

New approaches in radiation therapy: high-energy electrons and spatial fractionation

Rachel Delorme

NARA Group, IMNC – UMR 8165, bât. 440, 91405 Orsay, France

rachel.delorme@imnc.in2p3.fr

Cancer treatment

• Cancer:

- ✓ ~360 000 new case /year in France, ~150 000 death.
- ✓ What is a cancer?
 - \circ Abnormal cell division \rightarrow mutation

Cancer treatment

• Cancer:

- ✓ ~360 000 new case /year in France, ~150 000 death.
- ✓ What is a cancer?
 - \circ Abnormal cell division \rightarrow mutation
 - Growth of the tumor \rightarrow angiogenesis to get oxygen, immature vasculature

Cancer

• Cancer:

- ✓ ~360 000 new case /year in France, ~150 000 death.
- ✓ What is a cancer?
 - Abnormal cell division → mutation
 - Growth of the tumor \rightarrow angiogenesis to get oxygen, immature vasculature
 - Propagation of a tumor \rightarrow extension to lymphatic and blood vessels = 2nd cancer

 \rightarrow Treatment challenge: kill the tumor cells without damaging the organs at risk.

5

- Cancer treatment:
 - ✓ Main treatments:
 - \circ Surgery
 - o Chemotherapy
 - Radiotherapy (half of patients)
 - o Immunotherapy
 - \circ Hormonotherapy...

Often combined

Cancer treatment: conventional radiotherapy

• Cancer treatment:

- ✓ Main treatments:
 - o Surgery
 - o Chemotherapy
 - Radiotherapy (half of patients)
 - o Immunotherapy
 - Hormonotherapy...

"Conventional" radiotherapy (~95%)

✓ Particles: X-rays 6-25 MV (every tumors), electrons 3-18 MeV (surface tumors)

Often combined

- Machines: clinical electron accelerators, with multileaf collimator and embedded imaging systems
- ✓ **Time fractionation**: 2Gy/session, 5 session/week
- ✓ Dose: 40-70 Gy
- ✓ Dose rate: 30-70 mGy/s
- ✓ Field sizes: 2 40 cm²

Cancer treatment: conventional radiotherapy

• Examples of current radiotherapy techniques (photons):

Standard clinical accelerator with embedded imaging systems

Cyber-knife

Gamma knife radiosurgery

Tomotherapy

→ Objectives: large dose in tumor, low doses in healthy tissues

Limitations of radiotherapy

• Limitations of conventional radiotherapy

Radioresistant, bulky and diffuse cancers (glioblastomas)

Non-localized tumors (metastases)

 \rightarrow Toxicity to healthy tissue limits the dose

Clinical electron accelerator (X-rays ~6-25 MV)

Limitations of radiotherapy

• Limitations of conventional radiotherapy

Radioresistant, bulky and diffuse cancers (glioblastomas)

Non-localized tumors (metastases)

 \rightarrow Toxicity to healthy tissue limits the dose

- How to improve the treatment?
 - Induce a more efficient tumoral irradiation:
 - Particle/energy: hadrontherapy (p, C-ion)
 - Targeted radiotherapy

Boron Neutron Capture Therapy

Nanoparticules

Clinical electron accelerator (X-rays ~6-25 MV)

Limitations of radiotherapy

• Limitations of conventional radiotherapy

Radioresistant, bulky and diffuse cancers (glioblastomas)

Non-localized tumors (metastases)

 \rightarrow Toxicity to healthy tissue limits the dose

- How to improve the treatment?
 - Induce a more efficient tumoral irradiation
 - Preserve the healthy tissues:
 - Particle/energy (hadrontherapy, VHEE...)
 - Dose delivery: spatial fractionation of dose
 (beam sizes < mm), FLASH (high dose rate)

Clinical electron accelerator (X-rays ~6-25 MV)

Radiobiology

- Biological dose vs Physical dose
 - Molecular scale:
 - o LET: ionization density
 - o Repair mechanism
 - Radical production...
 - Tissue/Cell scale:
 - Cell regulation
 - Vasculature...

→The same physical dose will not induce the same biological response

Advantages VHEE (50-250MeV) for radiotherapy

VHEE beams: advantages vs MV photons

- Depth dose profile: deep-seated tumors with flatter profile than photons
- ✓ *Lateral scattering*: reduced, low penumbrae
- ✓ *Magnetic collimation*: pencil beam scanning
- ✓ Heterogeneities: no electronic disequilibrium at interfaces

Penetration depth in human body (cm)

Advantages VHEE (50-250MeV) for radiotherapy

VHEE beams: advantages vs MV photons

- ✓ Depth dose profile: deep-seated tumors with flatter profile than photons
- ✓ Lateral scattering: reduced, low penumbrae
- ✓ *Magnetic collimation*: pencil beam scanning
- ✓ Heterogeneities: no electronic disequilibrium at interfaces

6 MV photons

Heterogeneities

200 MeV VHEE

Penetration depth in human body (cm)

Papiez, DesRosiers et al. 2002

Agnese Lagzda

150 MeV protons

Advantages VHEE (50-250MeV) for radiotherapy

State of the Art:

- ✓ **Proof of concept** (dosimetry): *DesRosiers et al. 2000*
- ✓ Clinical case comparisons: compared to VMAT (gold std in photon radiotherapy)
 → Better protection of OAR (prostate, pediatric, Lung, brain, H&N...)
- ✓ Might be advantagous vs protons for Head & Neck

Brain tumour dose maps for 100 MeV VHEE and 6 MV volumetric modulated arc photon therapy (VMAT) Bazalova-Carter, 2015 (Stanford)

Lung tumor : comparison X-ray, VHEE, & protons Schuler, 2017 (Stanford)

Rachel Delorme

Impact of the cost and size of the facilities on the number of treated patients

VHEE (~10 M€ ?)

