Physics of CMB Anisotropies

Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) Cours d'hiver du LAL, Laboratoire de l'Accélérateur Linéaire October 15–17, 2018

Lecture Slides

- Available at
 - https://wwwmpa.mpa-garching.mpg.de/~komatsu/ lectures--reviews.html
- Or, just find my website and follow "LECTURES & REVIEWS" link

Planning: Day 1 (today)

Lecture 1

- Brief introduction of the CMB research
- Temperature anisotropy from gravitational effects
- Power spectrum basics

Planning: Day 2 & 3

Lecture 2

 Temperature anisotropy from hydrodynamical effects (sound waves)

Lecture 3

- Cosmological parameter dependence of the temperature power spectrum
- Polarisation of the CMB
- Gravitational waves and their imprints on the CMB

Hot, dense, opaque universe

- -> "Decoupling" (transparent universe)
- -> Structure Formation

Sky in Optical (~0.5µm) courtesy University of Arizona

Sky in Microwave (~1mm)

Sky in Microwave (~1mm)

Light from the fireball Universe filling our sky (2.7K)

The Cosmic Microwave Background (CMB)

410 photons per cubic centimeter!!

All you need to do is to detect radio waves. For example, 1% of noise on the TV is from the fireball Universe

The real detector system used by Penzias & Wilson The 3rd floor of Deutsches Museum

May 20, 1964
CMB
Discovered

6.7-2.3-0.8-0.1= 3.5 ± 1.0 K

Schreiberaufzeichnung der ersten Messung des Mikrowellenhintergrundes am 20.5.1964

Recording of the first measurement of cosmic microwave backgrounds radiation taken on 5/20/1964.

Full-dome movie for planetarium Director: Hiromitsu Kohsaka

HORIZON

Beyond the Edge of the Visible Universe

Won the Best Movie Awards at "FullDome Festival" at Brno, June 5–8, 2018

2:27 / 2:51

2001 WMAP

- WMAP was launched on June 30, 2001
- The WMAP mission ended after 9 years of operation

Concept of "Last Scattering Surface"

Notation

 Notation in my lectures follows that of the text book "Cosmology" by Steven Weinberg

Cosmological Parameters

Unless stated otherwise, we shall assume a spatially-flat
 \(\Lambda \) Cold Dark Matter (\(\Lambda \) CDM) model with

$$\Omega_B h^2 = 0.022$$
 [baryon density]

$$\Omega_M h^2 = 0.14$$
 [total mass density]

$$\Omega_M = 0.3$$

which implies:

$$\Omega_{\Lambda} = 0.7$$
, $\Omega_{D}h^{2} = 0.118$, $\Omega_{B} = 0.04714$

$$H_0 = 100 \ h \ \mathrm{km \ s^{-1} \ Mpc^{-1}}$$
 $H_0 = 68.31 \ \mathrm{km \ s^{-1} \ Mpc^{-1}}$

How light propagates in a clumpy universe?

Photons gain/lose energy by gravitational blue/redshifts

this lecture

Photons change their directions via gravitational lensing

not covered

- Static (i.e., non-expanding) Euclidean space
 - In Cartesian coordinates x = (x, y, z)

$$ds^2 = dx^2 + dy^2 + dz^2$$

- Homogeneously expanding Euclidean space
 - In Cartesian **comoving** coordinates x = (x, y, z)

$$ds^2 = a^2(t)(dx^2 + dy^2 + dz^2)$$
"scale factor"

- Homogeneously expanding Euclidean space
 - In Cartesian **comoving** coordinates x = (x, y, z)

$$ds^2 = a^2(t) \sum_{i=1}^3 \sum_{j=1}^3 \delta_{ij} dx^i dx^j$$

"scale factor" $i=1$ $j=1$ δ_{ij} and δ_{ij} of the rwise δ_{ij} scale factor δ_{ij} and δ_{ij} scale factor δ_{ij} and δ_{ij} scale factor δ_{ij} sc

- Inhomogeneous curved space
 - In Cartesian **comoving** coordinates x = (x, y, z)

$$ds^2 = a^2 \sum_{i=1}^3 \sum_{j=1}^3 (\delta_{ij} + h_{ij}) dx^i dx^j$$
"metric perturbation"

-> CURVED SPACE!

