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Introduction – Charged Particle Therapy

Response dependence on beam energy,
slow collection time,
reduced sensitivity.
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Motivation: beam monitoring in PT

Fast response time, 
high time resolution,

large granularity.

Radiation damage,
Pile-up effects,
High readout complexity.

Solid state detectors
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Ultra Fast Silicon Detector (UFSD)
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increasing with reverse bias

Thin p+ gain layer implanted 
under the n++ cathodeSmall signal duration (1 ns) 

→ particle counting
Excellent time resolution (tens of ps)

→ beam energy measurement 

Single particle detection 
capability

Energy measurement from 
Time of Flight (ToF).
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1. to directly count individual protons:
 area 3x3 cm2;
 up to fluence rate of 108 p/s cm2 (with error < 1% - clinical requirement);
 segmented in strips  beam projections in two orthogonal directions;

2. to measure the beam energy with time-of-flight techniques, using a 
telescope of two UFSD sensors:
 error < 1 mm range in water.

TN

PV

CT

LNS

For additional details http://www.tifpa.infn.it/projects/move-it/

Two prototypes of UFSD for radiobiological applications @ three irradiation facilities:

Aim of the projectINFN 
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1. to directly count individual protons:
 area 3x3 cm2;
 up to fluence rate of 108 p/s cm2 (with error < 1% - clinical requirement);
 segmented in strips  beam projections in two orthogonal directions;

2. to measure the beam energy with time-of-flight techniques, using a 
telescope of two UFSD sensors:
 error < 1 mm range in water.

Modeling and Verification for 
Ion beam Treatment planning

TN

PV

CT

LNS

For additional details http://www.tifpa.infn.it/projects/move-it/

Implementation of advanced radiobiological models in 
ion TPS, experimental verification in-vitro and in-vivo. 

Two prototypes of UFSD for radiobiological applications @ three irradiation facilities:

Aim of the projectINFN 
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Particle Counting

A. Vignati PRAE WORKSHOP - ORSAY - OCTOBER 8-10, 2018 16



Test of 50 μm UFSD prototypes @ CNAO (protons) 

18 silicon-on-silicon wafers

different doping strategies
for the gain layer to improve
radiation resistance.
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5,6 
mm

30 strips, 
pitch 150 μm

20 strips, 
pitch 200 μm
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different doping strategies
for the gain layer to improve
radiation resistance.

30,0 mm

15,0 mm

5,6 
mm

5,6 
mm

30 strips, 
pitch 150 μm

20 strips, 
pitch 200 μm

Clinical Proton Beam

 Beam FWHM ~ 10mm

 Max flux ~ 109 p/s 
delivered in spills

 Beam flux range:                      
20% - 100% of max flux.

 Beam energy range:
62 – 227 MeV (5 – 2 MIPs)

Readout
 Passive FE boards

aligned to the beam
 CIVIDEC broadband                         

40 dB amplifiers
 CAEN digitizer (5 Gs/s)
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protons can be easily distinguished;

 large amplitude fluctuations;
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 Peaks corresponding to individual 
protons can be easily distinguished;

 large amplitude fluctuations;

 short peak duration;

Signal waveform acquired on a clinical proton beam
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protons can be easily distinguished;

 large amplitude fluctuations;

 short peak duration;

 fixed threshold can be applied to count 
the pulses;

Channel 1
227 MeV protons

Threshold

Signal waveform acquired on a clinical proton beam
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 Peaks corresponding to individual 
protons can be easily distinguished;

 large amplitude fluctuations;

 short peak duration;

 fixed threshold can be applied to count 
the pulses;

Channel 1
227 MeV protons

Threshold

Count protons

Signal waveform acquired on a clinical proton beam
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 Good S/N separation;
 Larger S/N at lower beam energies;
 Best threshold is beam energy dependent.
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Peak Area and Landau distribution 

Beam energy 147 MeV

 Area of peaks proportional to collected charge;
 well described by Landau formula

Fit to Landau 
formula

Peak area [10-12 Vs]
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Peak Area and Landau distribution 

Beam energy 147 MeV

 Area of peaks proportional to collected charge;
 well described by Landau formula

Fit to Landau 
formula

Beam energy [MeV]Peak area [10-12 Vs]
M

P
V

 [
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V
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 Landau’s MPV dependence on beam energy 
well described by Bethe-Bloch 1/v2

dependence

Fit to 1/v2
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Particle Counting
Pile-up inefficiency
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Concern: pile-up inefficiency
Measured vs. estimated rate, using a PTW pinpoint 
I.C. and a varied beam flux (20 – 50 – 100% of max)

Average beam fluence rate (GHz/cm2)
0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0

M
e

as
u

re
d

 a
ve

ra
ge

  R
at

e
 [

M
H

z]

Average rate estimated with the ionization chamber[MHz]

𝑅 =
𝑄

𝐶
𝑒−

𝑄

𝐶
𝜏

𝑸=total charge in I.C.
𝝉=deadtime

PTW pinpoint I.C. Strip sensor

BEAM

A. Vignati PRAE WORKSHOP - ORSAY - OCTOBER 8-10, 2018 29



 Large inefficiency observed (up to 25% at 
largest clinical fluxes)              Correction
required

