,
a model is presented with a dataset D = {x, y}Nn=1 of in-
put features x and label y pairs, where y typically repre-
sents an instance of a fixed set of classes. In the case of
regression tasks y can also be a vector with continuous
values. Supervised training typically amounts to finding
model parameters ⇥ that best predict the data based on
a loss function L(y, ŷ). Here ŷ denotes the output of the
model obtained by feeding a data point x to the function
f (x;⇥) that represents the model.

Unsupervised learning algorithms process data with-
out labels and are trained to find patterns, such as la-
tent subspaces. Examples of traditional unsupervised
learning algorithms are principal component analysis
and clustering methods. Unsupervised training can be
performed under many di↵erent loss functions. One ex-
ample is reconstruction loss L(x, x̂) where the model has
to learn to reconstruct its input, often through a lower-
dimensional or noisy representation.

2.2. Neural Networks
Neural networks are a type of learning algorithm

which forms the basis of most deep learning methods. A
neural network comprises of neurons or units with some
activation a and parameters ⇥ = {W,B}, whereW is a
set of weights and B a set of biases. The activation rep-
resents a linear combination of the input x to the neuron
and the parameters, followed by an element-wise non-
linearity �(·), referred to as a transfer function:

a = �(wT
x + b). (1)

Typical transfer functions for traditional neural net-
works are the sigmoid and hyperbolic tangent function.
The multi-layered perceptrons (MLP), the most well-
known of the traditional neural networks, have several
layers of these transformations:

f (x;⇥) = �(WT�(WT . . .�(WT
x + b)) + b). (2)

Here, W is a matrix comprising of columns wk, associ-
ated with activation k in the output. Layers in between
the input and output are often referred to as ’hidden’
layers. When a neural network contains multiple hidden
layers it is typically considered a ’deep’ neural network,
hence the term ’deep learning’.

At the final layer of the network the activations are
mapped to a distribution over classes P(y|x;⇥) through

3



Style Transfer

D

B

F

A

C

E

Figure 3. Images that combine the content of a photograph with the style of several well-known artworks. The images were created by

finding an image that simultaneously matches the content representation of the photograph and the style representation of the artwork.

The original photograph depicting the Neckarfront in Tübingen, Germany, is shown in A (Photo: Andreas Praefcke). The painting that

provided the style for the respective generated image is shown in the bottom left corner of each panel. B The Shipwreck of the Minotaur

by J.M.W. Turner, 1805. C The Starry Night by Vincent van Gogh, 1889. D Der Schrei by Edvard Munch, 1893. E Femme nue assise by

Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky, 1913.

2418

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf

DeepFakes



DL in HEP?



HEP Experiments
• 5 technical components to HEP experiment:  

• Accelerator: e.g. LHC collisions creating quickly decaying heavy 
particles. Extremely high rate: 40 * O(50) Million collisions/sec. 

• Detector: a big camera. ~ e.g. LHC 1.5 MB/event (60 TB/s) 
• Pictures of long-lived decay products of short lived heavy/

interesting particles.  
• Sub-detectors parts: Tracking, Calorimeters, Muon system, 

Particle ID (e.g. Cherenkov, Time of Flight)  
• DAQ/Trigger: Hardware/software 
• Simulation: Integral to design, SW development, analysis, … 
• Software: Reconstruction (Raw data -> particle “features”) / Analysis 
• Computing: GRID Monarch Model “Cloud” Computing/Data 

Management (software/hardware)

ATLAS CMS
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Collisions Producing Top Quarks! 



Why go Deep?
• Better Algorithms 

• DNN-based classification/regression generally out perform hand crafted algorithms. 

• In some cases, it may provide a solution where algorithm approach doesn’t exist or fails. 

• Unsupervised learning: make sense of complicated data that we don’t understand or expect.  

• Easier Algorithm Development: Feature Learning instead of Feature Engineering  

• Reduce time physicists spend writing developing algorithms, saving time and cost. (e.g. ATLAS > 
$250M spent software) 

• Quickly perform performance optimization or systematic studies.  

• Faster Algorithms 

• After training, DNN inference is often faster than sophisticated algorithmic approach. 

• DNN can encapsulate expensive computations, e.g. Matrix Element Method.   

• Generative Models enable fast simulations. 

• Already parallelized and optimized for GPUs/HPCs.  

• Neuromorphic processors.
 11



Where is ML needed?
• Traditionally ML Techniques in HEP 

• Applied to Particle/Object Identification 

• Signal/Background separation 

• Here, ML maximizes reach of existing data/detector… equivalent to additional integral 
luminosity. 

• There is lots of interesting work here… and potential for big impact. 

• Now we hope ML can help address looming computing problems of the next decade: 

• Reconstruction

1. Intensity Frontier- LArTPC Automatic Algorithmic Reconstruction still struggling 

2. Energy Frontier- HL-LHC Tracking- Pattern Recognition blows up due to 
combinatorics 

• Simulation

3. LHC Calorimetry- Large Fraction of ATLAS CPU goes into shower simulation. 



Reconstruction



LHC Computing



Trigger
• Back of the envelope:

• 100M Electronic Channels

• 40 million collisions / sec at 1.5 MB/Event = 60 TB/
sec.

• Requires 2.5 m diameter bundle of Fibers to read off 
detector. (90’s Tech, so 1 Gb/s)

• Fortunately interesting physics happens ~ 1 in 1011

• Trigger system (input 40 MHz): 

• look for unique features of  “interesting” events

• analogue hardware determines if we should read data 
off of detector (@ 100 KHz)

• Computing farm further reduces to 1 KHz (Run 2)

• ATLAS/CMS collect 10 PB/month, each. (?)

• High Luminosity LHC will have much busier events 



HEP Computing

Reconstruction

Generation

Simulation

Digitization

Generation

Fast Simulation

Derivation

Statistical 
Analysis

KHz KHz

mHz

Hz

KHz
Hz

1000 
Hz

Hz

Hz

High-level Trigger

Fast Simulation

Data Analysis &
Calibration

Full Simulation

109 events/year 



Tier 3Tier 3Tier 3Tier 3Tier 3Tier 3
Tier 3Tier 3Tier 3Tier 3Tier 3Tier 3
Tier 3Tier 3Tier 3Tier 3Tier 3Tier 3

RAW/
AOD/
ESD

AOD

The Computing Model

Tier 0

CERN 
Analysis 
Facility

Tier 1

Tier 2Tier 2Tier 2Tier 2Tier 2Tier 2Tier 2Tier 2Tier 2Tier 2Tier 2
Tier 1Tier 1Tier 1Tier 1Tier 1

•Derive 1st pass calibrations 
within 24 hours.
•Reconstruct rest of the data 
keeping up with data taking. 

•Primary purpose: calibrations
•Small subset of collaboration 
will have access to full ESD.
•Limited Access to RAW Data.

•Reprocessing of full data with 
improved calibrations 2 months 
after data taking.
•Managed Tape Access: RAW, ESD
•Disk Access: AOD, fraction of ESD 

•Production of simulated 
events.
•User Analysis: 12 CPU/
Analyzer
•Disk Store: AOD

O(300) Sites Worldwide

• Resources Spread 
Around the GRID

RAW

DPD

•Interactive 
Analysis
•Plots, Fits, Toy 
MC, Studies, ...



• Starts with raw inputs  (e.g. Voltages)

• Low level Feature Extraction: e,g,  
Energy/Time in each Calo Cell

• Pattern Recognition: Cluster adjacent 
cells. Find hit pattern.

• Fitting: Fit tracks to hits.

• Combined reco: e.g.:

• Matching Track+EM Cluster = Electron. 

• Matching Track in inter detector + 
muon system = Muon

• Output particle candidates and 
measurements of their properties (e.g. 
energy)

EventSelector
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Builder

Cell 
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Cluster 
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(a) (b)

Fig. 4: (a): Pulse arriving in phase with respect to the 40MHz clock. (b): pulse arriving out of phase.

Fig. 5: Example of many pulses of random phases overlaid.
Normalized to unit amplitude and shifted to peak at t = 0 ns.

of the pulse is found reliably. The amplitude and mean of the
Gaussian are used to scale and shift the pulse shape.

C. Smoothing
The statistics in some energy bins is low. For this reason

before storing the pulse shapes for later use in the reconstruc-
tion, the shapes are smoothed. Two smoothing algorithms were
used: the built-in ROOT-function Smooth [5] and a spline
method [6]. The function Smooth is found to be sensitive to
larger statistical fluctuations, especially in the tail. The spline
method is the better of the two since it is insensitive to these
fluctuations, and therefore this method was adopted.

D. Energy bins
To distinguish between pulses of different energies, pulses

are sorted into energy bins. A measure of the energy of a
pulse, Q, is defined:

Q =
9∑

i=2

Si − 8 · S1, (2)

TABLE I: Definition of energy bins, based on number of
ADC counts.

Low gain High gain
Q-bin Q-value (counts) Q-value (counts)
Q0 30 < Q < 50 0 < Q < 10

Q1 50 < Q < 70 10 < Q < 50

Q2 70 < Q < 90 50 < Q < 100

Q3 90 < Q < 140 100 < Q < 200

Q4 140 < Q < 200 200 < Q < 400

Q5 200 < Q < 250 400 < Q < 800

Q6 250 < Q < 300 800 < Q < 1200

Q7 300 < Q < 350 1200 < Q < 1600

Q8 350 < Q < 400 1600 < Q < 2000

Q9 400 < Q < 800 2000 < Q < 10000

where S1, ...S9 are the nine samples measured for each
recorded pulse and S1 is the pedestal. The value of Q is used
to define bins as listed in table I.

V. PULSE-TO-PULSE VARIATIONS
After the pulse shapes have been normalized, all pulse

shapes, i.e. from all channels and all energies, can be overlaid.
The width of the band defined by all individual measurements
will show the maximum pulse-to-pulse variation. All pulse
shapes from low gain overlaid are shown in figure 6. A
widening of the band in the tail (right of the peak) is observed.
When the pulses are sorted into energy bins a narrowing

of the width of the band is observed, indicating some energy
dependence. Especially the tail region, beyond 60 ns, flattens
out with increasing value of Q.
In figure 7 (a), the mean pulse shapes for each energy bin

are overlaid. For low energies, there is an oscillation in the tail
which flattens out towards higher energy bins. This is shown
in figure 7 (b).

VI. TOY MONTE CARLO
One way of quantifying the difference between two pulse

shapes is to study the energy bias that would be introduced in

Reconstruction



LHC → HL-HLC



HL-LHC
• Higher Granularity + High Trigger Rates

•  ~10x higher input rates. 

• Trigger Needs: 

• Better Calorimetry  

• Tracking 

• Low New Physics x-sections, need: 

• Detail Physics: NLO / NNLO 

• Faithful Simulation: Geant 

• High Pileup: O(200) proton collision / crossing 

• Tracking Pattern Recognition

LHC	experiments	depend	on	a	massive	distributed	computing	
infrastructure.	

• Software	is	a	critical	part	
of	our	physics	production	
pipeline,	from	triggering	
all	the	way	to	analysis	and
final	plots	as	well	as	
simulation
• Millions	of	lines	of	code	per	
experiment	supported	by	
numerous	other	software	
packages	(ROOT,	Geant,	
event	generators,	etc)

• LHC	experiments	continuously	use	about	600k	CPU	cores	and	
have	around	400PB	of	data	stored	on	disk	and	600PB	on	tape
• HL-LHC	brings	a	dramatic	increase	in	event	rates

2

Physics	challenges	to	CMS/ATLAS	software+computing during	HL-LHC

• Increase	luminosity	means	more	interactions	
per	bunch	crossing.	This	introduces	
numerous	issues:
1. Higher	detector	occupancy:	More	

sophisticated	detector	technologies	and	
higher	channel	count

2. Trigger:	Higher	rates	needed	to	preserve	
current	physics	reach;	Use	capabilities	earlier	
in	the	processing	chain	(e.g.,	tracking	at	level-1	
trigger)	and	real-time	analysis	concepts

3. Particle	reconstruction:	More	difficult	to	
separate	patterns	means	physics	impact	(eg
efficiency	vs	fake	tradeoff)	and	technical	
performance	(e.g.,	CPU	time)	challenges	

4. Analysis	sensitivity:	Searches	for	lower	cross	
section	processes	demand	higher	precision	and	
most	robust	reconstructed	data 3

https://indico.cern.ch/event/681549/contributions/2930935/attachments/1664434/2667677/lhcp_lange_2018.pdf

To	really	gain	performance,	go	beyond	thread	parallelism	on	CPU

• Tracking	algorithms	are	a	natural	target:	They	are	a	
large	fraction	of	the	HEP	reconstruction	CPU	budget
• Challenges:	

• Small	matrices	mean	that	usual	approaches	to	
vectorizing matrix	algebra	do	not	work	well

• Algorithms	rely	on	branch	points
• Using	wide	vector	units	(e.g.,	AVX)	often	slows	the	
frequency	of	the	CPU.	A	significant	portion	of	the	
computational	kernel	must	be	vectorized to	benefit

14

Example	project:	MatrixPlex project	recasts	N	small	
matrices to	fill	a	vector	unit	(or	accelerator)	while	
operating	on	them	in	sync
• Achieves	2-3x	speedup	in	track	building	(AVX,	AVX-512)

Matriplex,	parallelized	kalman	fitter	project



Computing 
• HEP Reco is Embarrassingly parallel problem → Single threaded and 

memory-heavy software 

• Past few decades: scaling via ever faster / denser commodity linux 
boxes 

• Moore’s law has stalled:  

• Cost of adding more transistors/silicon area no longer decreasing. 

• Trend towards more cores and slower memory access. 

• Co-processors: MiC, GPUs, FPGA, … 

• Storage Scaling also a problem… 

• HL-LHC computing budget many times larger than LHC.

Event	reconstruction	and	software	trigger	algorithm	R&D	

• Enhanced	vectorization	programming	techniques

• Algorithms	and	data	structures	to	efficiently	

exploit	many-core	architectures

• Algorithms	and	data	structures	for	non-x86	

computing	architectures	(eg,	GPUs,FPGAs)

• Enhanced	QA/QC	for	reconstruction	techniques

• Real-time	analysis

• High	precision	physics-object	reconstruction,	

identification	and	measurement	techniques

• Fast	software	trigger	and	reconstruction	

algorithms	for	high-density	environments

13

Many additional pp collisions per event

https://arxiv.org/abs/1802.08640

Memory	speeds	have	not	kept	up	with	CPUs	

Consequences
• Rise	of	larger	on-chip	
cache	memory
• Large	latency	for	cache	
misses	in	algorithms
• Potentially	large	gains	for	
using	“data	aware”	
programming	methods
• Eg,	“Structs of	Arrays”	vs	
“Arrays	of	Structs”

15

A	large	increase	in	resources	over	a	“flat	budget”	would	be	needed	if	
we	simply	scale	how	these	algorithms	and	facilities	work	today.

5

A	large	increase	in	resources	over	a	“flat	budget”	would	be	needed	if	
we	simply	scale	how	these	algorithms	and	facilities	work	today.
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Solutions
• Framework Evolution: Multiple Events in Flight → Multiple Algs on same event → 

Parallelism within Algs → Offload to accelerators


• Optimizing Data and Algs for Parallelization: 


• Multi-thread: Really about memory


• Vectorization


• Co-processor: Significant rewriting of algorithms


• Great deal of work to evolve current frameworks to address these issues.