Not just space...

- Einstein told us that a clock ticks slowly when gravity is strong...
- Space-time distance, ds₄, is modified by the presence of gravitational fields

$$ds_4^2 = -\exp(2\Phi)dt^2 + a^2\exp(-2\Psi)\sum_{i=1}^3 \sum_{j=1}^3 [\exp(D)]_{ij} dx^i dx^j$$

 $oldsymbol{\Phi}$: Newton's gravitational potential

: Spatial scalar curvature perturbation

 $D_{i\,i}$: Tensor metric perturbation [=gravitational waves]

Tensor perturbation D_{ij}: Area-conserving deformation

Determinant of a matrix

$$[\exp(D)]_{ij} \equiv \delta_{ij} + D_{ij} + \frac{1}{2} \sum_{k=1}^3 D_{ik} D_{kj} + \frac{1}{6} \sum_{km} D_{ik} D_{km} D_{mj} + \cdots$$
 is given by
$$\exp(\sum_i D_{ii})$$

• Thus, D $_{\rm ij}$ must be trace-less $\sum_i D_{ii} = 0$ if it is area-conserving deformation of two points in space

Not just space...

- Einstein told us that a clock ticks slowly when gravity is strong...
- Space-time distance, ds₄, is modified by the presence of gravitational fields

$$ds_4^2 = -\exp(2\Phi)dt^2 + a^2\exp(-2\Psi)\sum_{i=1}^3\sum_{j=1}^3[\exp(D)]_{ij}dx^idx^j$$

 $oldsymbol{\Phi}$: Newton's gravitational potential

Evolution of photon's coordinates

 Photon's path is determined such that the distance traveled by a photon between two points is minimised.
 This yields the equation of motion for photon's

coordinates
$$x^{\mu} = (t, x^i)$$

$$\frac{d^2x^{\lambda}}{du^2} + \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \Gamma_{\mu\nu}^{\lambda} \frac{dx^{\mu}}{du} \frac{dx^{\nu}}{du} = 0$$

"u" labels photon's path

This equation is known as the "geodesic equation".

The second term is needed to keep the form of the equation unchanged under general coordinate transformation => GRAVITATIONAL EFFECTS!

Evolution of photon's momentum

 It is more convenient to write down the geodesic equation in terms of the photon momentum:

$$p^{\mu} \equiv rac{dx^{\mu}}{du}$$

then

$$\frac{dp^{\lambda}}{dt} + \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \Gamma_{\mu\nu}^{\lambda} \frac{p^{\mu}p^{\nu}}{p^{0}} = 0$$

Magnitude of the photon momentum is equal to the photon energy:

$$p^2 \equiv \sum_{i=1}^{3} \sum_{j=1}^{3} g_{ij} p^i p^j$$

Some calculations

$$\frac{dp^{\lambda}}{dt} + \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \Gamma_{\mu\nu}^{\lambda} \frac{p^{\mu}p^{\nu}}{p^{0}} = 0$$

With
$$ds_4^2=\sum_{\mu
u}g_{\mu
u}dx^\mu dx^
u egin{array}{c} g_{00}=-\exp(2 \Phi), \ g_{0i}=0, \ g_{ij}=a^2\exp(-2 \Psi)[\exp(D)]_{ij} \end{array}$$

$$\Gamma^{\lambda}_{\mu\nu} \equiv \frac{1}{2} \sum_{\rho=0}^{3} g^{\lambda\rho} \left(\frac{\partial g_{\rho\mu}}{\partial x^{\nu}} + \frac{\partial g_{\rho\nu}}{\partial x^{\mu}} - \frac{\partial g_{\mu\nu}}{\partial x^{\rho}} \right)$$

