The ATLAS High-Granularity Timing Detector

Sabrina Sacerdoti on behalf of the HGTD group

Laboratoire de l'Accélérateur Linéaire IN2P3 institutes involved: LAL, LPNHE, Omega, Clermont-Ferrand

LAL Seminar 25th of September

Contents

1. Motivation

- 2. The High-Granularity Timing Detector
- 3. Performance improvements
 - Object reconstruction
 - Luminosity measurement
- 4. Detector design
 - Time Resolution
 - Sensors
 - Electronics
 - Mechanics
- 5. Summary

The High-Luminosity LHC

- ► The HL-LHC :
 - will start operation in 2026
 - ▶ instant luminosity 5 7× nominal
 - integrated luminosity 10× LHC
- Pileup is one of the most difficult challenges of the HL-LHC
- ATLAS Upgrade involving
 - new electronics in LAr and Tile
 - improved TDAQ
 - improved muon trigger/tagging
 - ITk: tracking up to $|\eta| = 4.0$
 - HGTD

Key aspect for ATLAS analysis: maintain the track-vertex association performance in spite of the harsh environment

Motivation: beam conditions and z_0

- Increased luminosity at the HL-LHC:
 - expected $\langle \mu \rangle = 200$
 - average interaction density ~ 1.8 vtx/mm
- The z_0 resolution worsens with $|\eta|$:
 - several vertexes could be merged
 - degradation of performance in forward jet reconstruction
 - (i.e. critical for VBF signals)

Motivation: precise timing measurements

- An additional dimension (4D) in existing detectors can provide a new handle on increased interactions per mm
- Expected nominal HL-LHC beam conditions: $\sigma_z = 45$ mm and $\sigma_t = 175$ ps
- Assigning a time to a track with a small enough time resolution would boost the discrimination power of ATLAS (~ 6 times for σ_t = 30 ps)

The High-Granularity Timing Detector

The HGTD will provide time measurements for objects in the forward regions of the ATLAS detector

The High-Granularity Timing Detector

The HGTD will provide time measurements for objects in the forward regions of the ATLAS detector

General parameters:

- ▶ 2.4 < |η| < 4.0</p>
- Active area 6.3 m² (total)
- ► Design based on 1.3 × 1.3 mm² silicon pixels (2 × 4 cm² sensors) → optimised for < 10% occupancy and small capacitance</p>
- Radiation hardness up to 4.5 10¹⁵ n_{eq}/cm² and 4.5 MGy
- Number of hits per track:
 - ▶ 2 in 2.4 < |η| < 3.1</p>
 - ▶ 3 in 3.1 < |η| < 4.0</p>

Goal:

- Resolve close-by vertices
 - small timing resolution (~few 10s of picoseconds).
- Provide minimum bias trigger
- Instantaneous and unbiased luminosity measurement

Performance Studies

- Example: pileup tracks in a forward jet
- Well separated vertices:

$$rac{|z_0 - z_{vtx}|}{\sigma_{z_0}} < 2$$

- Example: pileup tracks in a forward jet
- Well separated vertices:

$$rac{|z_0-z_{vtx}|}{\sigma_{z_0}} < 2$$

 Example: pileup tracks in a forward jet

$$\frac{|z_0-z_{vtx}|}{\sigma_{z_0}} < 2$$

- Example: pileup tracks in a forward jet
- Well separated vertices:

$$rac{|z_0-z_{vtx}|}{\sigma_{z_0}} < 2$$

Timing information:

$$rac{|t-t_0|}{\sigma_t} < 2$$

Pileup jet rejection

- Tagging pileup jets
- Fraction of p_T of a jet coming from PV tracks:

- Improving id of PV0 tracks improves the discrimination power of R_ρ,
- Up to a factor of 4 higher pu-jet rejection with the use of timing information
- More robust pileup rejection

Hard-scatter jet efficiency

- Tagging of jets coming from the HS vertex
- Also using R_{pT}
- Fixed pileup-jet efficiency of 2% (rejection factor of 50)

- ▶ The HGTD recovers the 10-30% drop in efficiency observed in the forward region.
- Allows to maintain similar pileup-jet suppression performance as in the central barrel.

Lepton Isolation

- The HGTD can be used to assign a time to leptons in the forward region.
- Isolation efficiency: probability that no track with p_T > 1 GeV is reconstructed within ΔR < 0.2 of the lepton track.</p>

Efficiency above 80% even at higher pileup density

Heavy-flavour tagging

- Addition of the HGTD removes the majority of pileup tracks from the track selection.
- For a b-tagging efficiency of 70%(85%), the light-jet rejection for MV1 is increased by approximate factors 1.5 (1.2)
- The improvement could be higher in processes with more forward b-jets.