• General feeling that restarting from scratch is not feasible.


• Real time analysis


• Machine Learning…



DL for LHC Reco
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Neutrinos…



LARIAT MOTIVATION: NEEDS OF NEUTRINO EXPTS 
In neutrino experiments, try to determine flavor and estimate energy of 

incoming neutrino by looking at outgoing products of the interaction.  

2015/10/19 LARSOFT RECONSTRUCTION ASSESSMENT AND REQUIREMENTS WORKSHOP 2 

Incoming neutrino: 
 Flavor unknown 
 Energy unknown 

Outgoing lepton: 
 Flavor: CC vs. NC, !+ vs. !-, e vs. " 
 Energy: measure 

Mesons: 
 Final State Interactions 
 Energy? Identity? 

Outgoing nucleons: 
 Visible? Energy? 

Target nucleus: 
 Nucleus remains intact for low Q2 

 N-N correlations 

Typical neutrino event!

Jen Raaf

Neutrino Detection



Neutrino Detectors
• Need large mass/volume to maximize chance of neutrino interaction. 

• Technologies: 

• Water/Oil Cherenkov 

• Segmented Scintillators 

• Liquid Argon Time Projection Chamber: promises ~ 2x detection efficiency.

• Provides tracking, calorimetry, and ID all in same detector. 

• Chosen technology for US’s flagship LBNF/DUNE program.  

• Usually 2D read-out… 3D inferred. 

• After many years of trying, good automatic reconstruction still not demonstrated.

10
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LArTPCs make 3D reconstruction possible!

● wire planes give 2D position information
● the third dimension is obtained by combining timing information 
    with drift velocity (v

d
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e/π0 Separation

• e/π0 separation can be achieved using topological and 
energy information.

- There is usually a gap between the photon conversion point 
and the neutrino interaction vertex.

- Electron and photon have different energy deposition profiles.
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Reconstruction Chain
• Left: Our provisional 

 model for a DUNE FD  
   reconstruction chain. 
!
• Between LBNE and  
   LBNO, every step in 
   this chain exists. !
    - Great starting point 
       for DUNE! 
!
• Will summarise 
   current status over 
   next few slides.

LArTPC Reco
• Neutrino Physics has a long history of hand 

scans.  

• QScan: ICARUS user assisted 
reconstruction.   

• Full automatic reconstruction has yet to be 
demonstrated.  

• LArSoft project:  art framework + LArTPC 
reconstruction algorithms developed by 
LArIAT, MicroBooNE, DUNE, … 

• Still… full neutrino reconstruction is still far 
from expected performance.

Selection of  νe events
•  Reference points and vertices can be defined to mark interesting 

features of the event in a 2D view (primary interaction, delta rays, 
decay point of tracks, shower features, muon begin/end point for the 
momentum measurement via MCS); 

•  They can be selected manually in Qscan and can be associated to 
clusters and matched between different views providing additional 
input to 3D reconstruction; 

•  An automatic tool for the primary vertex identification is available; 
•  Reference points and vertices can be saved in root files; 

Reference points and vertices

Slide#  : 9ICARUS_2015



Neutrino Physics

• 40% Better Electron Efficiency for same background.

http://arxiv.org/pdf/1604.01444.pdf

oscillation parameters via the disappearance of ⌫µ and appearance of ⌫e from neutrino oscillation.
NOvA consists of two functionally identical detectors in the NuMI (Neutrinos at the Main Injector)
beam [39] at Fermilab which produces a focused beam with an initial flavor composition largely
dominated by ⌫µ and a small intrinsic ⌫µ, ⌫e, and ⌫e components. Placing the detectors o↵-axis
at 14.6 mrad provides a narrow-band neutrino energy spectrum near 2 GeV. The Near Detector,
located at Fermilab, is placed 1 km from the neutrino source; the Far Detector is located 810 km
away near Ash River, Minnesota. The NOvA detectors are composed of extruded PVC cells filled
with liquid scintillator which segment the detector into cells with a cross section 3.9 cm wide ⇥
6.6 cm deep. The cells are 15.5 m long in the Far Detector. Scintillation light from charged particles
can be captured by a wavelength shifting fiber which runs through each cell. The end of the fiber is
exposed to a single pixel on an avalanche photo-diode array to record the intensity and arrival time
of photon signals. The spatial and absolute response of the detector to deposited light is calibrated
out using physical standard candles, such that a calibrated response can be derived which is a good
estimate of the true deposited energy. Parallel cells are arrayed into planes, which are configured in
alternating horizontal and vertical alignments to provide separate, interleaved X-Z, and Y-Z views.
The 14,000 ton Far Detector, which is used for the training and evaluation of CVN in this paper,
consists of 344,064 total channels arranged into 896 planes each 384 cells wide [6]. Information
from the two views can be merged to allow 3D event reconstruction. A schematic of the detector
design can be seen in Figure 2.

Figure 2. Schematic of the NOvA detector design
The two figures on the right show the views through the top and side of the three-dimensional figure
on the left. They show the ‘hits’ produced as charged particles pass through and deposit energy in
the scintillator-filled cells. Illustration courtesy of Fermilab.

Reconstruction of the neutrino energy and flavor state at the detector is essential to neutrino
oscillation measurements. The neutrino flavor state can be determined in charged-current (CC)

– 5 –

Figure 7. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
The top-most feature map for each event seems to be particularly sensitive to hadronic activity and
the bottom-most feature map seems to be sensitive to muon tracks. Shown are an example ⌫µ CC
DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction (bottom).

– 12 –

reject cosmic backgrounds while retaining well-contained neutrino events inside the signal energy
window with high e�ciency. We quote our selection e�ciencies relative to true contained signal,
again matching the approach described in [52] for ⌫e and [53] for ⌫µ tests respectively.

Since the output of the final softmax layer in CVN is normalized to one, it can be loosely
interpreted as a probability of the input event falling in each of the thirteen training categories. For
the results presented in this paper a ⌫e CC classifier was derived from the sum of the four ⌫e CC
component probabilities. Similarly, the four ⌫µ CC components were summed to yield a ⌫µ CC
classification. Figure 9 shows the distribution of the CVN ⌫e CC classification parameter for true
⌫e CC events from ⌫µ ! ⌫e oscillation and the various NuMI beam backgrounds broken down
by type. Figure 10 shows the cumulative e�ciency, purity, and their product when selecting all
events above a particular CVN ⌫e CC classification parameter value. Excellent separation between
signal and background is achieved such that the only significant background remaining is that of
electron neutrinos present in the beam before oscillation; CVN does not attempt to di↵erentiate
between ⌫e CC events from ⌫µ ! ⌫e oscillation and those from ⌫e which are produced promptly
in the neutrino beam; these di↵er only in their energy distributions. Figures 9 and 10 also show
the performance of the CVN ⌫µ CC classification parameter. As with ⌫e, excellent separation is
achieved.

A common way to assess the performance of a signal selection is to compute a Figure of Merit
(FOM) given the number of selected signal events S and background events B. The FOM = S/

p
B

optimizes for a pure sample useful for establishing the presence of the signal S in the presence
of the background, while FOM = S/

p
S + B optimizes for an e�cient sample useful for making

parameter measurements with the signal S . Table 1 shows the e�ciency, purity, and event count
at the maximal point for both optimizations when using CVN to select ⌫e CC events, and Table 2
shows the same for ⌫µ CC events. Using CVN we were able to set selection criteria well optimized
for either FOM when searching for both surviving ⌫µ and appearing ⌫e events.

CVN Selection Value ⌫e sig Tot bkg NC ⌫µ CC Beam ⌫e Signal E�ciency Purity
Contained Events � 88.4 509.0 344.8 132.1 32.1 � 14.8%

s/
p

b opt 0.94 43.4 6.7 2.1 0.4 4.3 49.1% 86.6%
s/
p

s + b opt 0.72 58.8 18.6 10.3 2.1 6.1 66.4% 76.0%

Table 1. A table showing relative selected event numbers for the various components of the NuMI beam,
e�ciency, and purity for two di↵erent optimizations for the selection of appearing electron neutrino CC
interactions. E�ciency is shown here relative to the true contained signal. The numbers are scaled to an
exposure of 18 ⇥ 1020 protons on target, full 14-kton Far Detector.

CVN Selection Value ⌫µ sig Tot bkg NC Appeared ⌫e Beam ⌫e Signal E�ciency Purity
Contained Events � 355.5 1269.8 1099.7 135.7 34.4 � 21.9%

s/
p

b opt 0.99 61.8 0.1 0.1 0.0 0.0 17.4% 99.9%
s/
p

s + b opt 0.45 206.8 7.6 6.8 0.7 0.1 58.2% 96.4%

Table 2. A table showing relative selected event numbers for the various components of the NuMI beam,
e�ciency, and purity for two di↵erent optimizations for the selection of surviving muon neutrino CC in-
teractions. E�ciency here is shown here relative to the pre selected sample. The numbers are scaled to an
exposure of 18 ⇥ 1020 protons on target, full 14-kton Far Detector.

Perhaps the most important way to assess the performance of the CVN classification param-
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Hadronic 
Feature 

Map

Muon 
Feature 

Map
Muon Neutrino 

DIS CC

Muon Neutrino 
QE CC

Muon Neutrino 
NC

• Core Physics requires just measuring neutrino flavor and energy. 

• Generally clean (low multiplicity) and high granularity.   

• First HEP CNN application: Nova using Siamese Inception CNN.

http://arxiv.org/pdf/1604.01444.pdf
http://arxiv.org/pdf/1604.01444.pdf
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Alexander Radovic CNNs for Neutrino Experiments

• That means that any oscillation analysis can benefit from 
precise identification of the interaction in two ways: 
• Estimating the lepton flavor of the incoming neutrino. 
• Correctly identifying the type of neutrino interaction, to 

better estimate the neutrino energy, aka is it a quasi 
elastic event or a resonance event? 

Quasi-Elastic Resonance
13

Why Convolutional Neural 
Networks?
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Why Convolutional Neural 
Networks?

Alexander Radovic CNNs for Neutrino Experiments

• Our detectors are also often the perfect domain: 
• Large ~uniform volumes where spatially invariant 

response is a benefit.  
• Usually only one or two detector systems. 
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Why Convolutional Neural 
Networks?
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t-SNE Representation of Test 
Sample

Alexander Radovic CNNs for Neutrino Experiments

NC

νe QE

νµ QE

νµ DIS
νe DIS

Truth labels, training sample subset.
t-SNE projection of final features to 2D.
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The Bottom Line

Alexander Radovic CNNs for Neutrino Experiments
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However our CNN achieves 73% efficiency and 76% purity on 
νe selection at the                optimized cut.  
Equivalent to 30% more exposure with the old PIDs.

s/
p
s+ b

After oscillations, cosmic rejection cuts, data quality cuts:
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π+ κ+ μ+ e+ γ

DNN 74.42% 40.67% 6.37% 0.12% 0%
LArIAT
Analysi

74.5% 68.8% 88.4% 6.8% 2.4%

π– κ- μ- e- γ

DNN 78.68% 54.47% 13.54% 0.11% 0.25%
LArIAT
Analysi

78.7% 73.4% 91.0% 7.5% 2.4%

LArIAT: 
DNN vs Alg
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PhyStat-nu Fermilab 2016 (19-September 21, 2016)

EM / hadronic component discrimination

electron from 
π!µ!e decay

showers 
from π0 decay

Lariat and ProtoDUNE

Private communication, Robert Sutlej
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Learning Representations
• Example: Daya Bay Experiment (Evan Racah, et al) 

• Input: 8 x 24 PMT unrolled cylinder. Real Data (no simulation)  

• 2 Studies: 

• Supervised CNN Classifier

• Labels from standard analysis:  Prompt/Delayed Inverse Beta Decay, 
Muon, Flasher, Other. 

• Convolutional Auto-encoder (semi-supervised) 

• Clearly separates muon and IBD delay without any physics knowledge. 

• Potentially could have ID’ed problematic data (e.g. flashers) much earlier.

7

(a) Example of an “IBD delay” event (b) Example of an “IBD prompt” event

Fig. 5: Raw event image (top row) and convolutional autoencoder reconstructed event image (bottom row).
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(a) An IBD delay event in cluster A (b) An IBD prompt event in cluster A

(c) An IBD delay event in cluster C (d) An IBD prompt event in the blue cluster below the letter B

Fig. 3: Representative examples of various IBD events in Figure 2. Clusters in Figure 2 where each event appears called out
by letter

Fig. 2: t-SNE reduction of representation learned on the last
fully connected layer of CNN

supervised convolutional neural network. Figure 2 shows the t-
SNE visualization of the outputs from the last fully connected
layer of the CNN. This visualization shows in two dimensions
how the each example is clustered in the 26-dimensional
feature space learned by the network.

We also show, in Figures 3a and 3b, example PMT charges
of different types of events that are in clusters in the t-SNE
clustering (Figure 2) that contain a mix of labels near each
other, as well as examples contained in well separated clusters
in Figures 3c and 3d.

2) Interpretation: Our results suggest that there are patterns
in the Daya Bay data that can be uncovered by machine
learning techniques without knowledge of underlying physics.
Specifically, we were able to achieve high accuracy on classi-
fication of the Daya Bay events using only the spatial pattern
of the charge deposits. In contrast, the physicists used the
time of the events and prior physics knowledge to perform
classification. In addition, our results suggest that deep neural
networks were better than other techniques at classifying
the images and thus finding patterns in the data. As shown
in Table II, our CNN architecture had the highest F1-score
and accuracy for all event types. In particular, it showed
significantly higher performance on classes “IBD prompt” and
“flasher”. Not only did the supervised CNN perform better in
classifying the data then other shallower ML techniques, such
as KNN and SVM’s, but it also discovered features in the data
that helped cluster it into fairly distinct groups as shown in
Figure 2.

We can further investigate the raw images within the clusters
formed by t-SNE. For example, in Figures 3a and 3b the
CNN has identified a particularly distinctive charge pattern
common to both images. These are labelled as different
types because prompt events have a large range of charge
patterns, some of which very closely resemble delay events.
The standard physics analysis is able to resolve these only
by using the time coincidence of delay events happening
within 200 microseconds after prompt events, while the neural
network solely has charge pattern information. Figures 3c and
3d, on the other hand, show images from more distinct prompt
and delay clusters, respectively, illustrating that prompt events
deposit less energy in the detector on average.

t-SNE reduction of 26-dim 
representation of the last fully connected 
layer.
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Such clustering suggests that, with help from ground truth
labelling, deep learning techniques can discover informative
features and thus find structure in raw physics inputs. Because
such patterns in the data exist and can be learned, this suggests
that unsupervised learning also has the potential to discover
these patterns without needing ground truth labeling, so we
turn to that analysis in the next section.

B. Unsupervised learning with Convolutional Autoencoder

1) Results: For the convolutional autoencoder, we present
the t-SNE visualization of the 10 features learned by the
network in figure 4. To show how informative the feature
vector that the network learned is, we also show several
event images and their reconstruction by the autoencoder in
Figures 5a and 5b. More informative features that are learned
correspond to more accurate reconstructions because the 10
features effectively give the network the “ingredients” it needs
to the reconstruct the input 8x24 structure.