Tensor perturbation [valid to 1st order in D]

$$\Gamma_{00}^{0} = \dot{\Phi}, \quad \Gamma_{0i}^{0} = \frac{\partial \Phi}{\partial x^{i}}, \quad \Gamma_{00}^{i} = \exp(2\Phi) \sum_{j} g^{ij} \frac{\partial \Phi}{\partial x^{j}},$$

$$\Gamma_{0j}^{i} = \left(\frac{\dot{a}}{a} - \dot{\Psi}\right) \delta_{j}^{i}, \quad \Gamma_{ij}^{0} = \exp(-2\Phi) \left(\frac{\dot{a}}{a} - \dot{\Psi}\right) g_{ij},$$

$$\Gamma_{ij}^{k} = \delta_{ij} \sum_{\ell} \delta^{k\ell} \frac{\partial \Psi}{\partial x^{\ell}} - \delta_{i}^{k} \frac{\partial \Psi}{\partial x^{j}} - \delta_{j}^{k} \frac{\partial \Psi}{\partial x^{i}},$$

$$\Gamma_{ij}^{k} = \delta_{ij} \sum_{\ell} \delta^{k\ell} \left(\frac{\partial \Phi}{\partial x^{j}} + \frac{1}{2} \sum_{k} \delta^{ik} \dot{D}_{kj}, \quad \Gamma_{ij}^{0} = \frac{\dot{a}}{a} g_{ij} + \frac{a^{2}}{2} \dot{D}_{ij},$$

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{\ell} \delta^{k\ell} \left(\frac{\partial I_{i\ell}}{\partial x^{j}} + \frac{\partial I_{ij}}{\partial x^{i}} - \frac{\partial I_{ij}}{\partial x^{i}}\right),$$

$$\begin{split} &\Gamma_{0j}^{i} = \frac{\dot{a}}{a} \delta_{j}^{i} + \frac{1}{2} \sum_{k} \delta^{ik} \dot{D}_{kj} \,, \quad \Gamma_{ij}^{0} = \frac{\dot{a}}{a} g_{ij} + \frac{a^{2}}{2} \dot{D}_{ij} \,, \\ &\Gamma_{ij}^{k} = \frac{1}{2} \sum_{\ell} \delta^{k\ell} \left(\frac{D_{i\ell}}{\partial x^{j}} + \frac{D_{\ell j}}{\partial x^{i}} - \frac{D_{ij}}{\partial x^{\ell}} \right) \,, \end{split}$$

Recap

Math may be messy but the concept is transparent!

- Requiring photons to travel between two points in space-time with the minimum path length, we obtained the geodesic equation
- The geodesic equation contains $\Gamma^{\lambda}_{\mu\nu}$ that is required to make the form of the equation unchanged under general coordinate transformation
- Expressing $\Gamma^{\lambda}_{\mu\nu}$ in terms of the metric perturbations, we obtain the desired result the equation that describes the rate of change of the photon energy!

$$p^2 \equiv \sum_{i=1}^{3} \sum_{j=1}^{3} g_{ij} p^i p^j$$

$$\frac{1}{p}\frac{dp}{dt} = -\frac{\dot{a}}{a} + \dot{\Psi} - \frac{1}{a}\sum_{i}\frac{\partial\Phi}{\partial x^{i}}\gamma^{i} - \frac{1}{2}\sum_{ij}\dot{D}_{ij}\gamma^{i}\gamma^{j}$$

γⁱ is a unit vector of the direction of photon's momentum:

$$\sum_{i} (\gamma^i)^2 = 1$$

Let's interpret this equation physically

$$\frac{1}{p}\frac{dp}{dt} = -\frac{\dot{a}}{a} + \dot{\varPsi} - \frac{1}{a}\sum_{i}\frac{\partial\varPhi}{\partial x^{i}}\gamma^{i} - \frac{1}{2}\sum_{ij}\dot{D}_{ij}\gamma^{i}\gamma^{j}$$

γⁱ is a unit vector of the direction of photon's momentum:

Cosmological redshift
$$\sum_i (\gamma^i)^2 = 1$$

 Photon's wavelength is stretched in proportion to the scale factor, and thus the photon energy decreases as

$$p \propto a^{-1}$$

$$\frac{1}{p}\frac{dp}{dt} = -\frac{\dot{a}}{a} + \dot{\Psi} - \frac{1}{a} \sum_{i} \frac{\partial \Phi}{\partial x^{i}} \gamma^{i} - \frac{1}{2} \sum_{ij} \dot{D}_{ij} \gamma^{i} \gamma^{j}$$

