Physics of
 CMB Anisotropies

Eiichiro Komatsu
(Max-Planck-Institut für Astrophysik)
Cours d'hiver du LAL, Laboratoire de l'Accélérateur Linéaire October 15-17, 2018

Lecture Slides

- Available at
- https://wwwmpa.mpa-garching.mpg.de/~komatsu/ lectures--reviews.html
- Or, just find my website and follow "LECTURES \& REVIEWS" link

Planning: Day 1 (today)

- Lecture 1
- Brief introduction of the CMB research
- Temperature anisotropy from gravitational effects
- Power spectrum basics

Planning: Day 2 \& 3

- Lecture 2
- Temperature anisotropy from hydrodynamical effects (sound waves)
- Lecture 3
- Cosmological parameter dependence of the temperature power spectrum
- Polarisation of the CMB
- Gravitational waves and their imprints on the CMB

Hot, dense, opaque universe

-> "Decoupling" (transparent universe)

 -> Structure Formation
Sky in Optical ($\sim 0.5 \mu \mathrm{~m})$

Sky in Microwave (~1mm)

Sky in Microwave (~1mm)

Light from the fireball Universe filling our sky (2.7K) The Cosmic Microwave
Background (CMB)

$$
\begin{gathered}
410 \text { photons } \\
\text { per } \\
\text { cubic centimeter!! }
\end{gathered}
$$

All you need to do is to detect radio waves. For example, 1% of noise on the TV is from the fireball Universe

I:25 model of the antenna at Bell Lab The 3rd floor of Deutsches Museum

The real detector system used by Penzias \& Wilson The 3rd floor of Deutsches Museum

Arno Penzias

Donated by Dr. Penzias,

Hornantennenanschluss

May 20, 1964

CMB
Discovered $=3.5 \pm 1.0 \mathrm{~K}$

Schreiberaufzeichnung der ersten Messung des Mikrowellenhintergrundes am 20-5.1964
Recording of the first measurement of cosmic microwave background ${ }_{5}$ radiation taken on 5/20/1964.

Full-dome movie for planetarium
Director: Hiromitsu Kohsaka

$$
\begin{aligned}
& \text { Beyond the Edge of the Visible Universe }
\end{aligned}
$$

Won the Best Movie Awards at "FullDome Festival" at Brno, June 5-8, 2018

HORIZON :Beyond the Edge of the Visible Universe [Trailer]

1989 COBE

2001 WMAP

WMAP Science Team 8

路

號

都

$$
-2
$$

IIIIIIIIINillif

（2）

（200，

（2）
－WMAP was launched on June 30， 2001
－The WMAP mission ended after 9 years of operation

－The MN MA mission ended after g year
－WMAP was launched on June 30， 2001
－WMAP was launched on June 30，2001

\title{

}
－The WMAP mission ended after 9 years of operation
－The WMAP mission ended after 9 years of operation
（iiiiniin

－The WMAP mission ended after 9 years of operation

11

（iiiiiiiiii

Concept of "Last Scattering Surface"

Today: Light Propagation

Dark Energy Accelerated Expansion Afterglow Light in a Clumpy Universe Pattern 380,000 yrs.

Dark Ages

Quantum Fluctuations

Tomorrow: Hydrodynamics at LSS

Dark Energy Accelerated Expansion
Afterglow Light

Dark Ages
Development of Galaxies, Planets, etc.

WMAP

Topics not covered by this lecture

Dark Energy Accelerated Expansion

Afterglow Light Pattern $380,000 \mathrm{yrs}$.

Dark Ages 380,000
Inflation

Quantum Fluctuations

Development of Galaxies, Planets, etc.

WMAP

Notation

- Notation in my lectures follows that of the text book "Cosmology" by Steven Weinberg

Cosmological Parameters

- Unless stated otherwise, we shall assume a spatially-flat Λ Cold Dark Matter (\wedge CDM) model with

$$
\begin{aligned}
\Omega_{B} h^{2} & =0.022 \quad \text { [baryon density] } \\
\Omega_{M} h^{2} & =0.14 \quad \text { [total mass density] } \\
\Omega_{M} & =0.3
\end{aligned}
$$

which implies:

$$
\Omega_{\Lambda}=0.7, \quad \Omega_{D} h^{2}=0.118, \quad \Omega_{B}=0.04714
$$

$$
H_{0}=100 \mathrm{hkm} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1} ; \quad H_{0}=68.31 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}
$$

How light propagates in a clumpy universe?