2) Interpretation: The convolutional autoencoder is de-
signed to reconstruct PMT images and so it learns different
features than the supervised CNN which is attempting to
classify based on the training labels. Therefore, the t-SNE
clustering for this part of the study (in Figure 4) is quite
distinct to that in the supervised section. Nevertheless we
were able to obtain well defined clusters without using any
physics knowledge or training. Specifically there is a very
clearly separated cluster that can be identified with the labelled
muons, and also a fairly clear separation between “IBD delay”
and other events. We even achieve some separation between
“IBD prompt” and “other” backgrounds which, as mentioned
above, is mainly achieved in the default physics analysis only
by incorporating additional information of the time between
prompt and delayed events.

By looking at the reconstructed images, we can see the au-
toencoder was able to filter out the input noise and reconstruct
the important shape of different event types. For example, in
Figure 5a, the shape of the charge pattern is reconstructed
extremely accurately, which shows that the 10 learned features
from the autoencoder are very informative for “IBD delay”
events. In Figure 5b, salient and distinct aspects of the more
challenging “IBD prompt” events are also reconstructed fairly
well.

As further work, it would be desirable to obtain better
separation between “flasher” and “other” events. Therefore
we intend to continue to tailor the convolutional autoencoder
approach to this application by considering input transforma-
tions that take into account the experiment geometry, variable
resolution images, and alternative construction of convolu-
tional filters, as well as more input data and full parameter
optimization of the number of filters and the size of the feature
vector.

VIII. CONCLUSIONS

In this work we have applied for the first time unsupervised
deep neural nets within particle physics and have shown
that the network can successfully identify patterns of physics
interest. As future work we are collaborating with physicists

Fig. 4: t-SNE representation of features learned by convolu-
tional autoencoder

on the experiment to investigate in detail the various clusters
formed by the representation to determine what interesting
physics is captured in them beyond the initial labelling. We
also plan to incorporate such visualizations into the monitoring
pipeline of the experiment and as part of other work [26] have
applied the autoencoder at scale to a large part of the entire
Daya Bay dataset (2.7 billion events).

Such unsupervised techniques could be utilized in a generic
manner for a wide variety of particle physics experiments
and run directly on the raw data pipeline to aid in trigger
(filter) decisions or in evaluating data quality, or to dis-
cover new instrument anomalies (such as flasher events). The
use of unsupervised learning to identify such features is of
considerable interest within the field as it can potentially
save considerable time required to hand-engineer features to
identify such anomalies.

We have also demonstrated the superiority of convolutional
neural networks compared to other supervised machine learn-
ing approaches for running directly on raw particle physics
instrument data. This offers the potential for use as fast selec-
tion filters, particularly for other particle physics experiments
that have many more channels and approach exabytes of
raw data such as those at the current Large Hadron Collider
(LHC) and planned HL-LHC at CERN [27]. Our analysis
in this paper used the labels determined from an existing
physics analysis and therefore the selection accuracy is upper
bounded by that of the physics analysis. Many other particle
physics experiments, however, have reliable simulated data
which could be used with the approaches in this paper to
better the selection accuracy achieved with those experiments’
current analyses.

In conclusion, we have demonstrated how deep learning can
be applied to reveal physics directly from raw instrument data
even with unsupervised approaches, and therefore that these
techniques offer considerable potential to aid the fundamental
discoveries of future particle physics experiments.

t-SNE reduction of 10 parameter latent 
representation.

http://arxiv.org/pdf/1601.07621v1.pdf
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Abstract

We present studies of the application of Deep Neural Networks and Convolutional
Neural Networks for the classification, energy regression, and simulation of parti-
cles produced in high-energy particle collisions.We train cell-based Neural Nets
that provide significant improvement in performance for particle classification and
energy regression compared to feature-based Neural Nets and Boosted Decision
Trees, and Generative Adversarial Networks that provide reasonable modeling of
several but not all shower features.

1 Overview

In High Energy Physics (HEP) experiments, detectors serve as cameras that take pictures of the
products of particle collisions. One of the key components of such detectors are calorimeters that
image the energy depositions of the showers of secondary particles produced by high energy particles
from these collisions interacting with dense detector material. The resulting patterns of depositions,
which are characteristic of the particle type, are observed in "cells" analogous to voxels (possibly with
irregular shapes) in three-dimensional (3D) images. Physicists, as a first step towards discovering or
studying interesting phenomena or new particles, typically use features extracted by sophisticated
reconstruction algorithms to identify the type and estimate the energy of particles in large samples of
collision events. Machine Learning (ML) techniques are well suited for such tasks, and indeed ML
has long played an essential role in HEP, including the 2012 Nobel Prize-winning discovery of the
Higgs boson [1, 2] at the ATLAS [3] and CMS [4] experiments at the Large Hadron Collider (LHC).

In the next decade, the High Luminosity Large Hadron Collider (HL-LHC) upgrade of the current
LHC will enhance the sensitivity to new physics by increasing the proton-proton collision rate. In
addition, many next generation detectors, such as the sampling calorimeters proposed for the ILC [5]
and CLIC [6], will improve the ability to identify and characterize particles produced in collisions
using highly granular 3D arrays of pixels. These upgrades and future accelerators will lead to higher
data volumes and a variety of technological challenges, e.g. real-time particle reconstruction and
fast detector simulation. In addition, physics measurements typically require extremely detailed and
precise simulation, relying on the well understood micro-physics governing the interaction of particles
with matter coded into software packages, the most notable being Geant4 [7]. These simulations are

Workshop on Deep Learning for Physical Sciences (DLPS 2017), NIPS 2017, Long Beach, CA, USA.



1. e/γ Particle Identification (Classification)
• Photon/lepton ID requires factor ~10000 jet rejection
• Jet like photon/lepton classification tasks:

• Task 1: Electrons vs Electromagnetic π+/- (HCAL/ECAL Energy < 0.025)
• Task 2: Photons vs Merging π0 (2γ opening angel < 0.01 rad)

• Comparison:
• Feature based BDT and DNN 
• Cell-based DNN (fully connected). 

• Significant Improvement with cell-based DNNs.
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Figure 1: Signal vs. background efficiency ROC curves for the (left) � vs. ⇡0 and (right) e vs. ⇡
classifier. The red dots mark the chosen BDT working point.

1000 model BDT hyperparameter scan yielded best performance with 400 estimators, maximum
depth of 5, and learning rate of 0.5.

The features we computed are commonly used in calorimetry to characterize the particle shower
shape and energy deposit. These features are: total energy deposited in ECAL, total number of hits
in ECAL, the ratio of energy in ECAL first layer over energy in second layer, the ratio of energy in
ECAL first layer over all ECAL energy, second through sixth moments in the detector local x, y, and
z of ECAL energy deposits, all equivalent features for HCAL, ratio of HCAL to ECAL energy, and
ratio of number of hits in HCAL to ECAL. In our studies, we found that the most powerful features
are the second x and y moments that measure the lateral shower width.

� vs. ⇡0 e vs. ⇡
Model acc. AUC �✏sig �Rbkg acc. AUC �✏sig �Rbkg

BDT 83.1% 89.8% - - 93.8% 98.0% - -
DNN (features) 82.8% 90.2% 0.9% 0.95 93.6% 98.0% -0.1% 0.95
DNN (cells) 87.2% 93.5% 9.4% 1.63 99.4% 99.9% 4.9% 151

Table 1: Performance parameters for BDT and DNN classifiers.

Figure 1 shows the ROC curves for the three classifiers and Table 1 quantifies the performance.
The areas under curve (AUC) and accuracies (acc.) for the cell-based DNNs are significantly
better than the feature-based DNNs and BDTs, which have similar performance. We also quantify
the achievable improvements in signal and background efficiency from the DNNs with respect
to the chosen “working point” on the BDT ROC curve indicated in Figure 1. For the � vs. ⇡0

(e vs. ⇡±) classifier, the cell-based DNN may be used to either increase the signal efficiency by
�✏sig = ✏DNN

sig � ✏BDT
sig = 9.4% (4.9%) for fixed background efficiency, or decrease the background

efficiency by a factor �Rbkg = ✏BDT
bkg /✏DNN

bkg = 1.6 (151) for fixed signal efficiency.

3 Regression: Energy Reconstruction

We trained a separate dedicated DNN to estimate particle energies from their calorimeter deposits.
This DNN is composed of two CNNs for ECAL and HCAL, followed by a flattening and concatenation
layer, with a final densely connected layer. The ECAL branch uses a 3-feature convolutional layer
with a 4⇥ 4⇥ 4 window and stride of 1 in each direction, followed by a 2⇥ 2⇥ 2 max pooling layer
with a stride of 2. The HCAL branch has a 10-feature layer with a 2⇥ 2⇥ 6 window and stride of 1,
followed by a 2⇥ 2⇥ 2 max pooling layer with a stride of 2. All convolutional layers have ReLU
activation. The output of both branches are linearized and merged, followed by a fully connected
layer with 1000 neurons. The final neuron has a linear activation function and the mean-squared error
(MSE) is used as the loss function. The data sample was split into 40,000 events for training, 10,000
events for validation, and 30,000 events for testing.

As a baseline measure of the energy, we use a simple bi-linear regression of the summed energy in
ECAL and HCAL to the true energy. Figure 2 compares the energy dependence of the calorimeter
resolution for each particle type and for both the neural net and the simple linear regression models.
Table 2 quantifies the results by fitting this dependence to the expected form. We observe significantly
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Table 1: Performance parameters for BDT and DNN classifiers.

Figure 1 shows the ROC curves for the three classifiers and Table 1 quantifies the performance.
The areas under curve (AUC) and accuracies (acc.) for the cell-based DNNs are significantly
better than the feature-based DNNs and BDTs, which have similar performance. We also quantify
the achievable improvements in signal and background efficiency from the DNNs with respect
to the chosen “working point” on the BDT ROC curve indicated in Figure 1. For the � vs. ⇡0

(e vs. ⇡±) classifier, the cell-based DNN may be used to either increase the signal efficiency by
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sig = 9.4% (4.9%) for fixed background efficiency, or decrease the background

efficiency by a factor �Rbkg = ✏BDT
bkg /✏DNN

bkg = 1.6 (151) for fixed signal efficiency.

3 Regression: Energy Reconstruction

We trained a separate dedicated DNN to estimate particle energies from their calorimeter deposits.
This DNN is composed of two CNNs for ECAL and HCAL, followed by a flattening and concatenation
layer, with a final densely connected layer. The ECAL branch uses a 3-feature convolutional layer
with a 4⇥ 4⇥ 4 window and stride of 1 in each direction, followed by a 2⇥ 2⇥ 2 max pooling layer
with a stride of 2. The HCAL branch has a 10-feature layer with a 2⇥ 2⇥ 6 window and stride of 1,
followed by a 2⇥ 2⇥ 2 max pooling layer with a stride of 2. All convolutional layers have ReLU
activation. The output of both branches are linearized and merged, followed by a fully connected
layer with 1000 neurons. The final neuron has a linear activation function and the mean-squared error
(MSE) is used as the loss function. The data sample was split into 40,000 events for training, 10,000
events for validation, and 30,000 events for testing.

As a baseline measure of the energy, we use a simple bi-linear regression of the summed energy in
ECAL and HCAL to the true energy. Figure 2 compares the energy dependence of the calorimeter
resolution for each particle type and for both the neural net and the simple linear regression models.
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2. Energy Calibration (Regression)
• Energy resolution improves with energy: 

• σ(E) / E = a/√E ⊕ b/E ⊕ c. 

• a = sampling, b = noise, c = leakage.  
• Comparison:

• Simple calibration: Sum energies (no noise) and scale. 
• CNN calibration: Cells → Particle energy

• Significant Improvement with CNN

Figure 2: Energy resolution for
photons, electrons, neutral and
charged pions compared for the
CNN vs. linear model.

Simple Linear Model
Particle Type a b c

Photons 55.5 1.85 1245
Electrons 42.3 1.51 1037

Neutral pions 55.3 1.71 1222
Charged pions 442 25 11706

CNN Model
Particle Type a b c

Photons 18.3 0.75 131
Electrons 18.7 0.574 111

Neutral pions 19.3 0.45 231
Charged pions 114 1.02 893

Table 2: Calorimeter resolution parameters from
equation �(�E)

Etrue
= ap

Etrue
� b � c

Etrue
for the reso-

lution curves in Fig. 2.

better performance from the DNN as compared to the simple model, with resolution enhancement of
a factor of 3.5–7 at low energies and 2–4 at high energies, for all four particle types.

4 Generative Model: Particle Simulation

We use the sample of ECAL 3D energy arrays to demonstrate the ability to simulate particles at given
energies using GANs, as a proof of concept for a much larger plan to integrate a generic deep-learning
tool for fast simulation into the GeantV detector simulation library [19].

Both the GAN generator and discriminator models consist of four 3D convolution layers with leaky
ReLU activation functions. The number and sizes of filters were tuned to optimize the description of
the transverse and longitudinal shower shapes. The discriminator models take the calorimeter image
as input and produce two outputs: classification of the images as real or generated and regression
of the energy, in the manner described in the previous section. The generator takes as input the
desired particle energy and a latent noise vector initialized to a uniform probability distribution, and
outputs a 25⇥ 25⇥ 25 ECAL image. The results of GAN-simulated particles are shown in Fig 3, in
comparison with the particles generated via GEANT4 [7]. The GAN provides reasonable modeling
of the longitudinal shower width but further tuning is required to model the transverse shower width.

5 Conclusion and Future Work

This paper shows how deep learning techniques could outperform traditional and resource-consuming
techniques in tasks typical of physics experiments at particle colliders, such as particle identification,
energy measurement, and detector simulation. To continue this work, we will push forward particle
classification and energy regression into new areas, using multi-particle events with overlapping

Figure 3: Comparison of (left) transverse shower width and (right) longitudinal shower width for
GAN vs. Geant simulation of electrons with energies of 200-300 GeV.
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3. Simulation (Generative Model)
• Physics measurements typically require extremely detailed and precise 

simulation,

• Software packages (e.g. Geant4) simulated the well understood micro-
physics governing the interaction of particles with matter.

• Generally very CPU intensive 

• Example: ATLAS experiment uses half of the experiment’s computing 
resources for simulation. 

• Task: CNN GAN conditioned on particle energy

• Accelerate simulation by many orders of magnitude.

• Promising start… but not yet faithfully reproducing all commonly used 
features extracted from generated images.
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charged pions compared for the
CNN vs. linear model.
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GANs for (fast) simulation
Sofia Vallecorsa for the GeantV team
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LHCb PID Compression
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Standard Model / New Physics 
in Quantum Field Theory

Lepton/
Quark 4-vectors

Soft QCD: Quark Fragmentation 
and Hadronization

Particle 
4-vectors

Simulation: Particle 
Interactions with 

Energy 
Deposits in Detector

Digitization: Detector 
Response and Pileup Mixing

Detector Response

Approximating the Likelihood
• Physics is all about establishing a very precise “model” of the underlying 

phenomena… so we can model our data very well.


• Enables multi-step ab-initio simulations: 


1. Generation: Standard Model and New Physics are expressed in 
language of Quantum Field Theory.


➡Feynman Diagrams simplify perturbative prediction of HEP 
interactions among the most fundamental particles (leptons, quarks)


2. Hadronization: Quarks turn to jets of particles via Quantum 
Chromodynamics (QCD) at energies where theory is too strong to 
compute perturbatively. 


➡Use semi-empirical models tuned to Data.