- Cosmological redshift part II
 - The spatial metric is given by $ds^2 = a^2(t) \exp(-2\Psi) d\mathbf{x}^2$
 - Thus, locally we can define a new scale factor: $\tilde{a}(t,\mathbf{x}) = a(t)\exp(-\Psi)$
 - Then the photon momentum decreases as

$$p \propto \tilde{a}^{-1}$$

$$\frac{1}{p}\frac{dp}{dt} = -\frac{\dot{a}}{a} + \dot{\Psi} - \frac{1}{a}\sum_{i}\frac{\partial\Phi}{\partial x^{i}}\gamma^{i} - \frac{1}{2}\sum_{ij}\dot{D}_{ij}\gamma^{i}\gamma^{j}$$

Gravitational blue/redshift (Scalar)

Potential well (ϕ < 0)

$$\frac{1}{p}\frac{dp}{dt} = -\frac{\dot{a}}{a} + \dot{\varPsi} - \frac{1}{a}\sum_{i}\frac{\partial\varPhi}{\partial x^{i}}\gamma^{i} - \frac{1}{2}\sum_{ij}\dot{D}_{ij}\gamma^{i}\gamma^{j}$$

Gravitational blue/redshift (Tensor)

$$D_{ij} = \begin{pmatrix} h_{+} & h_{\times} & 0 \\ h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\frac{1}{p}\frac{dp}{dt} = -\frac{\dot{a}}{a} + \dot{\Psi} - \frac{1}{a}\sum_{i}\frac{\partial\Phi}{\partial x^{i}}\gamma^{i} - \frac{1}{2}\sum_{ij}\dot{D}_{ij}\gamma^{i}\gamma^{j}$$

Gravitational blue/redshift (Tensor)

$$D_{ij} = \begin{pmatrix} h_{+} & h_{\times} & 0 \\ h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\ln(ap)(t_0) \ = \ \ln(ap)(t_L) + \varPhi(t_L) - \varPhi(t_0) + \int_{t_L}^{t_0} dt \ (\dot{\varPhi} + \dot{\varPsi})$$

$$\frac{\Delta T(\hat{n})}{T_0} \ = \ \frac{\delta T(t_L, \hat{n}r_L)}{\bar{T}(t_L)} + \varPhi(t_L, \hat{n}r_L) - \varPhi(t_0, 0)$$

$$+ \int_{t_L}^{t_0} dt \ (\dot{\varPhi} + \dot{\varPsi})(t, \hat{n}r)$$

$$\hat{n}^i = -\gamma^i$$

Coming distance (r)

$$x^i = \hat{n}^i r$$

$$r(t) = \int_{t}^{t_0} \frac{dt'}{a(t')}$$

$$\frac{\Delta T(\hat{n})}{T_0} = \frac{\delta T(t_L, \hat{n}r_L)}{\bar{T}(t_L)} + \varPhi(t_L, \hat{n}r_L) - \varPhi(t_0, 0)$$

$$+\Phi(t_L,\hat{n}r_L)-\Phi(t_0,0)$$

$$+ \int_{t_L}^{t_0} dt \ (\dot{\varPhi} + \dot{\varPsi})(t, \hat{n}r)$$

Line-of-sight direction

$$\hat{n}^i = -\gamma^i$$

Coming distance (r)

$$x^i = \hat{n}^i r$$

$$r(t) = \int_{t}^{t_0} \frac{dt'}{a(t')}$$

Gravitational Redshit

$$\frac{\varDelta T(\hat{n})}{T_0} \quad = \quad \frac{\delta T(t_L, \hat{n}r_L)}{\bar{T}(t_L)} + \varPhi(t_L, \hat{n}r_L) - \varPhi(t_0, 0)$$

$$+ \int_{t_L}^{t_0} dt \ (\dot{\Phi} + \dot{\Psi})(t, \hat{n}r)$$

Line-of-sight direction

$$\hat{n}^i = -\gamma^i$$

Comoving distance (r)

$$x^i = \hat{n}^i r$$

$$r(t) = \int_{t}^{t_0} \frac{dt'}{a(t')}$$

$$\frac{\Delta T(\hat{n})}{T_0} = \frac{\delta T(t_L, \hat{n}r_L)}{\bar{T}(t_L) \text{ "integrated Sachs-Wolfe" (ISW) effect}} + \int_{t_L}^{t_0} dt \ (\dot{\Phi} + \dot{\Psi})(t, \hat{n}r)$$
 Line-of-sight $\hat{n}^i = -\gamma^i$ Coming distant $\hat{n}^i = \hat{n}^i r$