- Photons gain/lose energy by gravitational blue/redshifts this lecture
- Photons change their directions via gravitational lensing
not covered

Distance between two points in space

- Static (i.e., non-expanding) Euclidean space
- In Cartesian coordinates $\boldsymbol{x}=(x, y, z)$

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2}
$$

Distance between two points in space

- Homogeneously expanding Euclidean space
- In Cartesian comoving coordinates $\boldsymbol{x}=(x, y, z)$

Distance between two points in space

- Homogeneously expanding Euclidean space
- In Cartesian comoving coordinates $\boldsymbol{x}=(x, y, z)$

Distance between two points in space

- Inhomogeneous curved space
- In Cartesian comoving coordinates $\boldsymbol{x}=(x, y, z)$

Not just space...

- Einstein told us that a clock ticks slowly when gravity is strong...
- Space-time distance, ds_{4}, is modified by the presence of gravitational fields

$$
d s_{4}^{2}=-\exp (2 \Phi) d t^{2}+a^{2} \exp (-2 \Psi) \sum_{i=1}^{3} \sum_{j=1}^{3}[\exp (D)]_{i j} d x^{i} d x^{j}
$$

Φ : Newton's gravitational potential
Ψ : Spatial scalar curvature perturbation
$D_{i j}$: Tensor metric perturbation [=gravitational waves]

Tensor perturbation D_{ij} :
 Area-conserving deformation

- Determinant of a matrix
$[\exp (D)]_{i j} \equiv \delta_{i j}+D_{i j}+\frac{1}{2} \sum_{k=1}^{3} D_{i k} D_{k j}+\frac{1}{6} \sum_{k m} D_{i k} D_{k m} D_{m j}+\cdots$
is given by $\exp \left(\sum_{i} D_{i i}\right)$
- Thus, \mathbf{D}_{ij} must be trace-less $\sum_{i} D_{i i}=0$
if it is area-conserving deformation of two points in space

Not just space...

- Einstein told us that a clock ticks slowly when gravity is strong...
- Space-time distance, ds_{4}, is modified by the presence of gravitational fields

$$
d s_{4}^{2}=-\exp (2 \Phi) d t^{2}+a^{2} \exp \left(-\varsigma \Psi \sum_{i=1}^{3} \sum_{j=1}^{3}[\exp (D)]_{i j} d x^{i} d x^{j}\right.
$$

Φ : Newton's gravitational potential
Ψ : Spatial scalar curvature perturbation
is a perturbation to the determinant of spatial metric

Evolution of

photon's coordinates

- Photon's path is determined such that the distance traveled by a photon between two points is minimised.
This yields the equation of motion for photon's coordinates $x^{\mu}=\left(t, x^{i}\right)$

$$
\frac{d^{2} x^{\lambda}}{d u^{2}}+\sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \Gamma_{\mu \nu}^{\lambda} \frac{d x^{\mu}}{d u} \frac{d x^{\nu}}{d u}=0
$$

This equation is known as the "geodesic equation".
"u" labels
$\xrightarrow{\text { photon's path }}$

Evolution of

photon's momentum

- It is more convenient to write down the geodesic equation in terms of the photon momentum:
then

$$
p^{\mu} \equiv \frac{d x^{\mu}}{d u}
$$

$$
\frac{d p^{\lambda}}{d t}+\sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \Gamma_{\mu \nu}^{\lambda} \frac{p^{\mu} p^{\nu}}{p^{0}}=0
$$

Magnitude of the photon momentum is equal to the photon energy:

$$
p^{2} \equiv \sum_{i=1}^{3} \sum_{j=1}^{3} g_{i j} p^{i} p^{j}
$$

Some calculations...

$$
\frac{d p^{\lambda}}{d t}+\sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \Gamma_{\mu \nu}^{\lambda} \frac{p^{\mu} p^{\nu}}{p^{0}}=0
$$

With $\left.d s_{4}^{2}=\sum_{\mu \nu} g_{\mu \nu} d x^{\mu} d x^{\nu} \quad \begin{array}{l}g_{00}=-\exp (2 \Phi), g_{0 i}=0, \\ \left.g_{i j}=a^{2} \exp (-2 \Psi) \exp (D)\right)_{i j}\end{array}\right)$

$$
\Gamma_{\mu \nu}^{\lambda} \equiv \frac{1}{2} \sum_{\rho=0}^{3} g^{\lambda \rho}\left(\frac{\partial g_{\rho \mu}}{\partial x^{\nu}}+\frac{\partial g_{\rho \nu}}{\partial x^{\mu}}-\frac{\partial g_{\mu \nu}}{\partial x^{\rho}}\right)
$$