Impact in Analyses

Luminosity measurement

- The luminosity uncertainty could limit the accuracy of some high precision measurements at the HL-LHC
- Need measurement as precise as in Runs I & II (currently 2.4%)
- Key characteristics of HGTD:
 - ► Fast signals → N_{hits} per bunch-crossing
 - High granularity \rightarrow low occupancy $\rightarrow \langle N_{hits} \rangle \propto \langle pp_{int} \rangle$
- Unbiased and high statistics per-BC measurement, available online and offline.

Detector Design

Contributions to the timing resolution:

$$\sigma_{T}^{2} = \sigma_{S}^{2} + \sigma_{TW}^{2} + \sigma_{\textit{jitter}}^{2} + \sigma_{\textit{clock}}^{2}$$

► *σs*

- Landau fluctuations in the energy deposits of the particles
- non-uniformity of the energy deposit along the particle path; depends on the sensor thickness

Contributions to the timing resolution:

$$\sigma_{T}^{2} = \sigma_{S}^{2} + \sigma_{TW}^{2} + \sigma_{jitter}^{2} + \sigma_{clock}^{2}$$

•
$$\sigma_S$$

• $\sigma_{TW}^2 = [\frac{V_{th}}{S/t_{rise}}]_{RMS} \propto [\frac{N}{dV/dt}]_{RMS}$

- Variations due to differences in the amplitude of the signal.
- Expected to be negligible after applying an offline correction based on measuring the TOT.

Contributions to the timing resolution:

$$\sigma_{T}^{2} = \sigma_{S}^{2} + \sigma_{TW}^{2} + \sigma_{jitter}^{2} + \sigma_{clock}^{2}$$

•
$$\sigma_S$$

• $\sigma_{TW}^2 = [\frac{V_{th}}{S/t_{rise}}]_{RMS} \propto [\frac{N}{dV/dt}]_{RMS}$

•
$$\sigma_{jitter}^2 = \frac{N}{dV/dt} \sim \frac{t_{rise}}{S/N}$$

Variations due to noise in the signal

Contributions to the timing resolution:

$$\sigma_{T}^{2} = \sigma_{S}^{2} + \sigma_{TW}^{2} + \sigma_{jitter}^{2} + \sigma_{clock}^{2}$$

•
$$\sigma_{TW}^2 = [\frac{V_{th}}{S/t_{rise}}]_{RMS} \propto [\frac{N}{dV/dt}]_{RMS}$$

•
$$\sigma_{jitter}^2 = \frac{N}{dV/dt} \sim \frac{t_{rise}}{S/N}$$

• σ_{clock}^2 contribution from the clock distribution

- High Frequency: bunch to neighbouring bunch 'jitter'
- Low frequency: drift over longer periods (~ 1 ms), can be corrected offline with calibration
- Expected to be below 10 ps in total

Contributions to the timing resolution:

$$\sigma_{T}^{2} = \sigma_{S}^{2} + \sigma_{TW}^{2} + \sigma_{jitter}^{2} + \sigma_{clock}^{2}$$

•
$$\sigma_{TW}^2 = [\frac{V_{th}}{S/t_{rise}}]_{RMS} \propto [\frac{N}{dV/dt}]_{RMS}$$

•
$$\sigma_{jitter}^2 = \frac{N}{dV/dt} \sim \frac{t_{rise}}{S/N}$$

• σ_{clock}^2 contribution from the clock distribution < 10 ps

Additional contributions from TDC expected to be negligible.

Contributions to the timing resolution:

$$\sigma_{T}^{2} = \sigma_{S}^{2} + \sigma_{TW}^{2} + \sigma_{jitter}^{2} + \sigma_{clock}^{2}$$

•
$$\sigma_{TW}^2 = [\frac{V_{th}}{S/t_{rise}}]_{RMS} \propto [\frac{N}{dV/dt}]_{RMS}$$

•
$$\sigma_{jitter}^2 = \frac{N}{dV/dt} \sim \frac{t_{rise}}{S/N}$$

• σ_{clock}^2 contribution from the clock distribution < 10 ps

Total time resolution per track = $\sigma(hit)/\sqrt{N_{hits}}$ goal < 30 ps

Low Gain Avalanche Diode (LGADs)

n-on-p planar silicon detectors

- A thin highly-doped p-layer provides an internal gain (10-50)
- Iower noise amplification improves S/N
- excellent timing resolution

- Key aspect: rise time (trise)
- *t*_{rise} ∼ 0.5 ns
- Smaller rise time from:
 - thinner pads
 - larger gain

