

Fast Silicon Detectors for beam monitoring in proton therapy: preliminary results

<u>A Vignati¹</u>, Z Ahmadi Ganjeh², A Attili¹, M Boscardin^{3,4}, N Cartiglia¹, GF Dalla Betta⁴, M Donetti⁵, F Fausti^{1,6}, M Ferrero¹, F Ficorella^{3,4}, S Giordanengo¹, O Hammad Ali^{1,7}, M Mandurrino¹, L Manganaro^{1,7}, G Mazza¹, V Monaco^{1,7}, G Paternoster^{3,4}, R Sacchi^{1,7}, Z Shakarami^{1,7}, V Sola¹, A Staiano¹, R Cirio^{1,7}

1 – National Institute for Nuclear Physics (INFN) – Torino (Italy), 2 – Faculty of Physics, University of Yazd, Iran, 3 – Fondazione Bruno Kessler (FBK), Trento (Italy), 4 – National Institute for Nuclear Physics (INFN), TIFPA, Trento (Italy), 5 – Fondazione CNAO, Pavia (Italy), 6 – Politecnico di Torino (Italy), 7 – Università degli Studi di Torino (Italy).

Introduction – Charged Particl

3

Motivation: beam monitoring in PT

Solid state detectors

t response time, time resolution, large granularity.

Radiation damage Pile-up effects, High readout complexity.

Thin p+ **gain layer** implanted under the n++ cathode

A. Vignati

Two prototypes of UFSD for radiobiological applications @ three irradiation facilities:

- 1. to **directly count** individual protons:
 - area 3x3 cm²;
 - up to fluence rate of 10⁸ p/s cm² (with error < 1% clinical requirement)</p>
 - \succ segmented in strips \rightarrow beam projections in two orthogonal directions;
- 2. to **measure the beam energy** with time-of-flight techniques, using a telescope of two UFSD sensors:
 - error < 1 mm range in water.</p>

For additional details http://www.tifpa.infn.it/projects/move-it/

Modeling and **Ve**rification for Ion beam Treatment planning ion TPS, experimental verification in-vitro and in-vivo.

Two prototypes of UFSD for radiobiological applications @ three irradiation facilities:

- 1. to **directly count** individual protons:
 - > area 3x3 cm²;
 - up to fluence rate of 10⁸ p/s cm² (with error < 1% clinical requirement)</p>
 - \succ segmented in strips \rightarrow beam projections in two orthogonal directions;
- 2. to **measure the beam energy** with time-of-flight techniques, using a telescope of two UFSD sensors:
 - error < 1 mm range in water.</p>

For additional details http://www.tifpa.infn.it/projects/move-it/

Particle Counting

Test of 50 µm UFSD prototypes @ CNAO (protons)

18 silicon-on-silicon wafers

different **doping strategies** for the gain layer to improve **radiation resistance**.

Test of 50 µm UFSD prototypes @ CNAO (protons)

18 silicon-on-silicon wafers

different **doping strategies** for the gain layer to improve **radiation resistance**.

<u>Readout</u>

- Passive FE boards aligned to the beam
- CIVIDEC broadband
 - 40 dB amplifiers
- CAEN digitizer (5 Gs/s)

Test of 50 µm UFSD prototypes @ CNAO (protons)

18 silicon-on-silicon wafers

different **doping strategies** for the gain layer to improve **radiation resistance**.

<u>Readout</u>

- Passive FE boards aligned to the beam
- CIVIDEC broadband
 - 40 dB amplifiers
- CAEN digitizer (5 Gs/s)

NAO nical Proton Beam

- Beam FWHM ~ 10mm
- Max flux ~ 10⁹ p/s delivered in spills
- Beam flux range:20% 100% of max flux.
- Beam energy range:
 62 227 MeV (5 2 MIPs)

- Peaks corresponding to individual protons can be easily distinguished;
- Iarge amplitude fluctuations;

- Peaks corresponding to individual protons can be easily distinguished;
- Iarge amplitude fluctuations;
- short peak duration;
- fixed threshold can be applied to count the pulses;

- Peaks corresponding to individual protons can be easily distinguished;
- Iarge amplitude fluctuations;
- short peak duration;
- fixed threshold can be applied to count the pulses;

Count protons

Signal distribution

Signal distribution

Peak Area and Landau distribution

- > Area of peaks proportional to collected charge;
- well described by Landau formula

Peak Area and Landau distribution

- Area of peaks proportional to collected charge; > Landau's MPV dependence on beam energy
- well described by Landau formula

Landau's MPV dependence on beam energy well described by Bethe-Bloch 1/v² dependence

Particle Counting

Pile-up inefficiency

BEAM Strip sensor PTW pinpoint I.C.