Hadrontherapy center of Heidelberg (~ten C-ion and ~50 p centers in world, cost 50-100 M€) Standard medical accelerator (~500 en France, ~1 M€)

VHEE beams: advantages vs protons

- ✓ Cost and ease of beam manipulation, more compact accelerators
- ✓ For our mini-beams applications: very small beam sizes (<1mm) and low penumbrae

• Spatial Fractionation and minibeam therapy

Very small beam sizes (< 1 mm²)

Zeman et al., Science (1959)

 \rightarrow Dose-volume effect = the smaller the beam size, the higher the tolerance dose in healthy tissues.

• Spatial Fractionation and minibeam therapy

Zeman et al., Science (1959)

Spatial Fractionation of Dose

2

RT conventional

1

Lateral distance (cm)

→ PVDR = → tolerance
normal tissues

 $\square D_{valley}$ to garanty tissue preservation

 \rightarrow Dose-volume effect = the smaller the beam size, the higher the tolerance dose in healthy tissues.

n

Remarkable increase of the brain dose tolerance (up to 100 Gy/session) Prezado et al. 2015 and increase in tumor control (to be published)

Rachel Delorme

VHEE grid-therapy: implementation on PRAE

Objectives NARA (IMNC): combine advantages of VHEE beams with spatial fractionation

→ On PRAE: perform all numerical and experimental dosimetric validation up to the *in vivo* proof of concept

Rachel Delorme

19

VHEE grid-therapy: Dosimetry evaluation

First dosimetry optimization: electron energy, beam size, beam divergence, air gap

Delorme R. et al. EP-2198. Radiother Oncol. 2018;127:S1214-S1215.

Conclusion and perspectives on biological applications

- Objectives: go towards the clinics with SFR approaches and explore VHEE therapy.
- Beam characteristics on PRAE for biological applications:

- Small beam-size: $150 \mu m < \sigma < 10 mm$
- Energies: 70 140 MeV
- Small divergence: 0.1 0.4 mrad
- Dose rate: 0.035 Gy/s 40 kGy/s *

→ In vivo experiments would be a PRAE specificity compared to other VHEE facilities

High dose rates (> 100 Gy/s): interesting for FLASH therapy:

Very promising approach:

- Lung fibrosis: 15 Gy in CONV (0.03Gy/s)
- No fibrosis in FLASH
 (40 Gy/s) up to 20 Gy.

Same tumor control for CONV & FLASH. →Differential effect in tumor / normal tissues

Thank you for your attention

Rachel Delorme

23/10

Merci!

M. Alves, D. Auguste, P.Ausset, M.Baltazar, S.Barsuk, M. Ben Abdillah, L. Berthier, J. Bettane, S. Blivet, D. Bony, B. Borgo, C. Bourge, C. Bruni, J.-S.Bousson, L. Burmistrov, H. Bzyl, F. Campos, C. Caspersen, J-NCayla, V. Chambert, V. Chaumat, J-L Coacolo, P. Cornebise, R. Corsini, O. Dalifard, V. Dangle-Marie, R. Delorme, R. Dorkel, N.Dosme, D.Douillet, R. Dupré, P. Duchesne, N. El Kamchi, M. El Khaldi, W.Farabolini, A.Faus-Golfe,V.Favaudon, C. Fouillade, V. Frois, L.Garolfi, Ph. Gauron, G. Gautier, B.Genolini, A.Gonnin, D. Grasset,X. Grave, M. Guidal,E.Guérard, H.Guler,J. Han, S. Heinrich, M. Hoballah, J-MHorondinsky, H. Hrybok, P. Halin, G. Hull, D.Ichirante, M. Imre, C.Joly, M.Jouvin, M. Juchaux, W.Kaabi, S. Kamara, M. Krupa, R.Kunne, V. Lafarge, M.Langlet, P. Laniece, A. Latina, T. Lefebvre, C. Le Galliard, E.Legay, B.Lelouan, P.Lepercq, J.Lesrel, C.Magueur, G.Macmonagle, D.Marchand, A.Mazal, J-C Marrucho, G. Mercadier, B.Mathon, B. Mercier, E.Mistretta, H.Monard, C. Muñoz Camacho, T. Nguyen Trung, S. Niccolai, M. Omeich, A.MardamBeck, B. Mazoyer, A. Pastushenko, A. Patriarca, Y.Peinaud, L. Petizon, G. Philippon, L. Pinot, P.Poortmanns, F. Pouzoulet, Y.Prezado, V.Puill, B. Ramstein, E. Rouly, P. Robert, T. Saidi, V. Soskov, A. Said, A. Semsoum, A. Stocchi, C. Sylvia, S.Teulet, I. Vabre, C.Vallerand, P.Vallerand, O. Vitez, A. Vnuchenko, E. Voutier, E. Wanlin, M. Wendt, W. Wuensch, J. van de Wiele, S. Wurth

Références:

- Marchand D. et al. A new platform for research and applications with electrons: the PRAE project. EPJ Web Conf. 1. 2017;138:1012. doi:10.1051/epjconf/201713801012.
- Barsuk S, Borgo B, Douillet D, et al. First Optics Design And Beam Performance Simulation Of Prae: Platform For 2. Research And Applications With Electrons At Orsay. In: IPAC 2017, Copenhagen, Denmark.; 2017.