3. Simulation: Particles interact with the Detector via stochastic processes 


➡Use detailed Monte Carlo integration over the “micro-physics”


4. Digitization: Ultimately the energy deposits lead to electronic signals in 
the O(100 Million) channels of the detector.


➡Model using test beam data and calibrations.


• Output is fed through same reconstruction as real data. 



SimulationStandard Model / New Physics 
in Quantum Field Theory

Lepton/
Quark 4-vectors

Soft QCD: Quark Fragmentation 
and Hadronization

Particle 
4-vectors

Simulation: Particle 
Interactions with 

Energy 
Deposits in Detector

Digitization: Detector 
Response and Pileup Mixing

Detector Response

• Simulation in HEP is a multi-step process…  

• Hadronization and Simulation steps are irreversible. 

• Therefore we cannot formally evaluate the likelihoods. 

• Rely on Monte Carlo Method to perform Probability 
Density Estimation  

• The simulation step is extremely time consuming… 
O(1 hr) / collision… LHC produces 40 million/sec 

• ATLAS simulation takes O(50%) of ATLAS resource 

• Lager fraction than CMS because of calorimeter 

• For HL-LHC, NLO and NNLO generation will become 
even more relevant… these can be time consuming 
too.



Generative Models @ LHC
• Every Experiment is Exploring: ATLAS, CMS, LHCb, ALICE

https://indico.cern.ch/event/681549/contributions/2930939/attachments/
1664416/2667649/MachineLearning_LHC.pdf

Generative models for fast cluster simulation @ALICE

Different models and architectures:

Convolutional Variational
autoencoder
Generative adversarial networks
GAN

Deep Convolutional GAN
Progressive DCGAN

Results:

Mean Squared Error (MSE) from the ideal helix as a quality measure

Performance test conducted on the standalone machine with Intel Core
i7-6850K (3.60GHz) CPU (using single core, no GP acceleration)

Additional order of magnitude speedup for Generative models with
Nvidia GTX 1080 GPU

Miguel Vidal LHCP 2018 8/06/2019 10 / 15
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Additional order of magnitude speedup for Generative models with
Nvidia GTX 1080 GPU
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Fast calorimeter simulation @ LHCb

Simulation of the calorimeter showers: fast + reasonable accuracy

For a particle of a given type and momentum: simulate the cluster
mean energy and shape, energy resolution, shape fluctuation and
correlations between cells using a DNNs

Information per event:

Momentum, position and particle type

Energy lost in absorver and deposited in scintillator

Energies deposited in scintillator for cell tower
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Fast calorimeter simulation @ LHCb

In this implementation the sampler is
a DNN: GAN, WGAN, or conditional
WGAN.
Checked if the simulated events are
realistic enough
Sampling rate of 0.04 ms per sample
on GPU, 4.7 ms per sample on CPU

The future:
Not ready to deploy in production but very good starting point!!
Need to compare the model with other existing models
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Fast calorimeter simulation @ LHCb

Simulation of the calorimeter showers: fast + reasonable accuracy

For a particle of a given type and momentum: simulate the cluster
mean energy and shape, energy resolution, shape fluctuation and
correlations between cells using a DNNs

Information per event:

Momentum, position and particle type

Energy lost in absorver and deposited in scintillator

Energies deposited in scintillator for cell tower
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Generative models for fast cluster simulation @ALICE
Clusters in the TPC

Points 3D + energy

Base for particle track generation

Up to 159 points per particle

Most computational expensive step in
simulation is the particle propagation
) avoiding the step using generative
models
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https://arxiv.org/pdf/1701.05927.pdf 
https://arxiv.org/pdf/1705.02355.pdf

https://arxiv.org/pdf/1701.05927.pdf
https://arxiv.org/pdf/1705.02355.pdf


Qualitative Performance (2) Yale
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60Timing

Generation Method Hardware Batch Size milliseconds/shower

GEANT4 CPU N/A 1772

1 13.1

10 5.11

128 2.19
CPU

1024 2.03

1 14.5

4 3.68

128 0.021

512 0.014

CALOGAN

GPU

1024 0.012

Table 2: Total expected time (in milliseconds) required to generate a single shower under

various algorithm-hardware combinations.
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See also S. Vallecorsa et al. (GeantV), C. Guthrie et al. (NYU), 
W. Wei et al. (LCD dataset group), D. Salamani et al. (Geneva), 

D. Rousseau et al. (Orsay), L. de Oliveira et al. (Berkeley)

M. Paganini et al., 1705.02355



Analysis



HEP Searches 
(SUSY Example)



SUSY at LHC
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Typical Spectrum - GMSB

GMSB

Typical Spectrum - mAMSB

AMSB

Typical Spectrum - mSUGRA
G
~

mSUGRA

Gluinos and squarks 
copiously produced*

Gluinos and squarks 
heavier than charginos/

neutralinos

Long Cascades

Many Jets
(100’s of GeV)

Leptons
(10’s of GeV)

Missing Energy
(100’s of GeV)



Inclusive Signatures
Signature Motivating Model(s) Comments

1 Jet + 0 Lepton + MET

• Large Extra Dim (ExoGraviton)
• strong qG production, G propagate in extra Dim
• Planck Scale is MD in 4+δ dim
• Normal Gravity >> R

• SUSY
• qg→ISR + 2 Neutralino or squark + Neutralino

• Not primary discovery 
channel for SUGRA, GMSB, 
AMSB... but helps in 
characterization 
• Possible leading discovery 
for neutralino NLSP with 
nearly degenerate gluino

2,3,4 [b]-Jet + 0 Lepton 
+ MET

• Squark/gluino production
• squark→q+LSP, gluino→q+squark+LSP

• Possible leading squark/
gluino discovery channel 
• Must manage QCD bkg

2,3,4 [b]-Jet + 1 Lepton 
+ MET

• squark/gluino production with cascades which include electroweak 
(or partner) decays
• high tan β leads to more b/t/τ’s

• Lepton requirement 
suppresses QCD
• τ’s partially covered by e/μ

2 lepton + MET

• Same sign: gluino cascade can have either sign lepton... squark/gluino 
prod can produce same sign. 
• Opposite sign: squark/gluino decay mediated by Z (or partner)
• Same flavor: 2 leptons from same sparticle cascade must be same 
flavor

• Reduced SM backgrounds 
for same sign
• Opposite Sign-Flavor 
Subtraction

3 lepton + MET
• SUSY events ending in Chargino/neutralino pair decays
• Weak Chargino/Neutralino production
• Exotic sources

• Low SM bkgs

2 photon + MET • GMSB models with gravitino LSP and neutralino or stau NLSP
• UED- each KK partons cascade to LKP which decays to graviton + γ 

• No SUSY limit (not 
sensitive at the time)



0 Lepton Event Selections
• No leptons (medium electrons and muons) >10 GeV

• 4 signal regions defined to maximize msquark-mgluino 
coverage :

• At least 2 Jets

• Low mass squark anti-squark (A)

• High mass squark anti-squark (B)

• At least 3 Jets

• Direct gluino pairs (C)

• Associated gluino-squark (D)

• Higher x-section → Tighter cuts! 
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Standard SUSY Analyses
• Require: 

• Large ET (> 100 GeV)
• 4 Hard Jets
• Sphericity?

• Look at: Meff= ∑4jets pT + ET 
for N=0,1,2 (SS/OS) leptons
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This figure shows the effective mass distributions of no lepton mode after the

standard SUSY cut.

Open hist shows 1TeV SUSY signal, and hatched shows sum of the BG

processes.

W(->lnu), Z(->nunu) and top pair(->bblnuqq) are dominant background processes.

DY Z->ll process and  W(->lnu) MT<100GeV  are  good control samples to

understand these processes, and I summarize and proposal for methods.

Effective mass (GeV)

SUSY Mass:1TeV 

0 Lepton

Meff

1/
fb
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One lepton mode gives clear discovery for SUSY as you can see the lower plot:

Open hist shows 1TeV SUSY signal, and hatched shows sum of the BG

processes. Luminosity is assumed just 1fb-1

Top and W are dominant background processes:

    especially   tt-> lnlnbb (one lepton missing) 77%     tt->taunuqqbb (13%)

                       W->taunu 10%  after MT > 100GeV

    -> dilepton (one lepton missing) is important after MT > 100GeV.

Reference sample: W,tt -> one lepton (MT<100GeV)

Effective mass (GeV)

1 Lepton

Meff

1/
fb
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Dilepton mode is also important and have good potential for discovery

MET (GeV)

SUSY(A)  SU1   SUSY(B) SU3 1TeV SUSY
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MET (GeV)

OS dilepton SS dilepton

Main BG tt-> bblnln  for OS    and tt->bblnqq for SS

2 Opp Sign
Leptons

ET

1/
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Dilepton mode is also important and have good potential for discovery

MET (GeV)

SUSY(A)  SU1   SUSY(B) SU3 1TeV SUSY
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1
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MET (GeV)

OS dilepton SS dilepton

Main BG tt-> bblnln  for OS    and tt->bblnqq for SS

ET

2 Same Sign
Leptons

1/
fb

• Adding Leptons reduces 
QCD Background
• Better S/B in same sign 
than opposite sign



Razor variables
• Razor variables (C. Rogan arXiv:1006.2727) are kinematical variables to identify SUSY-like events 

• Variables take advantage of symmetric decay of SUSY events by forming two hemispheres (aka 
mega-jets) using all final state visible objects 

BOOST

Xq

q

X

LAB FRAME R-FRAME

rough-approximation frame 
CM of two heavy produced 
particles same as rest frame 
of individual heavy particles

G→qX

G→qX

• define variables that take advantage of the symmetry of the SUSY event:  
γRMR contains longitudinal event information, related to the SUSY mass scale 
MTR contains transverse event information 
R = MTR/γRMR a signal-to-background discriminant



The 1st ATLAS SUSY paper

• heavy colored particles production fully benefits 
from the LHC energy
• if SUSY: gluinos & squarks

• surpassed Tevatron with only 0.035 fb-1

• one of the top-cited LHC papers

Phys. Rev. Lett. 106, 131802 (2011)

l+ 

ETmiss 
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,missT
E) : 'monojet' + χWIMP interaction (D5, Dirac  

Scalar gluon : 2-jet resonance pair,missT
Ebs : 2 SS-lep + (0-3b-)j's + →t~t, t~→g~

 qqq : 3-jet resonance pair→ g~
,missTE + τ : 3 lep + 1 τντ,eeνττ→

0

1
χ∼, ..., -

1
χ∼+

1
χ∼

,missTE : 4 lep + 
e

νµ,eµνee→
0

1
χ∼, 0

1
χ∼W→+

1
χ∼, -

1
χ∼+

1
χ∼

,missTEBilinear RPV CMSSM : 1 lep + 7 j's + 
 resonanceτ)+µe(→τν

∼+X, τν
∼→LFV : pp

 resonanceµe+→τν
∼+X, τν

∼→LFV : pp
 + heavy displaced vertexµ (RPV) : µ qq→ 0

1
χ∼

 : non-pointing photonsG~γ→0
1
χ∼GMSB, 

β : low τ∼GMSB, stable 
γβ, β, R-hadrons : low g~Stable 
±

1
χ∼ pair prod. (AMSB) : long-lived ±

1
χ∼Direct 

,missTE : 3 lep + 0

1
χ∼

)*(Z0

1
χ∼

)*( W→ 0

2
χ∼±

1
χ∼

,missT
E) : 3 lep + νν∼l(Ll

~
ν∼), lνν∼l(Ll

~
νLl

~ → 0
2
χ∼±

1
χ∼

,missTE + τ) : 2 ν∼τ(ντ∼→+
1
χ∼, -

1
χ∼+

1
χ∼

,missTE) : 2 lep + ν∼(lνl~→+
1
χ∼, -

1
χ∼+

1
χ∼

,missTE : 2 lep + 0
1
χ∼l→l~, Ll

~
Ll

~ ,missT
Ell) + 1 lep + b-jet + →+Z : Z(1t

~
→2t

~, 2t
~

2t
~ ,missT

Ell) + b-jet + → (natural GMSB) : Z(t~t~
,missTE : 0 lep + 6(2b-)jets + 0

1
χ∼t→t~ (heavy), t~t~

,missTE : 1 lep + b-jet + 0
1
χ∼t→t~ (heavy), t~t~

,missTE : 2 lep + ±

1
χ∼b→t~ (medium), t~t~

,missTE : 1 lep + b-jet + ±

1
χ∼b→t~ (medium), t~t~

,missTE : 1/2 lep (+ b-jet) + ±

1
χ∼b→t~ (light), t~t~

,missTE : 2 SS-lep + (0-3b-)j's + ±

1
χ∼t→1b~, b~b~

,missTE : 0 lep + 2-b-jets + 0
1
χ∼b→1b~, b~b~

,missTE : 0 lep + 3 b-j's + 0
1
χ∼tt→g~

,missTE : 0 lep + multi-j's + 0
1
χ∼tt→g~

,missTE : 2 SS-lep + (0-3b-)j's + 0
1
χ∼tt→g~

,missTE : 0 lep + 3 b-j's + 0
1
χ∼bb→g~

,missTEGravitino LSP : 'monojet' + 
,missTEGGM (higgsino NLSP) : Z + jets + 
,missT

E + b + γGGM (higgsino-bino NLSP) : ,missT
E + lep + γGGM (wino NLSP) : ,missT
E + γγGGM (bino NLSP) : ,missT
E + j's + τ NLSP) : 1-2 τ∼GMSB ( ,missTE NLSP) : 2 lep (OS) + j's + l~GMSB (

,missTE) : 1 lep + j's + ±χ∼qq→g~ (±χ∼Gluino med. 
,missTEPheno model : 0 lep + j's + 
,missTEPheno model : 0 lep + j's + 
,missTEMSUGRA/CMSSM : 1 lep + j's + 
,missTEMSUGRA/CMSSM : 0 lep + j's + 