LGAD Gain

Gain(q) = charge

- Independent of the thickness
- ▶ 50µm is baseline and 35µm under study
- Depends on the characteristics of the additional p-layer

LGAD: gain vs bias voltage

CNM (Barcelona) non-irradiated sensors

Various dopings

Different temperatures

- The gain increases with doping
- Breakdown voltage is lower with higher dose
- ► Target gain ~ 10 20

Operation at low temperature will allow:

- higher gain
- at lower bias voltage
- reduced leakage current after irradiation

Target ~ −30 °C

LGAD: time resolution vs gain

CNM (Barcelona) and HPK (Hamamatsu) non-irradiated sensors

- Time resolution of 30 ps achieved for CNM and HPK sensors
- Jitter decreases with gain
- Limited by non-uniformity in energy deposits (σ_s)

LGAD performance after irradiation

- \blacktriangleright Loss of doping in the gain layer \rightarrow degradation of gain
- faster signal
- increase of leakage current (up to a few μA)

need to increasing the bias voltage

Test-beam results: time resolution

- September 2017 test beam with 120 GeV pions at CERN-SPS
- CNM 2 \times 2 arrays, each pad 1.063 \times 1.063 mm²
- Test-beam 2016 paper available in arxiv 1804.00622

Test-beam results: efficiency

- CNM 2 \times 2 arrays, each pad 1.063 \times 1.063 mm²
- September 2017 test beam with 120 GeV pions at CERN-SPS

- Negligible inefficiency in the centre of the pads.
- Interpad area is not a dead region
- Also: cross-talk mostly negligible/~ 5% in irradiated sensors

ALTIROC ASIC

- The LGAD sensors will be read out by the ALTIROC
- specific ASIC designed for the HGTD
 - collaboration between Omega (design) and LAL (characterisation/test-beam)
- Bump-bonded to the sensor, it will read out 225 channels

Requirements:

- Keep the excellent time resolution of the LGADs, σ_{el} < 25 ps</p>
- Cope with a trigger latency of 10/35 µs for L0/L1 trigger
- TDC conversion within 25 ns
- ► Power consumption constrained by cooling power (sensors at -30 °C)
- radiation hard

Development:

- ALTIROC0 single channel analog readout
- ALTIROC1 5 × 5 analog + digital channel readout

ASIC architecture

- single pixel readout (15 × 15)
- Iuminosity formatting block
- end-of-column logic
- off-pixel electronics:
 - Handling of input/output signals to peripheral electronics
 - clock distribution

Single-pixel architecture

- Baseline: voltage sensitive preamplifier
- C_p to vary the signal speed
- Optimise trise to match the drift time of the sensor (0.5-1) ns to minimise jitter
- Fixed threshold discriminator
- Tested in ALTIROC0

Single-pixel architecture

- Time Of Arrival TDC (20 ps bin/2.5 ns range)
- Time Over Threshold TDC (40 ps bin/20 ns range)
- signal is also sent to the luminosity formatting unit
- To be tested in ALTIROC1

Single-pixel architecture

- store hit information until trigger
- select hit
- store until transfer

ALTIROC0

- single pixel readout:
 - preamplifier
 - discriminator
- 2 × 2 independent channels
- Voltage/VPA and transimpedance/TZ studied

- Alone / bump-bonded to sensor
- Full layout simulation test-bench/test-beam

Preamplifier Jitter

 First design iteration: simulated/measured jitter in VPA below 15/25 ps for 1 MIP and C_T < 5 pF

Preamplifier Jitter

- First design iteration: simulated/measured jitter in VPA below 15/25 ps for 1 MIP and C_T < 5 pF
- ► Second iteration with a faster preamplifier: achieved 8 ps jitter for C_T ~ 2.8 pF 50% lower than before!
- Should be below \sim 15 ps even for higher C_T according to simulation
- Higher jitter for TZ

Time Walk correction

- Using measurement of the TOT (estimator of the pulse amplitude)
- Expected residual difference between simulation and measurement < 10 ps</p>
- Voltage/VPA and transimpedance/TZ under study
- TOT excursion of the TZ is much shorter (as expected)

Time Walk correction

- Using measurement of the TOT (estimator of the pulse amplitude)
- Expected residual difference between simulation and measurement < 10 ps</p>

- ALTIROC0 showed good performance by itself but suffered from coupling that affected the TOT measurement when connected to the sensor.
- studies ongoing

ALTIROC1

- ► 5 × 5 pixels
- Single-pixel readout:
 - TOA-TDC and TOT-TDC
 - simple memory (not final) and serializer

- Off-pixel:
 - phase shifter
- Testing to begin at the end of October 2018
- Irradiation testing

Time-to-Digital Converter

- Achieves a 20 ps resolution by combining two lines of fast (120 ps) and slow (140 ps) cells
- Vernier delay line configuration with a reverse START-STOP scheme
- Power saving: no consumption if no hit
- Maximum conversion time of 25/28 ns for the TOA/TOT TDCs (preliminary sim.).

