

Development of Innovative PET Detectors at IRFU

V. Sharyy for the CaLIPSO group

6th French-Ukrainian Workshop on Instrumentation September 26-28, 2018

Biomedical Imaging

Clinical Issues

28.09.2018

- Early diagnostics
- Personalized (appropriate and optimal) therapy
- Speed-up of the development of the new diagnostic and/or therapeutic biomolecules.

- Need to generalize the use of the quantitative and multi-modal molecular imaging technique.
 - Need to have multi-modal imaging with high resolution and high sensitivity
 - Increase the number of protocols guided by the imaging
 - Increase the applications filed (e.g. pediatric)
 - Facilitate access for the patient (cheaper, smaller, portable)
 - Dose reduction for the medical protocols

Positron Emission Tomography

- PET is a nuclear imaging technique used widely in oncology, cardiology and neuropsychiatry.
- Allows to detect at picomol level the the biochemical activity.
- PET scan in a nootshell:
 - Inject one of the radioactive tracer
 e.g. ¹⁸F-FDG, τ~110 min, ~one hour rest time
 - emits positrons ⇒ annihilation with an electrons ⇒ two 511 back-to-back gamma.
 - Gamma detection in coincidence ⇒ register ~100M lines-of-responce ⇒
 - 3D image reconstruction

28.09.2018

Scanner Types

- Preclinical (small animals)
 - Small aperture
 - High spatial resolution
 - Small sensitivity
- Brain scanner
 - Limited aperture
 - High sensitivity
 - Good spatial resolution
- Whole-body
 - Large aperture
 - High sensitivity
 - Low spatial resolution
 - Full body dose ~ 5 15 mSv (natural radioactivity per year France : 2 mSv)

28.09.2018

PET Evolution

- Combined modalities: CT/PET, MRI/PET
- Improvement sensitivity: total-body PET → 40 fold improvement in sensitivity
- Reduce bias: depth-of-interaction reconstruction

- New developments in electronics, detection
- Time-of-flight technique (TOF) ⇒ see next slides

28.09.2018

TOF Technique

- TOF techniques: measure the difference in time between two photons ⇒ improve S/B
- Contrast of the image directly correlated to the S/B and available statistics.
- TOF gain estimation:

28.09.2018

$$G = \frac{S/N_{TOF}}{S/N_{noTOF}} \sim \sqrt{\frac{D}{\delta x}} \sim \sqrt{\frac{D}{c/2 \ \delta t}}$$

D=30 cm \Rightarrow CRT=**150 ps** (FWHM) \Rightarrow G~2.9 \Rightarrow **8x lower dose**

Developments @ IRFU, CEA-Saclay

- **High spatial resolution** for the brain /preclinical PET: *CaLIPSO project*
 - Dual read-out: ionization and light
 - Innovative liquid as a detection Photodetectors medium: TMBi (trimethylbismuth)
 - Spatial resolution: 1x1x1 mm3 (FWHM)
 - Resolution in time < 150 ps (FWHM)
- High TOF resolution for wholebody/brain PET : PECHE → ClearMind projects
 - Use Cherenkov light for the detection
 - Crystals as a detection medium

28.09.2018

Resolution in time < 100 ps (FWHM)

CaLIPSO project

- TriMethyl Bismuth (TMBi), Bi(CH₃)₃
 - Bi, Z = 83, highest Z non radioactive element.
 - Photoelectric / (Photoelectric + Compton) $\sim 47\%$
 - Limpid (λ > 400 nm), dielectric, chemically stable
 - Density 2.3 g/cm³, refraction index ~ 1.6
- Two axes of development

28.09.2018

- Cherenkov light signal detection: efficiency, time resolution
- Ionization light detection: ionization yield, electron drift speed, purification

Purification Set-up

28.09.2018

M. Farradèche

- Use a 1cm thick test cell
- TMBi very reactive → limited choice of materials (ceramic, stainless steel)
- Require use of ultra-high vacuum technologies

Ionization yield Measurement

 $G_{fi} = \frac{I}{e \ \Delta \epsilon} \longrightarrow$ measured simulated

$$G_{fi} = G_{fi}^0 (1 + \alpha E)$$

- Use a 1 cm thick test cell with parallel plate geometry.
- Measure a small (~100 fA current) induced by a radioactive source between two electrodes.
- Reduce the external noise: clean outer surfaces, decoupled from the common electrical network.