Scalar perturbation [valid to all orders] Tensor perturbation [valid to 1st order in D]

$$
\begin{aligned}
& \Gamma_{00}^{0}=\dot{\Phi}, \quad \Gamma_{0 i}^{0}=\frac{\partial \Phi}{\partial x^{i}}, \quad \Gamma_{00}^{i}=\exp (2 \Phi) \sum_{j} g^{i j} \frac{\partial \Phi}{\partial x^{j}}, \\
& \Gamma_{0 j}^{i}=\left(\frac{\dot{a}}{a}-\dot{\Psi}\right) \delta_{j}^{i}, \quad \Gamma_{i j}^{0}=\exp (-2 \Phi)\left(\frac{\dot{a}}{a}-\dot{\Psi}\right) g_{i j}, \\
& \Gamma_{i j}^{k}=\delta_{i j} \sum_{\ell} \delta^{k} \frac{\partial \Psi}{\partial x^{\ell}}-\delta_{i}^{k} \frac{\partial \Psi}{\partial x^{j}}-\delta_{j}^{k} \frac{\partial \Psi}{\partial x^{i}},
\end{aligned}
$$

$$
\Gamma_{0 j}^{i}=\frac{\dot{a}}{a} \delta_{j}^{i}+\frac{1}{2} \sum_{k} \delta^{i k} \dot{D}_{k j}, \quad \Gamma_{i j}^{0}=\frac{\dot{a}}{a} g_{i j}+\frac{a^{2}}{2} \dot{D}_{i j},
$$

Recap

Math may be messy but the concept is transparent!

- Requiring photons to travel between two points in space-time with the minimum path length, we obtained the geodesic equation
- The geodesic equation contains $\Gamma_{\mu \nu}^{\lambda}$ that is required to make the form of the equation unchanged under general coordinate transformation
- Expressing $\Gamma_{\mu \nu}^{\lambda}$ in terms of the metric perturbations, we obtain the desired result - the equation that describes the rate of change of the photon energy!

$$
p^{2} \equiv \sum_{i=1}^{3} \sum_{j=1}^{3} g_{i j} p^{i} p^{j}
$$

The Result

$$
\frac{1}{p} \frac{d p}{d t}=-\frac{\dot{a}}{a}+\dot{\Psi}-\frac{1}{a} \sum_{i} \frac{\partial \Phi}{\partial x^{i}} \gamma^{i}-\frac{1}{2} \sum_{i j} \dot{D}_{i j} \gamma^{i} \gamma^{j}
$$

γ^{i} is a unit vector of the direction of photon's momentum:

$$
\sum_{i}\left(\gamma^{i}\right)^{2}=1
$$

- Let's interpret this equation physically

The Result

$$
\frac{1}{p} \frac{d p}{d t}=-\frac{\dot{a}}{a}+\dot{\Psi}-\frac{1}{a} \sum_{i} \frac{\partial \Phi}{\partial x^{i}} \gamma^{i}-\frac{1}{2} \sum_{i j} \dot{D}_{i j} \gamma^{i} \gamma^{j}
$$

γ^{i} is a unit vector of the direction of photon's momentum:

$$
\sum_{i}\left(\gamma^{i}\right)^{2}=1
$$

- Photon's wavelength is stretched in proportion to the scale factor, and thus the photon energy decreases as

$$
p \propto a^{-1}
$$

The Result

$$
\frac{1}{p} \frac{d p}{d t}=-\frac{\dot{a}}{a} \square+\dot{\Psi}-\frac{1}{a} \sum_{i} \frac{\partial \Phi}{\partial x^{i}} \gamma^{i}-\frac{1}{2} \sum_{i j} \dot{D}_{i j} \gamma^{i} \gamma^{j}
$$

- Cosmological redshift - part II

- The spatial metric is given by $d s^{2}=a^{2}(t) \exp (-2 \Psi) d \mathbf{x}^{2}$
- Thus, locally we can define a new scale factor:

$$
\tilde{a}(t, \mathbf{x})=a(t) \exp (-\Psi)
$$

- Then the photon momentum decreases as

$$
p \propto \tilde{a}^{-1}
$$

The Result

$$
\frac{1}{p} \frac{d p}{d t}=-\frac{\dot{a}}{a}+\dot{\Psi}-\frac{1}{a} \sum_{i} \frac{\partial \Phi}{\partial x^{i}} \gamma^{i}-\frac{1}{2} \sum_{i j} \dot{D}_{i j} \gamma^{i} \gamma^{j}
$$

- Gravitational blue/redshift (Scalar)

The Result

$$
\frac{1}{p} \frac{d p}{d t}=-\frac{\dot{a}}{a}+\dot{\Psi}-\frac{1}{a} \sum_{i} \frac{\partial \Phi}{\partial x^{i}} \gamma^{i}-\frac{1}{2} \sum_{i j} \dot{D}_{i j} \gamma^{i} \gamma^{j}
$$