Count the number of cells it takes for the stop signal to surpass the start signal.

Single pixel memory

Temporarily store hit data and select hits associated to a trigger.

Baseline design is to use full buffering, storing TOA+TOT/hit flag:

- Handle 10/35µs latency for L0/L1 trigger
- Small space
- Limited power consumption
- SEU
- Alternative design: partial buffering

HGTD module

- sensor bump-bonded to 2 ASICs
- wire-bonded to a flex cable (input/output and power)
- placed on support stave

Highly optimised read-out row geometry

Mechanical support

Design challenges:

- Strict spatial constrains:
 - Thickness in Z within 75 mm
 - Allow space for ITk services at R ~ 1 m
 - Cooling services
- ▶ Thermal isolation: covers must be above condensation temperature (\sim 17 °C)
- Weight \sim 350 kg per endcap

CO₂ cooling

J. Bonis-A. Fallou

Several challenges:

- ▶ LGAD sensors need to be kept at low temperature at all times (-30 °C)
- CO₂ cooling will be used
- ► Finite element analysis: temperature distribution of (27 ± 1) °C
- possible to have the vessel walls > 18°C using heaters

Summary

- The HGTD is a Phase-II upgrade ATLAS project that will provide timing capability in the forward region.
- Compromise in the detector layout:
 - spatial/monetary constrains
 - goal to guarantee 3 hits per track for smaller radius (high η) and ~ 30 ps resolution per track
- Performance studies:
 - have shown potential of having timing information in the forward region to improve pileup rejection
 - more complex studies could show further impact in analyses
- Aspects of the detector design to be demonstrated:
 - LGAD's radiation hardness needs to be tested up to 4.5 10¹⁵ n_{eq}/cm² (1.5 10¹⁵ n_{eq}/cm² tested so far)
 - validation of ASIC's demanding performance with a TDC, connected to a sensor (ALTIROC1)
 - optimisation of services given the small space available

- Technical Proposal successfully reviewed by LHCC in June 2018
- Next major step: submission of the Technical Design Report by April 2019, where the technical feasibility of the detector should be demonstrated

BACK UP

Overview of test beam results

- Several test beam campaigns since 2016 (sensors from CNM and HPK).
- Achieved time resolution below 30 ps

CNM - 45 μ m thick single pads¹

- Strong decrease of σ_t with V_{bias} ($\sigma_t < 30$ ps at 235/320 V in non-irrad. sensors)
- Irradiated sensors tested at different temperatures.
- Decrease of σ_t with gain. Studies point to a safe gain of 10-20.

¹results from J. Lange et al.; similar results in sensors from FBK

Pixel Size

The definition of the size of the pixel is a result of several considerations, mainly:

- The need to keep occupancy low (below 10%)
- A small detector capacitance reduces noise, $C = \epsilon_r \epsilon_0 A / w$

Voltage/Transimpedance preamplifier: schematics

Voltage Preamplifier

Transimpedance Preamplifier

- Difference btw measurement and simulated jitter attributed to different noise
- Lower jitter in v2
- Jitter in TZ larger than in VPA

Voltage/Transimpedance preamplifier: pulse simulation

TZ preamplifier gives a faster, lower amplitude pulse than VPA.

Off-pixel electronics - Phase shifter

The inner clocks of the ASIC have to be in phase, with an accuracy \sim 100ps, in order to:

- ensure the correct time conversion of the TDC
- correctly adjust the time windows necessary to measure the luminosity Characteristics:
 - Receives clocks at 40, 320 and 640 MHz from the PLL
 - Output phase adjusted to a step smaller than 100 ps
 - Additional jitter below 5 ps
 - Estimated power consumption around 10 mW
 - Design is ongoing

Off-pixel electronics - Luminosity

- *L* is linearly proportional to *N_{hits}*
- Non-linearities arise from:
 - double hits \rightarrow low occupancy
 - ▶ background noise (afterglow)→ compare N_{hits} in a smaller and wider time window around the BC

- Two time windows, W2>W1
- Rising and falling edges of both windows are tunable
- Transmit the sum of hits per ASIC for each BC
- Only for ASICs at R > 320 mm
- The sum over ASICs is computed in 64 regions and saved.