- Large inefficiency observed (up to 25% at largest clinical fluxes) Correction required
- Data well described by paralyzable pileup model

- Large inefficiency observed (up to 25% at largest clinical fluxes) Correction required
- Data well described by paralyzable pileup model

- Large inefficiency observed (up to 25% at largest clinical fluxes) Correction required
- Data well described by paralyzable pileup model

- Large inefficiency observed (up to 25% at largest clinical fluxes) Correction required
- Data well described by paralyzable pileup model deadtime much larger than expected

- Large inefficiency observed (up to 25% at largest clinical fluxes) Correction required
- Data well described by paralyzable pileup model deadtime much larger than expected
- Reason relies on the bunched structure of the CNAO beam (istanteneous flux ~ 10 X average)

PRAE WORKSHOP - ORSAY - OCTOBER 8-10, 2018
Concern: pile-up inefficiency

Measurement of CNAO proton beam structure.

Fast read-out electronics

Counting - outlook

Test of complete chain...

Test Board

3 x 3 cm²

Energy Measuremer

Beam energy measured from Time-of-Flight

Beam telescope UFSD sensors

Beam energy measured from Time-of-Flight

Beam telescope UFSD sensors

Beam energy measured from Time-of-Flight

Beam telescope UFSD sensors

44

46

Energy measurement - test

4 distances= 7, 37, 67, 97 cm 5 energies= 62.73, 80.70, 106.24, 150.99, 228.56 MeV

Energy measurement - test

4 distances= 7, 37, 67, 97 cm 5 energies= 62.73, 80.70, 106.24, 150.99, 228.56 MeV

Energy measurement - test

4 distances= 7, 37, 67, 97 cm Hamamatsu 4* (3x3) mm² (80 μm) 5 energies= 62.73, 80.70, 106.24, 150.99, 228.56 MeV

Energy measurement – range requirements

For 1m distance the max error on TOF = 4 ps

Energy measurement – range requirements

Energy measurement – preliminary results

Energy measurement – preliminary results

Energy measurement – outlook

11 strips of 2.2 mm² (3993 um x 550 um; Pitch = 590 um):

2 gain with optical windows;8 gain (NO optical windows);1 no gain with optical windows;

50 μm active thickness + 500 μm handling wafer.

Thinning of sensors; Study and design of the read-out board; Acquisition with DIGITIZER.

Fast collection time + Large S/N ratio
directly count number of beam ions

 ✓ Prototype for proton counting (3x3 cm² area, strip sensors).

2019

Fast collection time + Large S/N ratio
directly count number of beam ions

Excellent time resolution
real-time measurement of the beam energy

Prototype for proton counting

- (3x3 cm² area, strip sensors).
- ✓ Prototype for real-time energy measurement (4x4 mm² area).

2019

2019

 ✓ Prototype for proton counting (3x3 cm² area, strip sensors).

 Prototype for real-time energy measurement (4x4 mm² area).

✓ Dedicated Fast readout electronics (TERA10).

Fast collection time + Large S/N ratio
directly count number of beam ions

Excellent time resolution
real-time measurement of the beam energy

 ✓ Prototype for proton counting (3x3 cm² area, strip sensors).
 ✓ Prototype for real-time energy measurement (4x4 mm² area).

✓ Dedicated Fast readout electronics (TERA10).

Fast collection time + Large S/N ratio
directly count number of beam ions

Radiobiological experiments

Excellent time resolution

real-time measurement of the beam energy

 ✓ Prototype for proton counting (3x3 cm² area, strip sensors).
 ✓ Prototype for real-time energy measurement (4x4 mm² area).