Line-of-sight direction

$$\hat{n}^i = -\gamma^i$$

Coming distance (r)

$$x^i = \hat{n}^i r$$

$$r(t) = \int_{t}^{t_0} \frac{dt'}{a(t')}$$

Initial Condition

- "Were photons hot or cold at the bottom of the potential well at the last scattering surface?"
- This must be assumed a priori only the data can tell us!

"Adiabatic" Initial Condition

- Definition: "Ratios of the number densities of all species are equal everywhere initially"
 - For ith and jth species, n_i(x)/n_j(x) = constant
- For a quantity X(t,x), let us define the **fluctuation**, δX , as

$$\delta X(t, \boldsymbol{x}) \equiv X(t, \boldsymbol{x}) - \bar{X}(t)$$

Then, the adiabatic initial condition is

$$\frac{\delta n_i(t_{\text{initial}}, \mathbf{x})}{\bar{n}_i(t_{\text{initial}})} = \frac{\delta n_j(t_{\text{initial}}, \mathbf{x})}{\bar{n}_j(t_{\text{initial}})}$$

Example: Thermal Equilibrium

- When photons and baryons were in thermal equilibrium in the past, then
 - n_{photon} ~ T³ and n_{baryon} ~ T³
 - That is to say, thermal equilibrium naturally gives the adiabatic initial condition
 - This gives

$$3 \frac{\delta T(t_i, \boldsymbol{x})}{\bar{T}(t_i)} = \frac{\delta \rho_B(t_i, \boldsymbol{x})}{\bar{\rho}_B(t_i)}$$

- "B" for "Baryons"
- ρ is the mass density

Big Question

- How about dark matter?
- If dark matter and photons were in thermal equilibrium in the past, then they should also obey the adiabatic initial condition
 - If not, there is no a priori reason to expect the adiabatic initial condition!
- The current data are consistent with the adiabatic initial condition. This means something important for the nature of dark matter!

We shall assume the adiabatic initial condition throughout the lectures

Adiabatic Solution

 At the last scattering surface, the temperature fluctuation is given by the matter density fluctuation as

$$\frac{\delta T(t_L, \mathbf{x})}{\bar{T}(t_L)} = \frac{1}{3} \frac{\delta \rho_M(t_L, \mathbf{x})}{\bar{\rho}_M(t_L)}$$

Adiabatic Solution

• On large scales, the matter density fluctuation during the matter-dominated era is given by $\delta \rho_M/\bar{\rho}_M = -2\Phi$; thus,

$$\frac{\delta T(t_L, \mathbf{x})}{\bar{T}(t_L)} = \frac{1}{3} \frac{\delta \rho_M(t_L, \mathbf{x})}{\bar{\rho}_M(t_L)} = -\frac{2}{3} \Phi(t_L, \mathbf{x})$$

Hot at the bottom of the potential well, but...

Over-density = Cold spot

• Therefore:
$$\frac{\Delta T(\hat{n})}{T_0} = \frac{1}{3} \Phi(t_L, \hat{r}_L)$$

This is negative in an over-density region!

Data Analysis

- Decompose temperature fluctuations in the sky into a set of waves with various wavelengths
- Make a diagram showing the strength of each wavelength

Spherical Harmonic Transform

$$\Delta T(\hat{n}) = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell}^{m}(\hat{n})$$

• Values of a_{lm} depend on coordinates, but the squared amplitude, $\sum_{m=-\ell}^{\ell} a_{\ell m} a_{\ell m}^*$, does not depend on coordinates