M* scale  < 80 GeV, limit of < 687 GeV for D8)χm(704 GeV , 8 TeV [ATLAS-CONF-2012-147]-1=10.5 fbL

sgluon mass (incl. limit from 1110.2693)100-287 GeV , 7 TeV [1210.4826]-1=4.6 fbL

 massg~ ))t~(m(any 880 GeV , 8 TeV [ATLAS-CONF-2013-007]-1=20.7 fbL

 massg~666 GeV , 7 TeV [1210.4813]-1=4.6 fbL

 mass+
1
χ∼
∼

 > 0)133λ) > 80 GeV, 0

1
χ∼(m(350 GeV , 8 TeV [ATLAS-CONF-2013-036]-1=20.7 fbL

 mass+
1
χ∼
∼

 > 0)121λ) > 300 GeV, 0

1
χ∼(m(760 GeV , 8 TeV [ATLAS-CONF-2013-036]-1=20.7 fbL

 massg~ = q~  < 1 mm)LSPτ(c1.2 TeV , 7 TeV [ATLAS-CONF-2012-140]-1=4.7 fbL

 massτν
∼ =0.05)1(2)33λ=0.10, ,

311λ(1.10 TeV , 7 TeV [1212.1272]-1=4.6 fbL

 massτν
∼ =0.05)132λ=0.10, ,

311λ(1.61 TeV , 7 TeV [1212.1272]-1=4.6 fbL

 massq~  decoupled)g~ < 1 m, τ(1 mm < c700 GeV , 7 TeV [1210.7451]-1=4.4 fbL

 mass0
1
χ∼ ) < 2 ns)0

1
χ∼(τ(0.4 < 230 GeV , 7 TeV [ATLAS-CONF-2013-016]-1=4.7 fbL

 massτ∼  < 20)β(5 < tan300 GeV , 7 TeV [1211.1597]-1=4.7 fbL

 massg~985 GeV , 7 TeV [1211.1597]-1=4.7 fbL

 mass±

1
χ∼ ) < 10 ns)±

1
χ∼(τ(1 < 220 GeV , 7 TeV [1210.2852]-1=4.7 fbL

 mass±

1
χ∼ ) = 0, sleptons decoupled)0

1
χ∼(m), 0

2
χ∼(m) = ±

1
χ∼(m(315 GeV , 8 TeV [ATLAS-CONF-2013-035]-1=20.7 fbL

 mass±

1
χ∼ ) as above)ν∼,l~(m) = 0, 0

1
χ∼(m), 0

2
χ∼(m) = ±

1
χ∼(m(600 GeV , 8 TeV [ATLAS-CONF-2013-035]-1=20.7 fbL

 mass±

1
χ∼ )))0

1
χ∼(m) + ±

1
χ∼(m(2

1) = ν∼,τ∼(m) < 10 GeV, 0

1
χ∼(m(180-330 GeV , 8 TeV [ATLAS-CONF-2013-028]-1=20.7 fbL

 mass±

1
χ∼ )))0

1
χ∼(m) + ±

1
χ∼(m(2

1) = ν∼,l~(m) < 10 GeV, 0

1
χ∼(m(110-340 GeV , 7 TeV [1208.2884]-1=4.7 fbL

 massl~ ) = 0)0

1
χ∼(m(85-195 GeV , 7 TeV [1208.2884]-1=4.7 fbL

 mass2t
~

) + 180 GeV)0

1
χ∼(m) = 1t

~(m(520 GeV , 8 TeV [ATLAS-CONF-2013-025]-1=20.7 fbL

 masst~ ) > 150 GeV)0

1
χ∼(m(500 GeV , 8 TeV [ATLAS-CONF-2013-025]-1=20.7 fbL

 masst~ ) = 0)0

1
χ∼(m(320-660 GeV , 8 TeV [ATLAS-CONF-2013-024]-1=20.5 fbL

 masst~ ) = 0)0

1
χ∼(m(200-610 GeV , 8 TeV [ATLAS-CONF-2013-037]-1=20.7 fbL

 masst~ ) = 10 GeV)±

1
χ∼(m)-t~(m) = 0 GeV, 0

1
χ∼(m(160-440 GeV , 8 TeV [ATLAS-CONF-2012-167]-1=13.0 fbL

 masst~ ) = 150 GeV)±

1
χ∼(m) = 0 GeV, 0

1
χ∼(m(160-410 GeV , 8 TeV [ATLAS-CONF-2013-037]-1=20.7 fbL

 masst~ ) = 55 GeV)0

1
χ∼(m(167 GeV , 7 TeV [1208.4305, 1209.2102]-1=4.7 fbL

 massb~ ))0
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χ∼(m) = 2 ±

1
χ∼(m(430 GeV , 8 TeV [ATLAS-CONF-2013-007]-1=20.7 fbL

 massb~ ) < 120 GeV)0

1
χ∼(m(620 GeV , 8 TeV [ATLAS-CONF-2012-165]-1=12.8 fbL

 massg~ ) < 200 GeV)0

1
χ∼(m(1.15 TeV , 8 TeV [ATLAS-CONF-2012-145]-1=12.8 fbL

 massg~ ) < 300 GeV)0

1
χ∼(m(1.00 TeV , 8 TeV [ATLAS-CONF-2012-103]-1=5.8 fbL

 massg~ ))0

1
χ∼(m(any 900 GeV , 8 TeV [ATLAS-CONF-2013-007]-1=20.7 fbL

 massg~ ) < 200 GeV)0

1
χ∼(m(1.24 TeV , 8 TeV [ATLAS-CONF-2012-145]-1=12.8 fbL

 scale1/2F  eV)-4) > 10G~(m(645 GeV , 8 TeV [ATLAS-CONF-2012-147]-1=10.5 fbL

 massg~ ) > 200 GeV)H~(m(690 GeV , 8 TeV [ATLAS-CONF-2012-152]-1=5.8 fbL

 massg~ ) > 220 GeV)0

1
χ∼(m(900 GeV , 7 TeV [1211.1167]-1=4.8 fbL

 massg~619 GeV , 7 TeV [ATLAS-CONF-2012-144]-1=4.8 fbL

 massg~ ) > 50 GeV)0

1
χ∼(m(1.07 TeV , 7 TeV [1209.0753]-1=4.8 fbL

 massg~  > 18)β(tan1.40 TeV , 8 TeV [1210.1314]-1=20.7 fbL

 massg~  < 15)β(tan1.24 TeV , 7 TeV [1208.4688]-1=4.7 fbL

 massg~ ))g~(m)+0
χ∼(m(2

1) = ±χ∼(m) < 200 GeV, 0

1
χ∼(m(900 GeV , 7 TeV [1208.4688]-1=4.7 fbL

 massq~ )0

1
χ∼) < 2 TeV, light g~(m(1.38 TeV , 8 TeV [ATLAS-CONF-2012-109]-1=5.8 fbL

 massg~ )0

1
χ∼) < 2 TeV, light q~(m(1.18 TeV , 8 TeV [ATLAS-CONF-2012-109]-1=5.8 fbL

 massg~ = q~1.24 TeV , 8 TeV [ATLAS-CONF-2012-104]-1=5.8 fbL

 massg~ = q~1.50 TeV , 8 TeV [ATLAS-CONF-2012-109]-1=5.8 fbL

Only a selection of the available mass limits on new states or phenomena shown.*
 theoretical signal cross section uncertainty.σAll limits quoted are observed minus 1

-1 = (4.4 - 20.7) fbLdt∫
 = 7, 8 TeVs

ATLAS
Preliminary

7 TeV, all 2011 data

8 TeV, partial 2012 data

8 TeV, all 2012 data

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 26, 2013)

If Higgs is at 125 GeV and no sign of new physics at LHC → Nature is not “natural”?



Data Analysis
• Objectives: 

• Searches (hypothesis testing): Likelihood Ratio Test (Neyman-Pearson lemma) 

• Limits (confidence intervals): Also based on Likelihood 

• Measurements: Maximum Likelihood Estimate 

• Likelihood

• n Independent Events (e) with Identically Distributed Observables ({x}) 

• Significant part of Data Analysis is approximating the likelihood as best as we 
can. 

• Likelihood is estimated via Monte Carlo sampling using highly faithful Simulation 

I N D E P E N D E N T  E V E N T S

•Make point that in HEP we consider our collisions during a given 
data taking period to be i.i.d. 

• so the likelihood is multiplicative across events, need to model 
distribution p(x|θ) for individual event 

• we often also have prediction for the expected number of events 
ν, which in general also depends on θ 

• we call this an extended likelihood, statisticians often call it a 
marked Poisson process  

• I will mainly ignore the Poisson part for this talk, but it can easily 
be added
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p({x}|✓) = Pois(n|⌫(✓))
nY

e=1

p(xe|✓)

L I K E L I H O O D  R AT I O S  F O R  H Y P O T H E S I S  T E S T I N G

5
⇒ Likelihood ratio leads to most powerful test

P (x|H1)
P (x|H0)

< k�
P (x|H1)
P (x|H0)

> k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H1)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)k� k�

P (x|H1)
P (x|H0)

> k�

Neyman-Pearson lemma



Likelihood Approximations
• Need P({xe}|θ) of an observed event (e). The better we do, the more sensitive our measurements. 

• Monte Carlo can only be done in the forward mode because of Hadronization and Simulation 

➡ cannot evaluate the likelihood.

• So we simulate a lot of events and use a Probability Density Estimator (PDE), e.g. a histogram.  

• {xe} = {100M Detector Channels} or even { particle 4-vectors } are too high dimension.  

• Instead we derive {xe} =  { small set of physics motivated observables } → Lose information. 

• Isolate signal dominating regions of {xe} → Lose Efficiency.  

• Sometimes use classifiers to further reduce dimensionality and improve significance 

• Profile the likelihood in 1 or 2 (ideally uncorrelated) observables. 

• Alternative, try to brute force calculate via Matrix Element Method: 

• But it’s technically difficult, computationally expensive, mistreats hadronization, and avoids 
simulation by highly simplifying the detector response. 

Mattelaer Olivier Data Science @LHC 2015 4

Weight Evaluation
P(pvis|�) = 1

⇥�

�
d�dx1dx2|M�(p)|2W (p,pvis)

Four Elements:

cross-section 

matrix-element 

transfer function 
 
 
 
 

integration

MadGraph5 

MadGraph5 

fitted from MC 
 
 
 

MadWeight

Computed via
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ftot(Dsim,G|↵) =
Y

c2channels

"
Pois(nc|⌫c(↵))

ncY

e=1

fc(xce|↵)

#
·
Y

p2S
fp(ap|↵p)

Slide from Kyle Cranmer:
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We demonstrate that recent developments in deep learn-
ing tools can overcome these failings, providing signifi-
cant boosts even without manual assistance.

RESULTS

The vast majority of particle collisions do not pro-
duce exotic particles. For example, though the Large
Hadron Collider produces approximately 1011 collisions
per hour, approximately 300 of these collisions result in
a Higgs boson, on average. Therefore, good data anal-
ysis depends on distinguishing collisions which produce
particles of interest (signal) from those producing other
particles (background).

Even when interesting particles are produced, detect-
ing them poses considerable challenges. They are too
small to be directly observed and decay almost immedi-
ately into other particles. Though new particles cannot
be directly observed, the lighter stable particles to which
they decay, called decay products, can be observed. Mul-
tiple layers of detectors surround the point of collision for
this purpose. As each decay product pass through these
detectors, it interacts with them in a way that allows its
direction and momentum to be measured.

Observable decay products include electrically-charged
leptons (electrons or muons, denoted `), and particle jets
(collimated streams of particles originating from quarks
or gluons, denoted j). In the case of jets we attempt
to distinguish between jets from heavy quarks (b) and
jets from gluons or low-mass quarks; jets consistent with
b-quarks receive a b-quark tag. For each object, the mo-
mentum is determined by three measurements: the mo-
mentum transverse to the beam direction (pT), and two
angles, ✓ (polar) and � (azimuthal). For convenience, at
hadron colliders, such as Tevatron and LHC, the pseu-
dorapidity, defined as ⌘ = � ln(tan(✓/2)) is used instead
of the polar angle ✓. Finally, an important quantity is
the amount of momentum carried away by the invisible
particles. This cannot be directly measured, but can be
inferred in the plane transverse to the beam by requiring
conservation of momentum. The initial state has zero
momentum transverse to the beam axis, therefore any
imbalance of transverse momentum (denoted 6ET ) in the
final state must be due to production of invisible particles
such as neutrinos (⌫) or exotic particles. The momentum
imbalance in the longitudinal direction along the beam
cannot be measured at hadron colliders, as the initial
state momentum of the quarks is not known.

Benchmark Case for Higgs Bosons (HIGGS)

The first benchmark classification task is to distinguish
between a signal process where new theoretical Higgs
bosons are produced, and a background process with the

b

b̄

W
Wg

g

H0

H±

h0

(a)

g

g

t

t̄

b

b̄

W+

W�

(b)

FIG. 1: Diagrams for Higgs benchmark. (a) Diagram de-
scribing the signal process involving new exotic Higgs bosons
H

0 and H
±. (b) Diagram describing the background process

involving top-quarks (t). In both cases, the resulting particles
are two W bosons and two b-quarks.

identical decay products but distinct kinematic features.
This benchmark task was recently considered by experi-
ments at the LHC [10] and the Tevatron colliders [11].

The signal process is the fusion of two gluons into a
heavy electrically-neutral Higgs boson (gg ! H

0), which
decays to a heavy electrically-charged Higgs bosons (H±)
and a W boson. The H

± boson subsequently decays to a
second W boson and the light Higgs boson, h0 which has
recently been observed by the ATLAS [12] and CMS [13]
experiments. The light Higgs boson decays predomi-
nantly to a pair of bottom quarks, giving the process:

gg ! H
0 ! W

⌥
H

± ! W
⌥
W

±
h
0 ! W

⌥
W

±
bb̄, (1)

which leads to W
⌥
W

±
bb̄, see Figure 1. The background

process, which mimics W
⌥
W

±
bb̄ without the Higgs bo-

son intermediate state, is the production of a pair of top
quarks, each of which decay to Wb, also giving W

⌥
W

±
bb̄,

see Figure 1.
Simulated events are generated with the mad-

graph5 [14] event generator assuming 8 TeV collisions
of protons as at the latest run of the Large Hadron
Collider, with showering and hadronization performed
by pythia [15] and detector response simulated by
delphes [16]. For the benchmark case here, mH0 = 425
GeV and mH± = 325 GeV has been assumed.

We focus on the semi-leptonic decay mode, in which
one W boson decays to a lepton and neutrino (`⌫) and
the other decays to a pair of jets (jj), giving decay prod-
ucts `⌫b jjb. We consider events which satisfy the re-
quirements:

7

TABLE I: Performance for Higgs benchmark. Com-
parison of the performance of several learning techniques:
boosted decision trees (BDT), shallow neural networks (NN),
and deep neural networks (DN) for three sets of input fea-
tures: low-level features, high-level features and the complete
set of features. Each neural network was trained five times
with di↵erent random initializations. The table displays the
mean Area Under the Curve (AUC) of the signal-rejection
curve in Figure 7, with standard deviations in parentheses as
well as the expected significance of a discovery (in units of
Gaussian �) for 100 signal events and 1000 ± 50 background
events.

AUC

Technique Low-level High-level Complete

BDT 0.73 (0.01) 0.78 (0.01) 0.81 (0.01)

NN 0.733 (0.007) 0.777 (0.001) 0.816 (0.004)

DN 0.880 (0.001) 0.800 (< 0.001) 0.885 (0.002)

Discovery significance

Technique Low-level High-level Complete

NN 2.5� 3.1� 3.7�

DN 4.9� 3.6� 5.0�

better understood than others, so that some simulated
background collisions have larger associated systematic
uncertainties than other collisions. This can transform
the problem into one of reinforcement learning, where
per-collision truth labels no longer indicate the ideal net-
work output target. This is beyond the scope of this
study, but see Refs. [22, 23] for stochastic optimizaton
strategies for such problems.

Figure 7 and Table I show the signal e�ciency and
background rejection for varying thresholds on the out-
put of the neural network (NN) or boosted decision tree
(BDT).

A shallow NN or BDT trained using only the low-level
features performs significantly worse than one trained
with only the high-level features. This implies that the
shallow NN and BDT are not succeeding in indepen-
dently discovering the discriminating power of the high-
level features. This is a well-known problem with shallow
learning methods, and motivates the calculation of high-
level features.

Methods trained with only the high-level features,
however, have a weaker performance than those trained
with the full suite of features, which suggests that despite
the insight represented by the high-level features, they do
not capture all of the information contained in the low-
level features. The deep learning techniques show nearly
equivalent performance using the low-level features and
the complete features, suggesting that they are automat-
ically discovering the insight contained in the high-level
features. Finally, the deep learning technique finds addi-
tional separation power beyond what is contained in the
high-level features, demonstrated by the superior perfor-
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FIG. 7: Performance for Higgs benchmark. For the
Higgs benchmark, comparison of background rejection versus
signal e�ciency for the traditional learning method (a) and
the deep learning method (b) using the low-level features, the
high-level features and the complete set of features.

mance of the deep network with low-level features to the
traditional network using high-level features. These re-
sults demonstrate the advantage to using deep learning
techniques for this type of problem.