- Gravitational blue/redshift (Tensor)

$$
D_{i j}=\left(\begin{array}{ccc}
h_{+} & h_{\times} & 0 \\
h_{\times} & -h_{+} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The Result

$$
\frac{1}{p} \frac{d p}{d t}=-\frac{\dot{a}}{a}+\dot{\Psi}-\frac{1}{a} \sum_{i} \frac{\partial \Phi}{\partial x^{i}} \gamma^{i}-\frac{1}{2} \sum_{i j} \dot{D}_{i j} \gamma^{i} \gamma^{j}
$$

- Gravitational blue/redshift (Tensor)

Formal Solution (Scalar)

$$
\begin{aligned}
& \text { "L" for "Last scattering surface" } t_{0} \\
& \ln (a p)\left(t_{0}\right)=\ln (a p)\left(t_{L}\right)+\Phi\left(t_{L}\right)-\Phi\left(t_{0}\right)+\int_{t_{L}}^{t_{0}} d t(\dot{\Phi}+\dot{\Psi}) \\
& \text { or } \\
& \Delta T(\hat{n}) \quad \delta T\left(t_{L}, \hat{n} r_{L}\right) \quad \frac{1}{a} \sum_{i} \frac{\partial \Phi}{\partial x^{i}} \gamma^{i}=\frac{d \Phi}{d t}-\dot{\Phi} \\
& \frac{\Delta T(\hat{n})}{T_{0}}=\frac{\delta T\left(t_{L}, \hat{n} r_{L}\right)}{\bar{T}\left(t_{L}\right)}+\Phi\left(t_{L}, \hat{n} r_{L}\right)-\Phi\left(t_{0}, 0\right) \\
& +\int_{t_{L}}^{t_{0}} d t(\dot{\Phi}+\dot{\Psi})(t, \hat{n} r) \\
& \hat{n}^{i}=-\gamma^{i} \\
& \text { Coming distance (} \mathbf{r} \text {) } \\
& x^{i}=\hat{n}^{i} r \\
& r(t)=\int_{t}^{t_{0}} \frac{d t^{\prime}}{a\left(t^{\prime}\right)}
\end{aligned}
$$

Formal Solution (Scalar)

Initial Condition

$$
\begin{aligned}
\frac{\Delta T(\hat{n})}{T_{0}}= & \left.\frac{\delta T\left(t_{L}, \hat{n} r_{L}\right)}{\bar{T}\left(t_{L}\right)}\right]+\Phi\left(t_{L}, \hat{n} r_{L}\right. \\
& +\int_{t_{L}}^{t_{0}} d t(\dot{\Phi}+\dot{\Psi})(t, \hat{n} r)
\end{aligned}
$$

Line-of-sight direction

$$
\hat{n}^{i}=-\gamma^{i}
$$

Coming distance (r)

$$
\begin{aligned}
& x^{i}=\hat{n}^{i} r \\
& r(t)=\int_{t}^{t_{0}} \frac{d t^{\prime}}{a\left(t^{\prime}\right)}
\end{aligned}
$$

Formal Solution (Scalar)

Gravitational Redshit

$$
\begin{aligned}
\frac{\Delta T(\hat{n})}{T_{0}}= & \frac{\delta T\left(t_{L}, \hat{n} r_{L}\right)}{\bar{T}\left(t_{L}\right)}+\Phi\left(t_{L}, \hat{n} r_{L}\right. \\
& +\int_{t_{L}}^{t_{0}} d t(\dot{\Phi}+\dot{\Psi})(t, \hat{n} r)
\end{aligned}
$$

Line-of-sight direction

$$
\hat{n}^{i}=-\gamma^{i}
$$

Comoving distance (r)

$$
x^{i}=\hat{n}^{i} r
$$

$$
r(t)=\int_{t}^{t_{0}} \frac{d t^{\prime}}{a\left(t^{\prime}\right)}
$$

Formal Solution (Scalar)

Initial Condition

- "Were photons hot or cold at the bottom of the potential well at the last scattering surface?"
- This must be assumed a priori - only the data can tell us!

"Adiabatic" Initial Condition

- Definition: "Ratios of the number densities of all species are equal everywhere initially"
- For $\mathrm{i}^{\text {th }}$ and $\mathrm{j}^{\text {th }}$ species, $\mathrm{n}_{\mathrm{i}}(\mathrm{x}) / \mathrm{n}_{\mathrm{j}}(\mathrm{x})=\mathrm{constant}$
- For a quantity $X(\mathrm{t}, \mathrm{x})$, let us define the fluctuation, $\boldsymbol{\delta} \boldsymbol{X}$, as

$$
\delta X(t, \boldsymbol{x}) \equiv X(t, \boldsymbol{x})-\bar{X}(t)
$$

- Then, the adiabatic initial condition is

$$
\frac{\delta n_{i}\left(t_{\text {initial }}, \mathbf{x}\right)}{\bar{n}_{i}\left(t_{\text {initial }}\right)}=\frac{\delta n_{j}\left(t_{\text {initial }}, \mathbf{x}\right)}{\bar{n}_{j}\left(t_{\text {initial }}\right)}
$$