For l=m, a half-wavelength, $\lambda_{\theta}/2$, corresponds to π/l . Therefore, $\lambda_{\theta}=2\pi/l$

a_{lm} of the SW effect

• Using the inverse transform $a_{\ell m}=\int d\Omega \Delta T(\hat{n})Y_{\ell}^{m*}(\hat{n})$ on the Sachs-Wolfe (SW) formula $\frac{\Delta T(\hat{n})}{T_0}=\frac{1}{3}\Phi(t_L,\hat{r}_L)$

and Fourier-transforming the potential, we obtain:

$$a_{\ell m}^{\text{SW}} = \frac{T_0}{3} \int d\Omega \ Y_{\ell}^{m*}(\hat{n}) \int \frac{d^3q}{(2\pi)^3} \ \varPhi_{\boldsymbol{q}} \exp(i\boldsymbol{q} \cdot \hat{n}r_L)$$

*q is the 3d Fourier wavenumber

The left hand side is the coefficients of <u>2d spherical waves</u>, whereas the right hand side is the coefficients of <u>3d plane</u> waves. How can we make the connection?

Spherical wave decomposition of a plane wave

$$\exp(i\mathbf{q} \cdot \hat{n}r_L) = 4\pi \sum_{\ell=0}^{\infty} i^{\ell} j_{\ell}(qr_L) \sum_{m=-\ell}^{\ell} Y_{\ell}^{m}(\hat{n}) Y_{\ell}^{m*}(\hat{q})$$

 This "partial-wave decomposition formula" (or Rayleigh's formula) then gives

$$a_{\ell m}^{\text{SW}} = \frac{4\pi T_0 i^{\ell}}{3} \int \frac{d^3 q}{(2\pi)^3} \, \Phi_{\mathbf{q}} j_{\ell}(q r_L) Y_{\ell}^{m*}(\hat{q})$$

• This is the exact formula relating 3d potential at the last scattering surface onto a_{lm}. How do we understand this?

q -> I projection

$$a_{\ell m}^{\mathrm{SW}} = \frac{4\pi T_0 i^{\ell}}{3} \int \frac{d^3 q}{(2\pi)^3} \, \Phi_{\ell} j_{\ell}(q r_L) Y_{\ell}^{m*}(\hat{q})$$

- A half wavelength, λ/2, at the last scattering surface subtends an angle of λ/2r_L. Since q=2π/λ, the angle is given by δθ=π/qr_L. Comparing this with the relation δθ=π/l (for l=m), we obtain l=qr_L. How can we see this?
- For l>>1, the spherical Bessel function, j̄(qrL), peaks at l=qrL and falls gradually toward qrL>l. Thus, a given q mode contributes to large angular scales too.

More intuitive approach: Flay-sky Approximation

- Not all of us are familiar with spherical bessel functions...
 - The fundamental complication here is that we are trying to relate a 3d plane wave with a spherical wave.
 - More intuitive approach would be to relate a 3d plane wave with a 2d plane wave

Decomposition

Full sky

 Decompose temperature fluctuations using spherical harmonics

Flat sky

- Decompose temperature fluctuations using Fourier transform
- The former approaches the latter in the small-angle limit

2d Fourier Transform

$$\Delta T(\hat{n}) = \int \frac{d^2\ell}{(2\pi)^2} \ a_{\ell} \exp(i\ell \cdot \boldsymbol{\theta})$$
$$= \int_0^{\infty} \frac{\ell d\ell}{2\pi} \int_0^{2\pi} \frac{d\phi_{\ell}}{2\pi} \ a_{\ell} \exp(i\ell \cdot \boldsymbol{\theta})$$

C.f.,
$$\Delta T(\hat{n}) = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell}^{m}(\hat{n})$$

a(I) of the SW effect

Using the inverse 2d Fourier transform
 on the Sachs-Wolfe (SW) formula

$$\frac{\Delta T(\hat{n})}{T_0} = \frac{1}{3}\Phi(t_L, \hat{r}_L)$$

flat-sky approx.

and Fourier-transforming the potential, we obtain:

$$a_{\ell}^{\text{SW}} = \frac{T_0}{3} \int d^2\theta \, \exp(-i\ell \cdot \boldsymbol{\theta})$$

$$\times \int \frac{d^3q}{(2\pi)^3} \, \boldsymbol{\Phi}_{\boldsymbol{q}} \, \exp(i\boldsymbol{q}_{\perp}r_L \cdot \boldsymbol{\theta} + iq_{\parallel}r_L \cos \boldsymbol{\theta})$$