The internal representation of a NN is notoriously dif-
ficult to reverse engineer. To gain some insight into the
mechanism by which the deep network (DN) is improving
upon the discrimination in the high-level physics features,
we compare the distribution of simulated events selected
by a minimum threshold on the NN or DN output, cho-
sen to give equivalent rejection of 90% of the background

Baldi, Sadowski,Whiteson 
arxiv:1402.4735

bette
r

bette
r

Slide from Kyle Cranmer



0

100

200

300

400

500

600

�10 0 10 20 30 40 50 60

M
`` T
2

1

10

100

1000

10000

0

100

200

300

400

500

600

0 20 40 60 80 100 120

M
`` T
2

1

10

100

1000

10000

100000

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140 160

M
`` T
2

1

10

100

1000

10000

100000

4.5

5

5.5

6

6.5

7

7.5

�10 0 10 20 30 40 50 60
ln
(p

T
)

1

10

100

1000

4.5

5

5.5

6

6.5

7

7.5

0 20 40 60 80 100 120

ln
(p

T
)

1

10

100

1000

4.5

5

5.5

6

6.5

7

7.5

0 20 40 60 80 100 120 140 160

ln
(p

T
)

1

10

100

1000

�30

�20

�10

0

10

20

�10 0 10 20 30 40 50 60
1

10

100

1000

�30

�20

�10

0

10

20

0 20 40 60 80 100 120
1

10

100

1000

�30

�20

�10

0

10

20

0 20 40 60 80 100 120 140 160
1

10

100

1000

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

�20 �10 0 10 20 30 40 50 60

�1

et ! e�0
1

0.001

0.01

0.1

1

10

100

1000

10000

100000

�20 0 20 40 60 80 100 120 140

�1

et ! e�0
1

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

�20 0 20 40 60 80 100 120 140 160

�1

et ! e�0
1

Figure 9: Top row: comparison histograms between mT2 and the highest activation-difference neurons in
the 2nd, 3th, and 5th hidden layers. The normalized mutual informations, eq. (1), associated with these
plots are, respectively: 0.31, 0.31, and 0.20. Second row: histograms of the same neurons against pmiss

T ,
for comparison. Normalized mutual informations: 0.13, 0.14, 0.22. Third row: the same neurons against
the final neuron of the network, L12N0. Mutual informations: 0.20, 0.22, 0.36. Bottom row: activation
histograms showing how well these neurons discriminate signal from background.
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Opening the black box of neural nets:
case studies in stop/top discrimination

Thomas Roxlo and Matthew Reece
Department of Physics, Harvard University, Cambridge, MA, 02138

April 26, 2018

Abstract

We introduce techniques for exploring the functionality of a neural network and extracting
simple, human-readable approximations to its performance. By performing gradient ascent on
the input space of the network, we are able to produce large populations of artificial events
which strongly excite a given classifier. By studying the populations of these events, we then
directly produce what are essentially contour maps of the network’s classification function.
Combined with a suite of tools for identifying the input dimensions deemed most important
by the network, we can utilize these maps to efficiently interpret the dominant criteria by which
the network makes its classification.

As a test case, we study networks trained to discriminate supersymmetric stop production
in the dilepton channel from Standard Model backgrounds. In the case of a heavy stop de-
caying to a light neutralino, we find individual neurons with large mutual information with
m``

T2, a human-designed variable for optimizing the analysis. The network selects events with
significant missing pT oriented azimuthally away from both leptons, efficiently rejecting tt
background. In the case of a light stop with three-body decays to Wbec and little phase space,
we find neurons that smoothly interpolate between a similar top-rejection strategy and an ISR-
tagging strategy allowing for more missing momentum. We also find that a neural network
trained on a stealth stop parameter point learns novel angular correlations.

1 Introduction

The Large Hadron Collider (LHC) had a stunning success with the discovery of the Higgs bo-
son, but so far all of the LHC’s measurements appear to be consistent with the Standard Model
(SM). This suggests that new physics, if it exists at the TeV scale, may be hidden in vast samples
of superficially similar background events. To extract such physics, we will need an increasingly
precise understanding of what the Standard Model predicts, together with powerful statistical
tools for searching for deviations from SM predictions. Such thinking has spurred increased use
of the tools of Machine Learning, such as Deep Neural Networks (DNNs). In recent years, DNNs
and related forms of so-called Deep Learning [1, 2] have shown great utility in a variety of appli-
cations previously the sole domain of biological brains, such as speech recognition [3], driving [4],
and playing the game of Go [5]. Machine Learning techniques have increasingly been applied to
particle physics problems, including (but not limited to) tagging boosted W bosons [6, 7] or top
quarks [8–10], reducing sensitivity to systematic uncertainties [11], discriminating between quark
and gluon jets [12,13], mitigating pileup [14], and distinguishing supersymmetric events from SM
backgrounds [15]. Further references may be found in the recent review [16].
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Observations 
• Given sufficient training data


• DNNs learn features


• Provide maximal signal vs background separation.


• In principle, no need for extended feature studies and optimization.


• In practice, gains wrt existing analyses (e.g. using BDTs)  often not observed or 
negligible. 


• My guess: signal train sample size.


• Small data sets


• Transfer learning


• Better architectures



Proposal



Goal
• Develop techniques to find New Physics (a.k.a. Beyond Standard Model) without 

specifying the New Physics at LHC, HL-LHC, HE-LHC, …


• Address problems of


• insufficient data for training.


• consistency between analyses / experiments.


• Setting up the problems enables us to also tackle auxiliary problems


• Fast Physics Generator Model


• Proposal: factorize problem into 


• Physics: kinematics


• Detector: systematics (beyond scope here?) 



Problem Formulation: Data
• Dataset (Monte Carlo Simulation):


• Large samples of “background” processes. 


• Signal to background in real data is 1 in 1011. 


• Easily reduced a few orders of magnitude, but generally background >> signal.


• Signal processes 


• Potentially N “free” physics model parameters, e.g. mass of new particle


• 2 strategies:


• One/Few processes: techniques that only look for deviation from Standard Model.


• Many processes: techniques that attempt to learn features.


• Levels of realism:


• Generator: 4-vectors, perfect resolution, quarks not jets, all particles “observed”. 


• Hadronized: turn quarks to jets + apply jet alg. Perfect resolution… 


• Simulated: “smear” 4-vector quantities to sim


•  Input:


• “Raw”: 3-vectors separated by particle type (electron, photon, muon, jet, b-jet, tau) + Missing Energy (2-
vector)


• “Features”: physics motivated functions of 3-vectors. e.g. M_T, M_eff, M_T2, Razor, …


• Note, these are variable length.



Problem Formulation
• Supervised Classification: We simulate the data, so we have perfect labels (physics process)


• Baseline: the best an anomaly detection can do … 


• Helps in learning features …


• Unsupervised Classification (clustering): 


• Test if clusters ~ physics processes … “e.g. recognizes SUSY though never told about SUSY”


• Out of cluster → Anomaly   


• Anomaly Detection: 


• never-before-seen process can be detected.


• 2 proposed paths to compare:


• Raw → Learned Features → Clustering/Anomaly Detection


• Raw → Clustering/Anomaly Detection



Inference Architecture
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for particle of type X = { e, μ, γ, jet, b-jet, τ}
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• Basically a Variational Auto-encoder

• Also enables unsupervised feature learning



Clustering & Anomaly 
Detection

• In both raw (4-vector) and Event Representation space.


• A variety of possible techniques:


• k-means, …


• self-similarity test


• self organizing maps


• Challenge here is computational


• Most anomaly detect / clustering algs scale poorly.


• N = Billions



DL Software and 
Technical Challenges



Basic DL Workflow
• Prepare data- 80% of the work… 

• Build Model 

• Define Cost/Loss Function 

• Run training (most commonly Gradient Decent) 

• Assess performance. 

• Run lots of experiments…



numpy, Theano, Keras
• Numpy  

• Provides a tensor representation. 

• It’s interface has been adopted by everyone. 

• e.g. HDF5, Then, TensorFlow, … all have their own tensors. 

• You can use other tensors, for the most part interchangeably with numpy. 

• Provides extensive library of tensor operations. 

• D = A * B + C, immediately computes the product of A and B matrices, and then computes the sum with C. 

• Theano (TensorFlow) 

• Allows you write tensor expressions symbolically. 

• A * B + C is an expression. 

• Compiles the expression into fast executing code on CPU/GPU: F(A,B,C) 

• You apply the Compiled function to data get at a result.  

• D=F(A,B,C)  

• Keras 

• Neutral Networks can be written as a Tensor mathematical expression. 

• Keras writes the expression for you.



DNN Software
• Common features of modern DL Frameworks: 

• Everything build by building mathematical expression for Model, Loss, Training from 
primitive ops on Tensors 

• Auto-differentiation: Symbolic derivatives for the Gradient Decent 

• 2 Classes of DNN Software: 

• Hep-Framework-Like: e.g. PyTorch, Torch, Caffe, … 

• C++  Layers (i.e. Algorithms) steered/configured via interpreted script. 

• Allows dynamic network construction… 

• Faster Research Workflow iteration.  

• General Computation Frameworks: Theano and TensorFlow   

• Builds Directed Acyclic Graph of the computation, performs optimizations 

• High-level tools make this look like HEP Frameworks (e.g. pylearn2, Lasagna, Keras, 
…) 

• Optimizes for Production Workflow 

• In practice performance is almost identical because majority of time spent in GPU 
computation which use same libraries. 

• Convergence: 

• PyTorch: _____ Mode 

• TensorFlow: Eager Mode

import tensorflow as tf

b = tf.Variable(tf.zeros([100])) # 100-d vector, init to zeroes
W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals
x = tf.placeholder(name="x") # Placeholder for input
relu = tf.nn.relu(tf.matmul(W, x) + b) # Relu(Wx+b)
C = [...] # Cost computed as a function

# of Relu

s = tf.Session()
for step in xrange(0, 10):

input = ...construct 100-D input array ... # Create 100-d vector for input
result = s.run(C, feed_dict={x: input}) # Fetch cost, feeding x=input
print step, result

Figure 1: Example TensorFlow code fragment

W

b

x

MatMul

Add

ReLU

...

C

Figure 2: Corresponding computation graph for Figure 1

Category Examples
Element-wise mathematical operations Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...
Array operations Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...
Matrix operations MatMul, MatrixInverse, MatrixDeterminant, ...
Stateful operations Variable, Assign, AssignAdd, ...
Neural-net building blocks SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...
Checkpointing operations Save, Restore
Queue and synchronization operations Enqueue, Dequeue, MutexAcquire, MutexRelease, ...
Control flow operations Merge, Switch, Enter, Leave, NextIteration

Table 1: Example TensorFlow operation types

by the session interface is Run, which takes a set of out-
put names that need to be computed, as well as an op-
tional set of tensors to be fed into the graph in place of
certain outputs of nodes. Using the arguments to Run,
the TensorFlow implementation can compute the transi-
tive closure of all nodes that must be executed in order
to compute the outputs that were requested, and can then

arrange to execute the appropriate nodes in an order that
respects their dependencies (as described in more detail
in 3.1). Most of our uses of TensorFlow set up a Session
with a graph once, and then execute the full graph or a
few distinct subgraphs thousands or millions of times via
Run calls.
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Technical Challenges
• Typically in HEP: 

• Datasets are too large to fit in memory. 

• Data comes as many files, each containing O(1000) events, organized into directories 
by particle type. 

• Potentially O(10000) processes ~ classes… hard to book-keep. 

• For training, data needs to be read, mixed, “labeled”, possibly augmented, and 
normalized…. can be time consuming. 

• Very difficult to keep the GPU fed with data. GPU utilization often < 10%, rarely > 50%. 

• Solutions: 

• Keras python multi-process generator mechanism has limitations…  

• PyTorch and TensorFlow very recently added parallel ETL (Extract, Transform, Load) 
pipelines 

• While significantly simplifiled, still can require custom code and hand tuning. 

• Performance sub-par.



1. Tensor operation parallelism: 
GPUs, FPGA, and ASICs 
(Google’s Tensor Processing Unit). 

• Note additional HN, Data, 
Model parallelism with multi-
GPU
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gradients 
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4. Model Parallelism: Large model spread 
over many GPUs or nodes. Less network 
traffic but only efficient for large models.   

Parallelism

Filler 
Process

Reader 
Process

Reader 
Process

Reader 
ProcessQ

ue
ue

“Batch 
specification”:
• For each 

class: a list of 
File by index 
and Indices 
to read from 
file.

Filler  
• Reads a “Sample 

Specification” 
• Opens files. 
• Applies filter.  

• Not parallel so 
not ideal. 

• But typically fast 
because on 
simple quantities 
in smaller tensor 
in file. 

• For each batch: 
• Determines how 

many events to 
read from each 
file. 

• Generates a “Batch 
Specification”

Q
ue

ue

Shared 
Memory

Shared 
Memory

Shared 
Memory

Generator

Generator

Generator

Share Memory 
Reference

Shared 
Memory: 
• Store Tensors 
• Shape known 

until first 
batch comes 
through

Readers: 
• Fetch Data From files. 
• Label and shuffle. 
• Apply a process function 
• May produce completely 

different tensors. 
• Caches File handles

Generator:
• Pull Share Memory Reference 

from Queue. 
• Gets tensor from Shared 

Memory (no copy) 
• Applies a “delivery function”, 

building the data structure 
expected by DL framework. 

• Delivers batch to model.

Model

Model

Model

Data Providers
“Sample Specification”:

[ [ File [Dataset keys] Label Rate], 
  [ File [Dataset keys] Label Rate], 
…] 

• Processing happens on First Epoch Only! 
• Data Cached into file during first epoch. 

• All of the processing only needs to be done 
once. 

• Automatically use another instance of data 
providers to read cache file for all other epochs. 

• Note that for now, we have both train and test data 
providers… better use of resources if we merge. 



• Research workflow can generate staggering number of models 

• Hyper-parameter scan/optimization 

• Snapshots (Choosing right epoch)… 

• Results of assessing performance of models 

• HEP: 

• Different models for different periods ~ calibrations in conditions 

• Keep track of model (and data) providence  

• Transfer learning 

• Common workflow (e.g. in image rec):  

• Supervised model training on any task on large dataset. 

• Repurpose model for another task 

• Fine-tune on small dataset 

• Need to break model into graphs (modules) that can be repurposed 
and combined 

• Communicated Models between Data Science and Production Teams 

• TensorFlowHub is an attempt to address these issues 

Models



M L 2 . 0 ?

82Slides from Jeff Dean of Google Brain @ Jeju last week https://drive.google.com/file/d/0B8z5oUpB2DysZWF1RTFuX1NEZUk/view 

Slide from Kyle Cranmer



Future 



DL Based Reco
• Immediate uses: 

• “Imaging” detectors likely path: 

1. Improved classification/regression with Convolutional NNs.  

2. Fast Showers with Generative models.  

3. Feature (particle) extraction with Regional NN and semantic segmentation. 

4. Full event classification 

• Recurrent networks 

• Reinforcement training… turn reconstruction into a board game. 