Example:
 Thermal Equilibrium

- When photons and baryons were in thermal equilibrium in the past, then
- $n_{\text {photon }} \sim T^{3}$ and $n_{\text {baryon }} \sim T^{3}$
- That is to say, thermal equilibrium naturally gives the adiabatic initial condition
- This gives

$$
3 \frac{\delta T\left(t_{i}, \boldsymbol{x}\right)}{\bar{T}\left(t_{i}\right)}=\frac{\delta \rho_{B}\left(t_{i}, \boldsymbol{x}\right)}{\bar{\rho}_{B}\left(t_{i}\right)}
$$

- "B" for "Baryons"
- ρ is the mass density

Big Question

- How about dark matter?
- If dark matter and photons were in thermal equilibrium in the past, then they should also obey the adiabatic initial condition
- If not, there is no a priori reason to expect the adiabatic initial condition!
- The current data are consistent with the adiabatic initial condition. This means something important for the nature of dark matter!

We shall assume the adiabatic initial condition throughout the lectures

Adiabatic Solution

- At the last scattering surface, the temperature fluctuation is given by the matter density fluctuation as

$$
\frac{\delta T\left(t_{L}, \mathbf{x}\right)}{\bar{T}\left(t_{L}\right)}=\frac{1}{3} \frac{\delta \rho_{M}\left(t_{L}, \mathbf{x}\right)}{\bar{\rho}_{M}\left(t_{L}\right)}
$$

Adiabatic Solution

- On large scales, the matter density fluctuation during the matter-dominated era is given by $\delta \rho_{M} / \bar{\rho}_{M}=-2 \Phi$; thus,

$$
\frac{\delta T\left(t_{L}, \mathbf{x}\right)}{\bar{T}\left(t_{L}\right)}=\frac{1}{3} \frac{\delta \rho_{M}\left(t_{L}, \mathbf{x}\right)}{\bar{\rho}_{M}\left(t_{L}\right)}=-\frac{2}{3} \Phi\left(t_{L}, \mathbf{x}\right)
$$

Over-density $=$ Cold spot

- Therefore: $\frac{\Delta T(\hat{n})}{T_{0}}=\frac{1}{3} \Phi\left(t_{L}, \hat{r}_{L}\right)$

This is negative in an over-density region!

 $x^{2}+x^{4} 4^{4}$

Data Analysis

- Decompose temperature fluctuations in the sky into a set of waves with various wavelengths
- Make a diagram showing the strength of each wavelength

Cesa

Spherical Harmonic Transform

$$
\Delta T(\hat{n})=\sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell}^{m}(\hat{n})
$$

- Values of a_{m} depend on coordinates, but the squared amplitude, $\sum_{m=-\ell}^{\ell} a_{\ell m} a_{e_{m}^{*}}^{*}$, does not depend on coordinates

For l=m, a halfwavelength, $\lambda_{\theta} / 2$, corresponds to $\pi / /$.

 Therefore, $\lambda_{\theta}=2 \pi / /$
$(1, m)=(3,2)$

$(1, m)=(3,1)$

$(1, m)=(3,3)$

$a_{l m}$ of the SW effect

- Using the inverse transform $a_{\ell m}=\int d \Omega \Delta T(\hat{n}) Y_{\ell}^{m *}(\hat{n})$ on the Sachs-Wolfe (SW) formula

$$
\frac{\Delta T(\hat{n})}{T_{0}}=\frac{1}{3} \Phi\left(t_{L}, \hat{r}_{L}\right)
$$

and Fourier-transforming the potential, we obtain:
$a_{\ell m}^{\mathrm{SW}}=\frac{T_{0}}{3} \int d \Omega Y_{\ell}^{m *}(\hat{n}) \int \frac{d^{3} q}{(2 \pi)^{3}} \Phi_{\boldsymbol{q}} \exp \left(i \boldsymbol{q} \cdot \hat{n} r_{L}\right)$

* q is the $3 d$ Fourier wavenumber

The left hand side is the coefficients of 2 d spherical waves, whereas the right hand side is the coefficients of 3d plane waves. How can we make the connection?