 Data well described by paralyzable pileup 
model
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 Large inefficiency observed (up to 25% at 
largest clinical fluxes)              Correction
required

 Data well described by paralyzable pileup 
model
deadtime much larger than expected 

Concern: pile-up inefficiency
Measured vs. estimated rate, using a PTW pinpoint 
I.C. and a varied beam flux (20 – 50 – 100% of max)
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 Large inefficiency observed (up to 25% at 
largest clinical fluxes)              Correction
required

 Data well described by paralyzable pileup 
model
deadtime much larger than expected 

 Reason relies on the bunched structure 
of the CNAO beam (istanteneous flux ~ 
10 X average)

Concern: pile-up inefficiency
Measured vs. estimated rate, using a PTW pinpoint 
I.C. and a varied beam flux (20 – 50 – 100% of max)

Average beam fluence rate (GHz/cm2)
0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0

M
e

as
u

re
d

 a
ve

ra
ge

  R
at

e
 [

M
H

z]

Average rate estimated with the ionization chamber[MHz]

𝑅 =
𝑄

𝐶
𝑒−

𝑄

𝐶
𝜏

𝑸=total charge in I.C.
𝝉=deadtime

A. Vignati PRAE WORKSHOP - ORSAY - OCTOBER 8-10, 2018 34



Concern: pile-up inefficiency

A. Vignati PRAE WORKSHOP - ORSAY - OCTOBER 8-10, 2018 35



~1010 p/s cm2 !!

400 ns

Concern: pile-up inefficiency

 Measurement of  CNAO proton
beam structure.
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Requirements

Input ch. range: 3 fC ÷ 140 fC

Rate/channel: up to 200 MHz

Inefficiency < 1 %.

FPGA
- FE inizialization
- Pulse counting
- Pileup correction

+ Additional 
functionalities 

(threshold scan, ....)

2 alternative designs (CSA & TIA) of the amplifier developed and compared

f = 250 MHz

CSA post layout (250 MHz)Preamplifier
output

Discriminator
output

100 ns

Protoypes (24 ch) of the 2 
architectures (UMC110 technology)

Fast read-out electronics

Test Board 
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Counting - outlook

Test Board 

Strip 
sensor

3 x 3 cm2

Test of complete chain…

FPGA 
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Energy Measurement
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Beam

UFSD sensors

L

Beam telescope

Beam energy measured from Time-of-Flight

Energy measurement - coincidences
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UFSD sensors

Dt

Beam telescope

Beam energy measured from Time-of-Flight

Beam

Energy measurement - coincidences
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applied on pulses signals 
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227 MeV protons

Beam energy measured from Time-of-Flight

Beam

UFSD sensors

L

Beam telescope

Energy measurement - coincidences

E = 105 MeV
d= 67 cm

<ΔT> = 5.231 ns
Stat error on <ΔT>=
0.003 ns

Time resolution of 
single crossing
σ(t) = 120ps/√2 ≈ 

90 ps

Dt [ns]
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Energy measurement - test

4 distances= 7, 37, 67, 97 cm
5 energies= 62.73, 80.70, 106.24, 150.99, 228.56 MeV

BEAM
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Energy measurement - test
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Energy measurement - test

4 distances= 7, 37, 67, 97 cm
5 energies= 62.73, 80.70, 106.24, 150.99, 228.56 MeV

BEAM

Hamamatsu 4* (3x3) mm2 (80 μm)
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Maximum error on ToF per 
unit distance L corresponding 
to an uncertainty  < 1 mm 
range in water.

kinetic energy [MeV]

m
ax

 σ
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Energy measurement – range requirements
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For 1m distance the max 
error on TOF = 4 ps

kinetic energy [MeV]
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Energy measurement – range requirements

For 1m distance, 228 MeV, 1010

protons: error on TOF = 4 ps
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Maximum error on ToF per 
unit distance L corresponding 
to an uncertainty  < 1 mm 
range in water.



Energy measurement – preliminary results
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Energy measurement – preliminary results
Residual = Nominal E – Measured E
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Energy measurement – outlook

11 strips of 2.2 mm2 (3993 um x 550 um; 
Pitch = 590 um):

2 gain with optical windows;
8 gain (NO optical windows);
1 no gain with optical windows;

50 μm active thickness + 500 μm handling wafer.

Thinning of sensors;
Study and design of the read-out board;
Acquisition with DIGITIZER.
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UFSD are a promising new
technology for beam
qualification and monitoring
in Particle Therapy
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 Fast collection time + Large S/N ratio

directly count number of beam ions

UFSD are a promising new
technology for beam
qualification and monitoring
in Particle Therapy

 Prototype for proton counting 
(3x3 cm2 area, strip sensors).2019
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 Fast collection time + Large S/N ratio

directly count number of beam ions

 Excellent time resolution 

real-time measurement of the beam energy

UFSD are a promising new
technology for beam
qualification and monitoring
in Particle Therapy

 Prototype for proton counting 
(3x3 cm2 area, strip sensors).