• Help with detector optimization: 

• DL provides easily obtainable, consistent, and probably optimal metrics.  

• Just simulate… no need to build reco tuned to every possibility.  

• Understand the fundamental limits but turning on physics / detector effects one by one in 
simulation. 



NEXT Detector Optimization
• Idea 1: use DNNs to optimize detector. 

• Simulate data at different resolutions 

• Use DNN to quickly/easily assess best performance for given resolution.

Examples of simulated events
• Simulated signal (below) and background (above) events: 2x2x2 mm voxels

• Simulated signal (below) and background (above) events: 10x10x5 mm voxels

Examples of simulated events

Table 3. Summary of DNN analysis for different Monte Carlo datasets. The accuracy was com-
puted assuming that the classification of the DNN corresponded to the category (signal or back-
ground) with the higher (> 50%) probability. In each case, approximately 15000 signal and 15000
background events were used in the training procedure, and between 2000-3000 signal and 2000-3000
background events independent of the training set were used to determine the accuracy.

2x2x2 voxels Run description Avg. accuracy (%)
Toy MC, ideal 99.8

Toy MC, realistic 0⌫�� distribution 98.9
Xe box GEANT4, no secondaries, no E-fluctuations 98.3

Xe box GEANT4, no secondaries, no E-fluctuations, no brem. 98.3
Toy MC, realistic 0⌫�� distribution, double multiple scattering 97.8

Xe box GEANT4, no secondaries 94.6
Xe box GEANT4, no E-fluctuations 93.0

Xe box, no brem. 92.4
Xe box, all physics 92.1

NEXT-100 GEANT4 91.6
10x10x5 voxels

NEXT-100 GEANT4 84.5

at the ends of the tracks produced by energetic electrons. The production of secondaries
coupled with energy fluctuations in energy deposition seems to be the principle cause of
accuracy loss in the DNN analysis. Future studies geared toward developing a DNN targeted
on the problem at hand, and attempting to extract information on what characteristics of
the tracks it is “learning,” would lead to a more complete understanding of the possibilities
and limitations of a DNN-based analysis.
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be chosen for determining whether an event is classified as signal or background. It can be
simply chosen as 50%, meaning the category with greatest probability is the classification
of the event, or it can be varied to reject further background at the expense of signal
efficiency. Figure 8 shows the corresponding pairs of signal efficiency and background
rejection produced by variation of this threshold, while for the values reported in table
2 the threshold was chosen such that the signal efficiency matched that reported in the
conventional analysis. Note that to optimize the sensitivity to 0⌫�� decay, one would seek
to maximize the ratio of signal events detected divided by the square root of background
events accepted (see [14]). Thus we define a figure of merit F = ns/

p
nb, where s and b are

the fractions of signal and background events accepted. This quantity is shown alongside
the plot of signal efficiency vs. background rejection in Fig. 8. In table 2 we reported
the values of background rejection corresponding to the signal efficiencies studied in the
classical analysis, though these did not optimize the figure of merit. For optimal figures
of merit, we would have signal efficiency of 69.0% (62.5%) and background acceptance of
2.5% (5.8%) for 2x2x2 mm3 (10x10x5 mm3) voxels.

Figure 8. Signal efficiency vs. background rejection for DNN analysis of voxelized (2x2x2 and
10x10x5 cubic mm), single-track NEXT-100 Monte Carlo events. The figure of merit F to be
maximized in an optimal 0⌫�� search is also shown as a function of background rejection.

6.2 Evaluating the DNN analysis

We now ask what is causing some significant fraction of the events to be misclassified in
the analysis described in section 6.1. To address this, a similar analysis was run on several

– 14 –

6 Event classification with a DNN

Here we investigate the performance of a DNN in classifying events into two categories,
“signal” and “background,” and compare the results to the conventional analysis described in
section 4.2. We chose to use the GoogLeNet DNN for this initial study, as its implementation
was readily available in the Caffe [12] deep learning framework along with an interface,
DIGITS [4], which allows for fast creation of image datasets and facilitates their input to
several DNN models. In order to generate large numbers of events with which to train
the DNN, an alternate GEANT-based Monte Carlo, which we call the “xenon box” (Xe
box) Monte Carlo, was run in which the NEXT-100 detector geometry was not present,
and background events (single electrons) and signal events (two electrons emitted from a
common vertex with a realistic 0⌫�� energy distribution) were generated in a large box
of pure xenon gas at 15 bar. These events were then subject to the same voxelization
procedure and single-track cut as described in section 2.1.

For two different configurations of voxel size, GoogLeNet was trained on 202400 Xe box
input events using one or more NVidia GeForce GPUs. Each event was input to the net as
a .png image consisting of three color (RGB) channels, one for each of three projections of
the 3D voxelized track, (R, G, B) ! (xy, yz, xz). This information for a signal event and
a background event was shown earlier for different voxelizations in Fig. 4 and Fig. 5.

6.1 Analysis of NEXT-100 Monte Carlo

To compare the ability of the DNN to classify events directly with the performance of the
topological analysis of section 4.2, we consider NEXT-100 Monte Carlo events that have
passed the pre-selection cuts described in 4.1, with chosen voxel sizes of both 2 x 2 x 2 mm3

and 10 x 10 x 5 mm3. For each chosen voxel size, Monte Carlo events that were subject to
the standard “blob cuts” of the classical analysis were classified by the corresponding DNN
trained using Xe box events. Note that the background events used in this comparison
were those produced by the 214 Bi decay. The results are shown in table 2. The DNN
analysis performs better than the conventional analysis, but there is still potential room for
improvement.

Table 2. Comparison of conventional and DNN-based analyses. The comparison shows, for a given
percentage of signal events correctly classified, the number of background (214Bi) events accepted
(mistakenly classified as signal).

Analysis Signal eff. (%) B.G. accepted (%)

DNN analysis (2 x 2 x 2 voxels) 86.2 4.7
Conventional analysis (2 x 2 x 2 voxels) 86.2 7.6

DNN analysis (10 x 10 x 5 voxels) 76.6 9.4
Conventional analysis (10 x 10 x 5 voxels) 76.6 11.0

Because the output layer of the DNN gives a probability that a given event is signal
and a probability that it is background, and these probabilities add to 1, a threshold may

– 13 –

• Idea 2: systematically study the relative importance of various physics/detector effects. 

• Start with simplified simulation. Use DNN to assess performance. 

• Turn on effects one-by-one.



DNN+HEP Software Needs (1/4) 
1. Inference in HEP Frameworks: 

• Need optimized and validated inference implementation. 

• This problem is mostly addressed… 

• ATLAS: Lightweight DNN Inference Framework 

• CMS: TensorFlow integration into CMS-SW 

• DNN weights can be Gigabytes, likely need  

• Condition DB-like systems storage. 

• Memory sharing between processes/threads. 

• I can imagine a DL service similar to ATLAS APE GPU service:  

• Processes are client of server(s) that talk to backends/accelerators. 

• No reason for every experiment to reinvent the wheel here…



2. Training systems: 

• Training DNNs efficiently generally requires GPUs (or other future accelerators).  

• Hyper-parameter scans / optimization critical part of DNN development workflow. 

• Great use of GPUs on HPCs. 

• Google and other clouds specifically target DL. 

• Today’s training samples can already be 10s of Terabytes, requiring massive parallelism. 

• Data Parallelism: Bottlenecked by gradient syncing between GPUs or systems. Lots of Engineering in 
Industry already. And some HEP solutions… 

• Model Parallelism: Less sync’ing but only makes sense for large enough model. 

• No more embarrassingly parallel. Must provision large number of machines. 

• As DNNs become essential, training them becomes part of software releases, simulation, reco,… cycle. 

• New simulation/reco can require regenerating large training sets (various conditions) and running long 
training before using reco.  

• Somewhat analogous to calibration on express streams. 

• I can imagine Workflow and Data Management systems designed for DL training workflows on any available 
resource. 

DNN+HEP Software Needs (2/4) 



1. Tensor operation parallelism: 
GPUs, FPGA, and ASICs 
(Google’s Tensor Processing Unit). 

• Note additional HN, Data, 
Model parallelism with multi-
GPU
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4. Model Parallelism: Large model spread 
over many GPUs or nodes. Less network 
traffic but only efficient for large models.   

Parallelism



3. Training Datasets… 

• DL generally requires huge independent simulated training samples. 

• But HEP Experimental data is private, making collaboration and rapid publication 
difficult. 

• Reconstruction DNNs will likely require Geant4. (i.e. CPU intensive) 

• Collaboration with Machine Learning experts and among experiments require public data 
sets. 

• Publicly available simulation and reconstruction (for base-line).  

• Some are now available… 

• Need to store and distribute large data-sets to public. 

• CERN Open Data? 

DNN+HEP Software Needs (3/4) 



4. Event Processing within Deep Learning Frameworks 

• DL will potentially become integral to our software and trigger 

• We may replace code with weights. 

• DL integrated into HEP frameworks. Not just an external. (example next slide)  

• Many-core/FPGA/neuro-morphic accelerators may prolong Moore’s law 

• Experiments like DUNE will run for 30 years and must keep up with emerging tech. 

• Frameworks must [automatically] optimize and place computations on a variety of rapidly evolving 
hardware and software. 

• May need to distribute processing of individual events across cluster (like HEP trigger)  

• Use network hardware for primitive operations during transfers. 

• Partially process on specialized machines (specific accelerators, HPC, massive memory, …) 

• Industry will highly optimize DL systems and provide services around them.

DNN+HEP Software Needs (4/4) 
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R&D Proposal
• Premise: We need new frameworks to take advantage of DL and emerging architectures. 

➡ Build HEP Framework on top of a DL Framework.  

• If we envision new frameworks need to do R&D now, ver 1.0 by 2020, deployed by 2025. 

• R&D Proposal (can we do traditional HEP Reco in DL Framework?): 

• Build HEP Reco on top of Google’s OpenSource TensorFlow 

• General computation system, based on Directed Acyclic Graphs. 

• Framework for Automatic optimizations (like Theano), though currently primitive.   

• Supports all architectures and distributes computation across GPUs and clusters.  

• Build a HEP Framework in python (like Keras) with C++ wrapped in TF ops. 

• 3 project ideas: 

• First steps of LArTPC reco: deconvolution, hit finding, … 

• Online Sparsification and compression of LArTPC data for protoDUNEs. 

• ATLAS GPU Trigger Demonstrator: Wrap the existing GPU/CPU kernels in TensorFlow Ops. 



Science Fiction?
• Imagine in next 10 years DNN lives up to the hype… 

• We’ve proven DNNs gets us better, faster, easier 
software… and hardware. 

• Industry investment in DNNs has yielded significant 
gain over Moore’s Law 

• Custom DL/neuromorphic chips and HPCs 

• Software Frameworks 

• Cloud Services 

• Consultants: 

• Data Scientists: DL reduces need for domain-
specific expertise (e.g. in biology now).  

• Data Engineers: low level optimization, 
deployment, operation…    

• Actually, all of these already exist! 

• Large portions of HEP code replaced by deep 
neutral network architecture and weights.  

• HEP Software Frameworks built on top of DL 
Frameworks.  

• To DL systems, our computing looks like 
everyone else’s… e.g. other sciences. 

• Optimization, deployment, operations handled by 
professional Data Engineers.   

• Trigger implemented in custom inference 
systems built from heterogeneous commodity 
hardware. 

• Computation performed on DL Clouds and 
scientific HPCs. 

• DNNs designed and trained in collaboration with 
professional Data Scientists.  

• HEP PhDs trained/funded by industry to apply DL 
to HEP and then transition to industry.



Final Thoughts
• Deep Learning can change how science is done. 

• Improve performance. Save time and money. 

• Mitigate stalling of Moore’s law. 

• Use most recent hardware. 

• Allow scientists to focus on concepts rather than implementation. 

• Over past few years the utility and feasibility of applying DL to solve HEP problems has be established in 
many areas… 

• Adding realism and moving into production is the next challenge.  

• We can’t forget that DL can complicated things: 

• Systematics. Data/MC agreement. 

• Generate large independent training and calibration samples. 

• New complicated “release”, production, and analysis cycles/work-flows. 

• If we want to be ready for the DL revolution in 10 years, we need to do R&D now.



Jet Physics with Deep 
Learning
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J E T  S U B S T R U C T U R E

•Many scenarios for physics Beyond the Standard Model 
include highly boosted W, Z, H bosons or top quarks  

•Identifying these rests on subtle substructure inside jets 

• an enormous number of theoretical effort in developing 
observables and techniques to tag jets like this 

5

2

b Rbb Rfilt

Rbbg

b
R

mass drop filter

FIG. 1: The three stages of our jet analysis: starting from a hard massive jet on angular scale R, one identifies the Higgs
neighbourhood within it by undoing the clustering (effectively shrinking the jet radius) until the jet splits into two subjets
each with a significantly lower mass; within this region one then further reduces the radius to Rfilt and takes the three hardest
subjets, so as to filter away UE contamination while retaining hard perturbative radiation from the Higgs decay products.

objects (particles) i and j, recombines the closest pair,
updates the set of distances and repeats the procedure
until all objects are separated by a ∆Rij > R, where R
is a parameter of the algorithm. It provides a hierarchical
structure for the clustering, like the K⊥algorithm [9, 10],
but in angles rather than in relative transverse momenta
(both are implemented in FastJet 2.3[11]).

Given a hard jet j, obtained with some radius R, we
then use the following new iterative decomposition proce-
dure to search for a generic boosted heavy-particle decay.
It involves two dimensionless parameters, µ and ycut:

1. Break the jet j into two subjets by undoing its last
stage of clustering. Label the two subjets j1, j2 such
that mj1 > mj2 .

2. If there was a significant mass drop (MD), mj1 <
µmj, and the splitting is not too asymmetric, y =
min(p2

tj1
,p2

tj2
)

m2

j

∆R2
j1,j2

> ycut, then deem j to be the

heavy-particle neighbourhood and exit the loop.
Note that y ≃ min(ptj1 , ptj2)/ max(ptj1 , ptj2).

1

3. Otherwise redefine j to be equal to j1 and go back
to step 1.

The final jet j is to be considered as the candidate Higgs
boson if both j1 and j2 have b tags. One can then identify
Rbb̄ with ∆Rj1j2 . The effective size of jet j will thus be
just sufficient to contain the QCD radiation from the
Higgs decay, which, because of angular ordering [12, 13,
14], will almost entirely be emitted in the two angular
cones of size Rbb̄ around the b quarks.

The two parameters µ and ycut may be chosen inde-
pendently of the Higgs mass and pT . Taking µ ! 1/

√
3

ensures that if, in its rest frame, the Higgs decays to a
Mercedes bb̄g configuration, then it will still trigger the
mass drop condition (we actually take µ = 0.67). The cut
on y ≃ min(zj1 , zj2)/ max(zj1 , zj2) eliminates the asym-
metric configurations that most commonly generate sig-
nificant jet masses in non-b or single-b jets, due to the

1 Note also that this ycut is related to, but not the same as, that
used to calculate the splitting scale in [5, 6], which takes the jet
pT as the reference scale rather than the jet mass.