Spherical wave decomposition of a plane wave

$$
\exp \left(i \boldsymbol{q} \cdot \hat{n} r_{L}\right)=4 \pi \sum_{\ell=0}^{\infty} i^{\ell} j_{\ell}\left(q r_{L}\right) \sum_{m=-\ell}^{\ell} Y_{\ell}^{m}(\hat{n}) Y_{\ell}^{m *}(\hat{q})
$$

- This "partial-wave decomposition formula" (or Rayleigh's formula) then gives

$$
a_{\ell m}^{\mathrm{SW}}=\frac{4 \pi T_{0} i^{\ell}}{3} \int \frac{d^{3} q}{(2 \pi)^{3}} \Phi_{\boldsymbol{q}} j_{\ell}\left(q r_{L}\right) Y_{\ell}^{m *}(\hat{q})
$$

- This is the exact formula relating 3d potential at the last scattering surface onto alm. How do we understand this?

q -> I projection

$$
a_{\ell m}^{\mathrm{SW}}=\frac{4 \pi T_{0} i^{\ell}}{3} \int \frac{d^{3} q}{(2 \pi)^{3}} \Phi j_{\ell \ell\left(q r_{L}\right)}^{Y_{\ell}^{m *}}(\hat{q})
$$

- A half wavelength, $\lambda / 2$, at the last scattering surface subtends an angle of $\lambda / 2 \mathrm{r}_{\mathrm{L}}$. Since $\mathrm{q}=2 \pi / \lambda$, the angle is given by $\delta \theta=\pi / q r_{L}$. Comparing this with the relation $\delta \theta=\pi / l$ (for $\mathrm{I}=\mathrm{m})$, we obtain $\|=\mathrm{qr}$ L. How can we see this?
- For $l \gg 1$, the spherical Bessel function, $\mathbf{J}_{\mathbf{\prime}}\left(\mathbf{q} \mathbf{r l}_{\mathbf{L}}\right)$, peaks at $\boldsymbol{\|}=\mathbf{q} r_{L}$ and falls gradually toward $q_{L}>1$. Thus, a given q mode contributes to large angular scales too.

More intuitive approach: Flay-sky Approximation

- Not all of us are familiar with spherical bessel functions...
- The fundamental complication here is that we are trying to relate a 3d plane wave with a spherical wave.
- More intuitive approach would be to relate a 3d plane wave with a 2d plane wave

Decomposition

- Full sky
- Decompose temperature fluctuations using spherical harmonics
- Flat sky
- Decompose temperature fluctuations using Fourier transform
- The former approaches the latter in the small-angle limit

2d Fourier Transform

$$
\begin{aligned}
\Delta T(\hat{n}) & =\int \frac{d^{2} \ell}{(2 \pi)^{2}} a_{\ell} \exp (i \boldsymbol{\ell} \cdot \boldsymbol{\theta}) \\
& =\int_{0}^{\infty} \frac{\ell d \ell}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi_{\ell}}{2 \pi} a_{\ell} \exp (i \ell \cdot \boldsymbol{\theta})
\end{aligned}
$$

C.f.,
$\left(\Delta T(\hat{n})=\sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell}^{m}(\hat{n})\right)$

$a(I)$ of the SW effect

- Using the inverse 2d Fourier transform on the Sachs-Wolfe (SW) formula

$$
\frac{\Delta T(\hat{n})}{T_{0}}=\frac{1}{3} \Phi\left(t_{L}, \hat{r}_{L}\right)
$$

and Fourier-transforming the potential, we obtain:

$$
a_{\ell}^{\mathrm{SW}}=\frac{T_{0}}{3} \int d^{2} \theta \exp (-i \boldsymbol{\ell} \cdot \boldsymbol{\theta})
$$

$$
\times \int \frac{d^{3} q}{(2 \pi)^{3}} \Phi_{\boldsymbol{q}} \exp \left(i \boldsymbol{q}_{\perp} r_{L} \cdot \boldsymbol{\theta}+i q_{\|} r_{L} \cos \theta\right)
$$

Flat-sky Result

$$
a_{\ell}^{\mathrm{SW}}=\frac{T_{0}}{3 r_{L}^{2}} \int_{-\infty}^{\infty} \frac{d q_{\|}}{2 \pi} \Phi_{\boldsymbol{q}}\left(\boldsymbol{q}_{\perp}=\frac{\ell}{r_{L}}, q_{\|}\right) \exp \left(i q_{\|} r_{L}\right)
$$

C.f.,

$$
q=\sqrt{\ell^{2} / r_{L}^{2}+q_{\|}^{2}} \text { i.e., } q \geq \ell / r_{L}
$$

$\left(a_{\ell m}^{\mathrm{SW}}=\frac{4 \pi T_{0} i^{\ell}}{3} \int \frac{d^{3} q}{(2 \pi)^{3}} \Phi_{\boldsymbol{q}} j_{\ell}\left(q r_{L}\right) Y_{\ell}^{m *}(\hat{q})\right)$

- It is now manifest that only the perpendicular wavenumber contributes to I, i.e., $I=$ quperpl$^{1} \mathrm{~L}$, giving K <qr