 Prototype for real-time energy 
measurement (4x4 mm2 area).

2019
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 Fast collection time + Large S/N ratio

directly count number of beam ions

 Excellent time resolution 

real-time measurement of the beam energy

UFSD are a promising new
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Energy measurement – Global Fit

Where
i = 1 -> 5 (𝐸𝑖 = energies of the beams)
j = 1, 2, 3, 4 (𝑑𝑗 = distances between the two detectors).
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Preliminary results (80 μm) – Δt vs distance



Simulation
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GEANT4 simulation of material effects (energy loss and multiple scattering)
WEIGHTFIELD2 simulation of the UFSD response. 



62 MeV
110 MeV
227 MeV

Negative bias voltage [V]

Gain(V) =
MPVgain (V)

MPVno gain(V)
 Gain increase with Vbias

 Similar trend observed with laser 
source on test pads

 Long strips (thinner) show a lower 
average gain than short strips

geometrical effectLong 
strips

Short 
strips

Gain profile

Average 
gain

Short st. Long st.

Detector cross sections

ga
in

FBK strips
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Gain of strips detectors



Physics

• Depth dose distributions
• Nuclear fragment spectra 

(including target – FOOT exp)
• Stopping power data

Radiobiology
(= Biological effects + micro/nanoscale physics)

• RBE (eg.  LEMx, MKM)
• OER
• DEF

TPS

Beamline specifics Patient Imaging data
Including intratumor heterogeneityEffective Dose profile

Clinical Impact
Verification

TCP/NTCP 

advanced 
beam monitoring 

“Bio”-dosimetry

Slide from E. Scifoni
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A Graphycal summary of MoVe IT



Boron
Radiation creates interstitial defects 
that inactivate the Boron

Gallium
From literature, Gallium has a lower 
possibility to become interstitial

Carbon
Interstitial defects filled with Carbon 
instead of with Boron and Gallium

Main effect of the irradiation is the inactivation of the dopant in the gain layer
 Substitutional → interstitial (acceptor removal)
 Effect: reduction of gain

Slide from RD50 Collaboration

UFSD2 production @ FBK:
 4 different gain layer strategies:

- Boron (Low & High diffusion)
- Carbonated Boron (High diffusion)
- Gallium (Low diffusion)
- Carbonated Gallium (Low diffusion)

 4 (3) different doping concentration 
for Boron (Gallium) implants

 2  different diffusion temperatures 
for Boron

 2 carbon concentration (Low & High)

Motivation for the doping strategy of UFSD2 production



POWER DEVICE 
ANALYZER/CURVE TRACKER

MODEL : KEYSIGHT B1505A 

MANUAL PROBE STATION
ALESSI

CUSTOM PROBE CARD FOR 
SIMULATANEOUS CONTACT 
TO ALLSTRIPS + GUARD RING

LAB setup for IV and CV curves
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Strip Characterization
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To BreakdownLeakage current for MoveIt strips (B doping) vs bias voltage

IV curves



Allow to determine the doping profile: example a short MoveIt strip (B doped)

Τ
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𝐶2
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2𝑉𝑏𝑖𝑎𝑠
𝑒𝜖0𝜖𝑟𝐴

2𝑁𝐴Depletion of gain 
layer

Detector fully 
depleted

Vbias [V]Depletion 
voltage

𝑁𝐴 =
2

𝑒𝜖0𝜖𝑟𝐴
2 𝑑( Τ1 𝐶2)
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gain layer

CV curves



Laser beam

Short strips of (B doped)

Multichannel Amplifier/Shaper 
board (CMS CT-PPS)

Picosecond Pulsed IR laser:
λ = 1060 nm, Spot size ~ 20 μm

GAIN
NO 

GAIN

Front and back metallization:
sensor mounted to allow laser 
scan along the strip edge

scan

Signal amplitude scan between adjacent strips

60 μm

R
e

su
lt

s

 Gain ≈ 4 at  Vbias= -230 V
 Dead area ~ 60 μm

• expected by sensor layout and by the 
production technology, in agreement with 
TCAD simulations

• possibly reduced in next UFSD production

Gain

Strip characterization with laser scan



TCT Setup from Particulars 
Pico-second IR laser at 1064 nm
Laser spot diameter ~ 50 µm
Cividec Broadband Amplifier (40dB)
Oscilloscope Lecroy 640Zi
Room temperature

GAIN = (Signal area LGAD)/(Signal area PiN)
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Gain Measurement with PS laser



Irradiadiation in Ljubljana 
Fluence steps: 2 - 4 - 8∙1014 neq/cm2

1.5 - 3 - 6 ∙1015 neq/cm2

1∙1016 neq/cm2

▻ Carbonated sensors have a factor ~ 3 better acceptor removal coefficient
▻ Among not carbonated sensors, low diffusion Boron has the better response to irradiation

Irradiation with neutrons



24 GeV/c Proton irradiation @ CERN PS
Fluence steps: 1 - 6∙1014 neq/cm2

1 - 3 - 6 - 9 ∙1015 n/cm2

Irradiation with protons



Non- paralyzable model

Paralyzable model

Pileup models