Jet definition σS/fb σB/fb S/
√

B · fb

C/A, R = 1.2, MD-F 0.57 0.51 0.80

K⊥, R = 1.0, ycut 0.19 0.74 0.22

SISCone, R = 0.8 0.49 1.33 0.42

TABLE I: Cross section for signal and the Z+jets background
in the leptonic Z channel for 200 < pTZ/GeV < 600 and
110 < mJ/GeV < 125, with perfect b-tagging; shown for
our jet definition, and other standard ones at near optimal R
values.

soft gluon divergence. It can be shown that the maxi-
mum S/

√
B for a Higgs boson compared to mistagged

light jets is to be obtained with ycut ≃ 0.15. Since we
have mixed tagged and mistagged backgrounds, we use a
slightly smaller value, ycut = 0.09.

In practice the above procedure is not yet optimal
for LHC at the transverse momenta of interest, pT ∼
200 − 300 GeV because, from eq. (1), Rbb̄ ! 2mh/pT is
still quite large and the resulting Higgs mass peak is sub-
ject to significant degradation from the underlying event
(UE), which scales as R4

bb̄
[15]. A second novel element

of our analysis is to filter the Higgs neighbourhood. This
involves resolving it on a finer angular scale, Rfilt < Rbb̄,
and taking the three hardest objects (subjets) that ap-
pear — thus one captures the dominant O (αs) radiation
from the Higgs decay, while eliminating much of the UE
contamination. We find Rfilt = min(0.3, Rbb̄/2) to be
rather effective. We also require the two hardest of the
subjets to have the b tags.

The overall procedure is sketched in Fig. 1. We il-
lustrate its effectiveness by showing in table I (a) the
cross section for identified Higgs decays in HZ produc-
tion, with mh = 115 GeV and a reconstructed mass re-
quired to be in an moderately narrow (but experimen-
tally realistic) mass window, and (b) the cross section
for background Zbb̄ events in the same mass window.
Our results (C/A MD-F) are compared to those for the
K⊥algorithm with the same ycut and the SISCone [16]
algorithm based just on the jet mass. The K⊥algorithm
does well on background rejection, but suffers in mass
resolution, leading to a low signal; SISCone takes in less
UE so gives good resolution on the signal, however, be-
cause it ignores the underlying substructure, fares poorly
on background rejection. C/A MD-F performs well both
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Searching for new particles 
decaying into boosted W 

bosons requires looking at the 
radiation pattern inside jets

momentum transverse 
to the beam (pT)
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Pre-processing & spacetime symmetries
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Can help to learn faster & smarter; but must be careful!

One of the first typical steps is pre-processing



One of the most useful physics-
inspired features is the jet mass
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Why images?
Can directly visualize physics

N
or

m
al

iz
ed

 P
ix

el
 E

ne
rg

y 
D

iff
er

en
ce

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
-310×

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

b b→ 1,  8 →p p 
 = 125 GeV

1,8
re-showered with Pythia 8, m

N
or

m
al

iz
ed

 P
ix

el
 E

ne
rg

y
-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

b b→ 1 →p p 
 = 125 GeV

1
re-showered with Pythia 8, m

N
or

m
al

iz
ed

 P
ix

el
 E

ne
rg

y

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

b b→ 8 →p p 
 = 125 GeV

8
re-showered with Pythia 8, m

N
or

m
al

iz
ed

 P
ix

el
 E

ne
rg

y

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

b b→ 1 →p p 
 = 125 GeV

1
re-showered with Pythia 8, m

N
or

m
al

iz
ed

 P
ix

el
 E

ne
rg

y

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

b b→ 8 →p p 
 = 125 GeV

8
re-showered with Pythia 8, m

there is information encoded in the 
physical distance between pixels

g ⇢ qq

W ⇢ qq

and we can benefit from the 
extensive image processing literature
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Modern Deep NN’s for Classification
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Exciting New Directions

So far only scratches the surface
…this is a very active field of research!
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D E E P  L E A R N I N G  V S .  T H E O R Y

•While the DNN shows a significant improvement with 
respect to the jet mass combined with single theory 
inspired variable (eg. τ₂₁, D₂), only a small improvement with 
respect to a BDT using several theory-inspired variables
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FIG. 4: Signal e�ciency versus background rejection (inverse
of e�ciency) for deep networks trained on the images and
boosted decision trees trained on the expert features, both
with (bottom) and without pile-up (top). Typical choices of
signal e�ciency in real applications are in the 0.5-0.7 range.
Also shown are the performance of jet mass individually as
well as two expert variables in conjunction with a mass win-
dow.

INTERPRETATION

Current typical use in experimental analysis is the
combination of the jet mass feature with ⌧21 or one of
the energy correlation variables. Our results show that
even a straightforward BDT-combination of all six of the
high-level variables provides a large boost in comparison.
In probing the power of deep learning, we then use as our
benchmark this combination of the variables provided by
the BDT.

The deep network has clearly managed to match or
slightly exceed the performance of a combination of the
state-of-the-art expert variables. Physicists working on

the underlying theoretical questions may naturally be cu-
rious as to whether the deep network has learned a novel
strategy for classification which could inform their stud-
ies, or rediscovered and further optimized the existing
features.
While one cannot probe the motivation of the ML al-

gorithm, it is possible to compare distributions of events
categorized as signal-like by the di↵erent algorithms in
order to understand how the classification is being accom-
plished. To compare distributions between di↵erent algo-
rithms, we study simulated events with equivalent back-
ground rejection, see Figs. 5 and 6 for a comparison of the
selected regions in the expert features for the two classi-
fiers. The BDT preferentially selects events with values
of the features close to the characteristic signal values
and away from background-dominated values. The DNN,
which has a modestly higher e�ciency for the equivalent
rejection, selects events near the same signal values, but
in some cases can be seen to retains a slightly higher frac-
tion of jets away from the signal-dominated region. The
likely explanation is that the DNN has discovered the
same signal-rich region identified by the expert features,
but has in addition found avenues to optimize the perfor-
mance and carve into the background-dominated region.
Note that DNNs can also be trained to be independent of
mass, by providing a range of mass in training, or train-
ing a network explicitly parameterized [44, 45] in mass.

DISCUSSION

The signal from massive W ! qq jets is typically ob-
scured by a background from the copiously produced low-
mass jets due to quarks or gluons. Highly e�cient classifi-
cation is critical, and even a small relative improvement
in the classification accuracy can lead to a significant
boost in the power of the collected data to make statis-
tically significant discoveries. Operating the collider is
very expensive, so particle physicists need tools that al-
low them to make the most of a fixed-size dataset. How-
ever, improving classifier performance becomes increas-
ingly di�cult as the accuracy of the classifier increases.
Physicists have spent significant time and e↵ort de-

signing features for jet-tagging classification tasks. These
designed features are theoretically well motivated, but as
their derivation is based on a somewhat idealized descrip-
tion of the task (without detector or pileup e↵ects), they
cannot capture the totality of the information contained
in the jet image. We report the first studies of the ap-
plication of deep learning tools to the jet substructure
problem to include simulation of detector and pileup ef-
fects.
Our experiments support two conclusions. First, that

machine learning methods, particularly deep learning,
can automatically extract the knowledge necessary for
classification, in principle eliminating the exclusive re-

•Other Problems: 

• image-based approach not 
easily generalized to non-
uniform calorimeters 

• not easy to extend to tracks, 
projecting into towers looses 
information 

• theory inspired variables work on 
set of 4-vectors & have 
important theoretical properties

Whiteson, et al arXiv:1603.09349 
Oliveira, et. al arXiv:1511.05190

Barnard, et al arXiv:1609.00607



F R O M  I M A G E S  T O  S E N T E N C E S

•Recursive Neural Networks showing great performance for 
Natural Language Processing tasks 

• neural network’s topology given by parsing of sentence!

33

Analogy: 
word → particle 
parsing → jet algorithm
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• Each node combines 4-momentum in (E-
scheme recombination of ok) and a non-linear 
transformation of hidden state of children hkL, 
hkR ∈ ℝ⁴⁰ 

• Recursively applied (shared weights, Markov) 

• “gating” allows for weighting of information of 
L/R children and for to flow directly along one 
branch

kt
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Appendix A: Gated recursive jet embedding

The recursive activation proposed in Sec. III A su↵ers
from two critical issues. First, it assumes that left-child,
right-child and local node information hjet

kL
, hjet

kR
, uk are

all equally relevant for computing the new activation,
while only some of this information may be needed and
selected. Second, it forces information to pass through
several levels of non-linearities and does not allow to
propagate unchanged from leaves to root. Addressing
these issues and generalizing from [12–14], we recursively
define a recursive activation equipped with reset and up-
date gates as follows:

hjet
k

=

8
><

>:

uk if k is a leaf

zH � h̃jet
k

+ zL � hjet
kL

+ otherwise

,! zR � hjet
kR

+ zN � uk

(A1)

uk = � (Wug(ok) + bu) (A2)

ok =

(
vi(k) if k is a leaf

okL + okR otherwise
(A3)
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where W
h̃

2 Rq⇥3q, b
h̃

2 Rq, Wz 2 Rq⇥4q, bz 2 Rq,
Wr 2 Rq⇥3q, br 2 Rq, Wu 2 Rq⇥4 and bu 2 Rq form
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•Work with Gilles Louppe, Kyunghyun Cho, Cyril Becot 
(arXiv:1702.00748) 

• Use sequential recombination jet algorithms to 
provide network topology (on a per-jet basis) 

• path towards ML models with good physics properties 

• Top node of recursive network provides a fixed-length 
embedding of a jet that can be fed to a classifier

kt anti-kt
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FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using kt topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.

FIG. 4. Jet classification performance of the RNN classifier
based on various network topologies for the embedding (par-
ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with
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towers 

particles

images

• W-jet tagging example  
using data from Dawe, et 
al arXiv:1609.00607 

• down-sampling by 
projecting into images 
looses information 

• RNN needs much less 
data to train!

kt anti-kt
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Abstract

Supervised learning has incredible potential for particle physics, and one appli-
cation that has received a great deal of attention involves collimated sprays of
particles called jets. Recent progress for jet physics has leveraged machine learning
techniques based on computer vision and natural language processing. In this work,
we consider message passing on a graph where the nodes are the particles in a
jet. We design variants of a message-passing neural network (MPNN); (1) with a
learnable adjacency matrix, (2) with a learnable symmetric adjacency matrix, and
(3) with a set2set aggregated hidden state and MPNN with an identity adjacency
matrix. We compare these against the previously proposed recursive neural network
with a fixed tree structure and show that the MPNN with a learnable adjacency
matrix and two message-passing iterations outperforms all the others.

1 Introduction

Several physics goals for the Large Hadron Collider (LHC) are inextricably linked to the treatment of
collimated sprays of energetic hadrons referred to as ‘jets’. There are a number of tasks encountered
in jet physics including classification and regression associated to the progenitor particle(s) giving
rise to the jet. For instance, a jet may result from a quark, gluon, W -boson, top-quark, or Higgs
boson. Several Beyond the Standard Model (BSM) theories involve new particles and interactions
that predict specific jet signatures, but testing these theories is challenging because jets from more
mundane processes occur much more frequently. Often sensitivity to these BSM theories requires
classifiers with true positive rates of O(1) and false positive rates of O(10�2). There has been
an enormous amount of effort from both the theoretical and experimental communities to develop
techniques for jet physics [1].

Recent progress in applying machine learning techniques for jet physics has been built upon an
analogy between calorimeters and images [2–9]. These methods take a variable-length set of 4-
momenta and project them into a fixed grid of ⌘ � � towers or ‘pixels’ to produce a ‘jet image’.

More recently, recursive neural networks have been applied to this classification problem based on
an analogy between QCD and natural languages [10]. Much like a sentence is composed of words
following a syntactic structure organized as a parse tree, a jet is also composed of particles following

⇤Corresponding authors

Workshop on Deep Learning for Physical Sciences (DLPS 2017), NIPS 2017, Long Beach, CA, USA.



Table 1: Summary of classification performance for several approaches.

Network Iterations ROC AUC R✏=50%

RecNN-kt (without gating) [10] 1 0.9185± 0.0006 68.3± 1.8
RecNN-kt (with gating) [10] 1 0.9195± 0.0009 74.3± 2.4
RecNN-desc-pT (without gating) [10] 1 0.9189 ± 0.0009 70.4 ± 3.6
RecNN-desc-pT (with gating) [10] 1 0.9212 ± 0.0005 83.3 ± 3.1

RelNet 1 0.9161± 0.0029 67.69± 6.80

MPNN (directed) 1 0.9196± 0.0015 89.35± 3.54
MPNN (directed) 2 0.9223± 0.0008 98.26± 4.28
MPNN (directed) 3 0.9188± 0.0031 85.93± 8.50

MPNN (undirected) 1 0.9193± 0.0015 86.41± 3.80
MPNN (undirected) 2 0.8949± 0.1004 97.27± 5.02
MPNN (undirected) 3 0.9185± 0.0036 84.53± 8.64

MPNN (set, directed) 1 0.9189± 0.0017 88.23± 4.53
MPNN (set, directed) 2 0.9191± 0.0046 87.46± 14.14
MPNN (set, directed) 3 0.9176± 0.0049 88.33± 9.84

MPNN (set, undirected) 1 0.9196± 0.0014 85.65± 4.48
MPNN (set, undirected) 2 0.9220± 0.0007 94.70± 2.95
MPNN (set, undirected) 3 0.9158± 0.0054 75.94± 12.54

MPNN (id) 1 0.9169± 0.0013 74.75± 2.65
MPNN (id) 2 0.9162± 0.0020 74.41± 3.50
MPNN (id) 3 0.9158± 0.0029 74.51± 5.20

class, which we denote ’W jets’, arises from W bosons decaying into two quarks leading a single
“fat jet” with characteristic substructure. Specifically, we use particle-level input used in Ref. [10] and
compare with the results using the best performing RNN based on a simple descending pT ordering
and the binary tree defiend by the kt jet algorithm (↵ = 1). We use background rejection (i.e., 1/FPR)
at 50% signal efficiency, which we denote R✏=50%, for early stopping. For each model architecture
considered, we train models with different initialization and follow the same prescription as Ref. [10]
to provide a robust estimate of the mean and standard deviation by excluding outliers. We note the
standard error on the mean is roughly five times smaller than the standard deviation.

Table 1 compares the results of various approaches using the same test data as Ref. [10]. The MPNN
with a learned adjacency matrix and two iterations of message passing achieves the best performance
in terms of both ROC AUC and R✏=50%. The directed graph slightly outperforms the undirected
graph, though not significantly. The learned adjacency matrix outperforms the identity, confirming
the fact that pairwise particle interactions need to be taken into account. Our experiments indicate that
adding message passing iterations does not monotonically increase the performance. We attribute this
fact to the learning instability, evidenced by the increased variance, caused by the increased number
of parameters, suggesting that better regularization techniques may be necessary in the future to
stabilize learning and further improve the performance. We also notice that the set variants generally
underperform. Although more in-depth analysis is necessary to make any firm conclusion, currently
the aggregated hidden state seems to act more as noise than useful signal in the MPNN iteration.

4 Conclusions

With these initial results we conclude that the MPNNs are a powerful model for jet physics. Similar
to recursive neural networks, they can operate on a variable number of particles and do not require
any discretization into a fixed-length input or image-like pre-processing. In addition, the graph repre-
sentation allows for information between all particles to be exchanged, where such communication is
restricted to a tree structure in the recursive approach. We have observed that the model configuration
influences the final result, thus care must be taken when designing the MPNN.
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