Angular Power Spectrum

- The angular power spectrum, Cl_{I}, quantifies how much correlation power we have at a given angular separation.

$$
C_{\ell} \equiv \frac{1}{2 \ell+1} \sum_{m=-\ell}^{\ell} a_{\ell m} a_{\ell m}^{*}
$$

- More precisely: it is $\|(2 \mid+1) \mathrm{C}_{\|} / 4 \pi$ that gives the fluctuation power at a given angular separation, $\sim \pi /$. We can see this by computing variance:

$$
\int \frac{d \Omega}{4 \pi} \Delta T^{2}(\hat{n})=\frac{1}{4 \pi} \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} a_{\ell m}^{*}=\sum_{\ell=2}^{\infty} \frac{2 \ell+1}{4 \pi} C_{\ell}
$$

COBE 4-year Power Spectrum

SW Power Spectrum

$$
\begin{aligned}
a_{\ell m}^{\mathrm{SW}} & =\frac{4 \pi T_{0} i^{\ell}}{3} \int \frac{d^{3} q}{(2 \pi)^{3}} \Phi_{\boldsymbol{q}} j_{\ell}\left(q r_{L}\right) Y_{\ell}^{m *}(\hat{q}) \\
C_{\ell} & \equiv \frac{1}{2 \ell+1} \sum_{m=-\ell}^{\ell} a_{\ell m} a_{\ell m}^{*}
\end{aligned}
$$

gives...

$$
C_{\ell, \mathrm{SW}}=\frac{4 \pi T_{0}^{2}}{9} \int \frac{d^{3} q}{(2 \pi)^{3}} \int \frac{d^{3} q^{\prime}}{(2 \pi)^{3}} \Phi_{\boldsymbol{q}} \Phi_{\boldsymbol{q}^{\prime}}^{*} j_{\ell}\left(q r_{L}\right) j_{\ell}\left(q^{\prime} r_{L}\right) P_{\ell}\left(\hat{q} \cdot \hat{q}^{\prime}\right)
$$

- But this is not exactly what we want. We want the statistical average of this quantity.

Power Spectrum of Φ

- Statistical average of the right hand side contains

$$
\left\langle\Phi_{\boldsymbol{q}} \Phi_{\boldsymbol{q}^{\prime}}^{*}\right\rangle=\int d^{3} x \int d^{3} r\langle\Phi(\boldsymbol{x}) \Phi(\boldsymbol{x}+\boldsymbol{r})\rangle \exp \left[i\left(\boldsymbol{q}-\boldsymbol{q}^{\prime}\right) \cdot \boldsymbol{x}-i \boldsymbol{q}^{\prime} \cdot \boldsymbol{r}\right]
$$

two-point correlation function
If $\langle\Phi(\boldsymbol{x}) \Phi(\boldsymbol{x}+\boldsymbol{r})\rangle$ does not depend on locations (x) but only on separations between two points (r), then
$\left\langle\Phi_{\boldsymbol{q}} \Phi_{\boldsymbol{q}^{\prime}}^{*}\right\rangle=(2 \pi)^{3} \delta_{D}^{(3)}\left(\boldsymbol{q}-\boldsymbol{q}^{\prime}\right) \int d^{3} r \xi_{\phi}(\boldsymbol{r}) \exp (-i \boldsymbol{q} \cdot \boldsymbol{r})$
consequence of "statistical homogeneity"

$$
\begin{aligned}
& \text { where we defined } \xi_{\phi}(\boldsymbol{r}) \equiv\langle\Phi(\boldsymbol{x}) \Phi(\boldsymbol{x}+\boldsymbol{r})\rangle \\
& \text { and used } \int d^{3} x \exp (i \boldsymbol{q} \cdot \boldsymbol{x})=(2 \pi)^{3} \delta_{D}^{(3)}(\boldsymbol{q})
\end{aligned}
$$

Power Spectrum of Φ

- In addition, if $\xi_{\phi}(\boldsymbol{r}) \equiv\langle\Phi(\boldsymbol{x}) \Phi(\boldsymbol{x}+\boldsymbol{r})\rangle$ depends only on the magnitude of the separation r and not on the directions, then

$$
\begin{aligned}
&\left\langle\Phi_{\boldsymbol{q}} \Phi_{\boldsymbol{q}^{\prime}}^{*}\right\rangle=(2 \pi)^{3} \delta_{D}^{(3)}\left(\boldsymbol{q}-\boldsymbol{q}^{\prime}\right) \int 4 \pi r^{2} d r \xi_{\phi}(r) \frac{\sin (q r)}{q r} \\
&=(2 \pi)^{3} \delta_{D}^{(3)}\left(\boldsymbol{q}-\boldsymbol{q}^{\prime}\right) P_{\phi}(q) \\
& \text { Power spectrum! }
\end{aligned}
$$