- ✓ Dedicated Fast readout electronics (TERA10).
- Fast collection time + Large S/N ratio
 - directly count number of beam ions
 - **OPEN ISSUE:** pile-up inefficiency, radiation hardness
- Excellent time resolution

real-time measurement of the beam energy

OPEN ISSUE: sistematic errors, radiation hardness

Radiobiological experiments

 ✓ Prototype for proton counting (3x3 cm² area, strip sensors).
 ✓ Prototype for real-time energy measurement (4x4 mm² area).
 ✓ Dedicated Fast readout electronics (TERA10).

Fast collection time + Large S/N ratio
directly count number of beam ions

OPEN ISSUE: pile-up inefficiency, radiation hardness

Excellent time resolution

real-time measurement of the beam energy

OPEN ISSUE: sistematic errors, radiation hardness

Acknowledgements

This work was supported by the INFN Gruppo V (MoVe-IT project) and by the European Union's Horizon 2020 Research and Innovation funding program (Grant Agreement no. 669529 - ERC UFSD669529).

We acknowledge the proactive collaboration of the Fondazione Bruno Kessler to this project.

We also thank the CNAO Foundation (Pavia) for the beam time accorded.

Thank you!

anna.vignati@to.infn.it

Spares

Energy measurement – Global Fit

Where

i = 1 -> 5 (E_i = energies of the beams) j = 1, 2, 3, 4 (d_j = distances between the two detectors).

Preliminary results (80 μ m) – Δ t vs distance

Simulation

GEANT4 simulation of material effects (energy loss and multiple scattering) **WEIGHTFIELD2** simulation of the UFSD response.

Gain of strips detectors

A Graphycal summary of MoVe IT

WORKSHOP ON PICO-SECOND TIMING DETECTORS FOR PHYSICS AND MEDICAL APPLICATIONS

Motivation for the doping strategy of UFSD2 production

Main effect of the irradiation is the inactivation of the dopant in the gain layer

- ➤ Substitutional → interstitial (acceptor removal)
- Effect: reduction of gain

Boron

Radiation creates interstitial defects that inactivate the Boron

Gallium

From literature, Gallium has a lower possibility to become interstitial

Carbon

Interstitial defects filled with Carbon instead of with Boron and Gallium

UFSD2 production @ FBK:

- ➤ 4 different gain layer strategies:
 - Boron (Low & High diffusion)
 - Carbonated Boron (High diffusion)
 - Gallium (Low diffusion)
 - Carbonated Gallium (Low diffusion)
- 4 (3) different doping concentration for Boron (Gallium) implants
- 2 different diffusion temperatures for Boron
- > 2 carbon concentration (Low & High)

LAB setup for IV and CV curves

MANUAL PROBE STATION ALESSI

CUSTOM PROBE CARD FOR SIMULATANEOUS CONTACT TO ALLSTRIPS + GUARD RING

POWER DEVICE ANALYZER/CURVE TRACKER

MODEL : KEYSIGHT B1505A

Strip Characterization

IV curves

CV curves

Allow to determine the doping profile: example a short Movelt strip (B doped)

Strip characterization with laser scan

Short strips of (B doped)

Signal amplitude scan between adjacent strips

strip 2 gain

600

possibly reduced in next UFSD production

strip 1 no-gain

strip 2 no-gain

Gain Measurement with PS laser

GAIN = (Signal area LGAD)/(Signal area PiN)

TCT Setup from Particulars
Pico-second IR laser at 1064 nm
Laser spot diameter ~ 50 μm
Cividec Broadband Amplifier (40dB)
Oscilloscope Lecroy 640Zi
Room temperature

Irradiation with neutrons

- ▷ Carbonated sensors have a factor ~ 3 better acceptor removal coefficient
- ▷ Among not carbonated sensors, low diffusion Boron has the better response to irradiation

Irradiation with protons

y = 1.0E+00e^{-4.3E-16x} • W6 B+C - <CV>

y = 1.0E+00e^{-7.4E-16x} • W15 Ga+C <CV>

y = 1.0E+00e^{-1.0E-15x} • W3 B <CV>

y = 1.0E+00e^{-1.5E-15x} • W14 Ga <CV>

 $\frac{24 \text{ GeV/c Proton irradiation @ CERN PS}}{\text{Fluence steps: } 1 - 6 \cdot 10^{14} \text{ n}_{eq}/\text{cm}^2}$ $1 - 3 - 6 - 9 \cdot 10^{15} \text{ n/cm}^2$

Pileup models