Flat-sky Result

$$a_{m{\ell}}^{
m SW} = rac{T_0}{3r_L^2} \int_{-\infty}^{\infty} rac{dq_\parallel}{2\pi} \; arPhi_{m{q}} \left(m{q_\perp} = rac{m{\ell}}{r_L}, q_\parallel
ight) \exp(iq_\parallel r_L) \ q = \sqrt{\ell^2/r_L^2 + q_\parallel^2} \; ext{i.e., } q \geq \ell/r_L$$

C.f.,

$$a_{\ell m}^{\text{SW}} = \frac{4\pi T_0 i^{\ell}}{3} \int \frac{d^3 q}{(2\pi)^3} \, \Phi_{\mathbf{q}} j_{\ell}(q r_L) Y_{\ell}^{m*}(\hat{q})$$

• It is **now manifest** that only the perpendicular wavenumber contributes to I, i.e., **l=qperprL**, giving l<qrL

Angular Power Spectrum

 The angular power spectrum, C_I, quantifies how much correlation power we have at a given angular separation.

$$C_{\ell} \equiv \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} a_{\ell m} a_{\ell m}^*$$

• More precisely: it is $(2I+1)C_I/4\pi$ that gives the fluctuation power at a given angular separation, π/I . We can see this by computing **variance**:

$$\int \frac{d\Omega}{4\pi} \Delta T^2(\hat{n}) = \frac{1}{4\pi} \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} a_{\ell m}^* = \sum_{\ell=2}^{\infty} \frac{2\ell+1}{4\pi} C_{\ell}$$

COBE 4-year Power Spectrum

$$a_{\ell m}^{\text{SW}} = \frac{4\pi T_0 i^{\ell}}{3} \int \frac{d^3 q}{(2\pi)^3} \, \varPhi_{\mathbf{q}} j_{\ell}(q r_L) Y_{\ell}^{m*}(\hat{q})$$

$$C_{\ell} \equiv \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} a_{\ell m} a_{\ell m}^{*}$$

gives...

$$C_{\ell,\text{SW}} = \frac{4\pi T_0^2}{9} \int \frac{d^3q}{(2\pi)^3} \int \frac{d^3q'}{(2\pi)^3} \, \Phi_{\mathbf{q}} \Phi_{\mathbf{q}'}^* j_{\ell}(qr_L) j_{\ell}(q'r_L) P_{\ell}(\hat{q} \cdot \hat{q}')$$

 But this is not exactly what we want. We want the statistical average of this quantity.

Power Spectrum of φ

Statistical average of the right hand side contains

$$\langle \Phi_{m{q}}\Phi_{m{q}'}^*
angle = \int d^3x \int d^3r \; \langle \Phi(m{x})\Phi(m{x}+m{r})
angle \exp\left[i(m{q}-m{q}')\cdotm{x}-im{q}'\cdotm{r}
ight]$$

two-point correlation function

If $\langle \Phi(x)\Phi(x+r)\rangle$ does not depend on locations (x) but only on separations between two points (r), then

$$\langle \boldsymbol{\Phi}_{\boldsymbol{q}} \boldsymbol{\Phi}_{\boldsymbol{q}'}^* \rangle = (2\pi)^3 \delta_D^{(3)}(\boldsymbol{q} - \boldsymbol{q}') \int d^3 r \, \xi(\boldsymbol{r}) \exp(-i\boldsymbol{q} \cdot \boldsymbol{r})$$

consequence of "statistical homogeneity"

where we defined
$$\;\xi_\phi({m r})\equiv\langle \varPhi({m x})\varPhi({m x}+{m r})
angle \;$$
 and used $\int d^3x\; \exp(i{m q}\cdot{m x})\;=\;(2\pi)^3\delta_D^{(3)}({m q})$

Power Spectrum of ϕ

• In addition, if $\xi_{\phi}(r) \equiv \langle \Phi(x)\Phi(x+r)\rangle$ depends only on the magnitude of the separation r and not on the directions, then

$$\langle \Phi_{\mathbf{q}} \Phi_{\mathbf{q}'}^* \rangle = (2\pi)^3 \delta_D^{(3)}(\mathbf{q} - \mathbf{q}') \int 4\pi r^2 dr \ \xi_{\phi}(r) \frac{\sin(qr)}{qr}$$

$$= (2\pi)^3 \delta_D^{(3)}(\mathbf{q} - \mathbf{q}') P_{\phi}(q)$$

Power spectrum!