Generic definition of the power spectrum for

 statistically homogeneous and isotropic fluctuations
SW Power Spectrum

- Thus, the power spectrum of the CMB in the SW limit is

$$
\left\langle C_{\ell, \mathrm{SW}}\right\rangle=\frac{16 \pi^{2} T_{0}^{2}}{9} \int_{0}^{\infty} \frac{q^{2} d q}{(2 \pi)^{3}} P_{\phi}(q) j_{\ell}^{2}\left(q r_{L}\right)
$$

- In the flat-sky approximation,

$$
\left\langle C_{\ell, \mathrm{SW}}\right\rangle=\frac{T_{0}^{2}}{9 r_{L}^{2}} \int_{-\infty}^{\infty} \frac{d q_{\|}}{2 \pi} P_{\phi}\left(\sqrt{\frac{\ell^{2}}{r_{L}^{2}}+q_{\|}^{2}}\right)
$$

SW Power Spectrum

- Thus, the power spectrum of the CMB in the SW limit is

$$
\left\langle C_{\ell, \mathrm{SW}}\right\rangle=\frac{16 \pi^{2} T_{0}^{2}}{9} \int_{0}^{\infty} \frac{q^{2} d q}{(2 \pi)^{3}} P_{\phi}(q) j_{\ell}^{2}\left(q r_{L}\right)
$$

- In the flat-sky approximation,

$$
\left\langle C_{\ell, \mathrm{SW}}\right\rangle=\frac{T_{0}^{2}}{9 r_{L}^{2}} \int_{-\infty}^{\infty} \frac{d q_{\|}}{2 \pi} P_{\phi}\left(\sqrt{\frac{\ell^{2}}{r_{L}^{2}}+q_{\|}^{2}}\right)
$$

For a power-law form, $P_{\phi}(q)=(2 \pi)^{3} N_{\phi}^{2} q^{n-4}$, we get

$$
\left\langle C_{\ell, \mathrm{SW}}\right\rangle=\frac{8 \pi^{2} N_{\phi}^{2} T_{0}^{2}}{9 \ell^{2}}\left(\frac{\ell}{r_{L}}\right)^{n-1} \frac{\sqrt{\pi}}{2} \frac{\Gamma[(3-n) / 2]}{\Gamma[(4-n) / 2]}
$$

SW Power Spectrum

- Thus, the power spectrum of the CMB in the SW limit is

$$
\left\langle C_{\ell, \mathrm{SW}}\right\rangle=\frac{16 \pi^{2} T_{0}^{2}}{9} \int_{0}^{\infty} \frac{q^{2} d q}{(2 \pi)^{3}} P_{\phi}(q) j_{\ell}^{2}\left(q r_{L}\right)
$$

- In the flat-sky approximation,

$$
\left\langle C_{\ell, \mathrm{SW}}\right\rangle=\frac{T_{0}^{2}}{9 r_{L}^{2}} \int_{-\infty}^{\infty} \frac{d q_{\|}}{2 \pi} P_{\phi}\left(\sqrt{\frac{\ell^{2}}{r_{L}^{2}}+q_{\|}^{2}}\right)
$$

For a power-law form, $P_{\phi}(q)=(2 \pi)^{3} N_{\phi}^{2} q^{n-4}$, we get

$$
\left\langle C_{\ell, \mathrm{SW}}\right\rangle=\frac{8 \pi^{2} N_{\phi}^{2} T_{0}^{2}}{9 \ell^{2}}\left(\frac{\ell}{r_{L}}\right)^{n-1} \frac{\sqrt{\pi}}{2} \frac{\Gamma[(3-n) / 2]}{\Gamma[(4-n) / 2]} \quad \mathrm{n}=1 \quad \frac{8 \pi^{2} N_{\phi}^{2} T_{0}^{2}}{9 \ell(\ell+(1)} 4
$$

Bennett et al. (1996)

Bennett et al. (1996)

COBE 4-year Power Spectrum

Bennett et al. (2013)

WMAP 9-year Power Spectrum

Planck Collaboration (2016)

Planck 29-mo Power Spectry

Planck Collaboration (2016)

Planck 29-mo Power Spectry

y, the sw

prediction does not fit!

$$
\left\langle C_{\ell, \mathrm{SW}}\right\rangle=\frac{8 \pi^{2} N_{\phi}^{2} T_{0}^{2}}{9 \ell^{2}}\left(\frac{\ell}{r_{L}}\right)^{n-1} \frac{\sqrt{\pi}}{2} \frac{\Gamma[(3-n) / 2]}{\Gamma[(4-n) / 2]}
$$

Missing physics: Hydrodynamics (sound waves)

Clearly, the SW