Generic definition of the power spectrum for statistically homogeneous and isotropic fluctuations

• Thus, the power spectrum of the CMB in the SW limit is

$$\langle C_{\ell,SW} \rangle = \frac{16\pi^2 T_0^2}{9} \int_0^\infty \frac{q^2 dq}{(2\pi)^3} P_{\phi}(q) j_{\ell}^2(qr_L)$$

In the flat-sky approximation,

$$\langle C_{\ell,\text{SW}} \rangle = \frac{T_0^2}{9r_L^2} \int_{-\infty}^{\infty} \frac{dq_{\parallel}}{2\pi} P_{\phi} \left(\sqrt{\frac{\ell^2}{r_L^2} + q_{\parallel}^2} \right)$$

• Thus, the power spectrum of the CMB in the SW limit is

$$\langle C_{\ell,SW} \rangle = \frac{16\pi^2 T_0^2}{9} \int_0^\infty \frac{q^2 dq}{(2\pi)^3} P_{\phi}(q) j_{\ell}^2(qr_L)$$

In the flat-sky approximation,

$$\langle C_{\ell,\mathrm{SW}} \rangle = \frac{T_0^2}{9r_L^2} \int_{-\infty}^{\infty} \frac{dq_{\parallel}}{2\pi} \ P_{\phi} \left(\sqrt{\frac{\ell^2}{r_L^2} + q_{\parallel}^2} \right)$$

For a power-law form, $P_\phi(q)=(2\pi)^3N_\phi^2q^{n-4}$, we get

$$\langle C_{\ell,\text{SW}} \rangle = \frac{8\pi^2 N_{\phi}^2 T_0^2}{9\ell^2} \left(\frac{\ell}{r_L}\right)^{n-1} \frac{\sqrt{\pi}}{2} \frac{\Gamma[(3-n)/2]}{\Gamma[(4-n)/2]}$$

Thus, the power spectrum of the CMB in the SW limit is

$$\langle C_{\ell,SW} \rangle = \frac{16\pi^2 T_0^2}{9} \int_0^\infty \frac{q^2 dq}{(2\pi)^3} P_{\phi}(q) j_{\ell}^2(qr_L) -$$

In the flat-sky approximation,

$$\langle C_{\ell,\mathrm{SW}} \rangle = \frac{T_0^2}{9r_L^2} \int_{-\infty}^{\infty} \frac{dq_{\parallel}}{2\pi} P_{\phi} \left(\sqrt{\frac{\ell^2}{r_L^2} + q_{\parallel}^2} \right)$$

For a power-law form, $P_{\phi}(q)=(2\pi)^3N_{\phi}^2q^{n-4}$, we get

$$\langle C_{\ell,\mathrm{SW}} \rangle = \frac{8\pi^2 N_\phi^2 T_0^2}{9\ell^2} \left(\frac{\ell}{r_L} \right)^{n-1} \frac{\sqrt{\pi}}{2} \frac{\Gamma[(3-n)/2]}{\Gamma[(4-n)/2]} \qquad \text{n=1} \qquad \frac{8\pi^2 N_\phi^2 T_0^2}{9\ell(\ell+1)} = \frac{8\pi^2 N_\phi^2 T_0^2}{2\pi^2 \Gamma[(3-n)/2]}$$

$$\frac{8\pi^2 N_{\phi}^2 T_0^2}{9\ell(\ell+1)}$$

Bennett et al. (1996)

COBE 4-year Power Spectrum

WMAP 9-year Power Spectrum

Planck 29-mo Power Spectry

Planck 29-mo Power Spectry

$$\langle C_{\ell, \text{SW}} \rangle = \frac{8\pi^2 N_{\phi}^2 T_0^2}{9\ell^2} \left(\frac{\ell}{r_L}\right)^{n-1} \frac{\sqrt{\pi}}{2} \frac{\Gamma[(3-n)/2]}{\Gamma[(4-n)/2]}$$

Missing physics:
Hydrodynamics
(sound waves)