M. Farradèche et al. , "Free ion yield of Trimethyl Bismuth used as sensitive medium for γ detection", Submitted to JINST, arXiv: 1809.08115

28.09.2018

Ionization yield Measurement

 $G_{fi} = \frac{I}{e \Delta \epsilon} \longrightarrow$ measured simulated

$$G_{fi} = G_{fi}^0 (1 + \alpha E)$$

28.09.2018

- Use a 1 cm thick test cell with parallel plate geometry/
- Measure a small (~100 fA current) induced by a radioactive source between two electrodes
- Reduce the external noise: clean outer surfaces, decoupled from the common electrical network

Cherenkov Light Detection

C. Canot

Optical gel OCF452

Micro-Channel-Plate Photo-Multiplier

(Planacon by Photonis)

Commercial Amplifiers

2.5 GHz, 20 dB, ZKL2R7+ 1.5 GHz, 40 dB, ZKL1R5+

Digitization: **SAMPIC** Time Waveform Digital Converter

C. Canot, "Détecteur optique Cherenkov de photons 511 keV …", PhD thesis (in French), 2018

28.09.2018

Read-out Electronics

Signals numerisation with the **SAMPIC** module:

A 32-channel, 10-GSPS Time and Waveform Digital Converter module, developped by IRFU and LAL.

* provides digitized waveform with 64 samples, 1.6 GS/s to 10 GS/s

* extremely good resolution in time :
 < 5 ps (σ)

* allows to use on-line the configurable Constant Fraction Discriminator (CFD) algorithms

* acquisition of waveform and/or CFD time

28.09.2018

MCP-PMT Calibration

• 1 mm step size

28.09.2018

CaLIPSO optical Prototype

- Measure efficiency and time resolution at the test bench using ²²Na radioactive source → two 511 keV photons
- Measured eff.: ~25%

CRT = 540 ps (FWHM) \rightarrow DO3 Resolution = 500 ps

CRT : Coincidence Resolving TimeOptical Prototype28.09.2018V. Sharyy: PET developments @IRFU

TMBI OPTI

CALIPSO Potential in Simulation

- Use GATE/Geant4 software for the simulation
- Simulate use 18F-FDG marker (glucose transporter could be used to study for Alzheimer disease)
- Demonstrate that CaLIPO indeed is able to hve a precision of O. Kochebina about 1 mm³

Simulated

Reconstructed

O. Kochebina et al,

"Simulations and Image Reconstruction for the High Resolution CaLIPSO ...", 2018, e-Print: arXiv:1801.06411 [physics.med-ph], Submitted to IEEE TRPMS journal

28.09.2018 V. Sharyy: PET developments @IRFU

Crystal Detector: Time Resolution

- PbF2 crystal (thickness 10 mm)
 - only Cherenkov radiation
 - Density 7.66 g/cm³, high photoelectric fraction : 46 %
 - refractive index : 1.82 @ 400 nm, transp. > 250 nm
- Test two equivalent detectors on the test bench with ²²Na source.

Crystal Detector: Time Resolution

28.09.2018

Cherenkov Scanner: Simulation

M. Alokhina Cotutelle: Psris-Sud / TSNUK, Kyiv

Material: PbF₂ (8 256 crystals) Crystal size: 6.5×6.5×10 mm³ Total number of PMTs: 129 Coincidence window: 4.0 ns Axial FOV: 177 mm Transaxial FOV: 81 cm

M. Alokhina, "Design of the Cherenkov TOF whole-body PET ...", PhD thesis, 2018

28.09.2018

Performance: Noise Equivalent Count Rate

NECR = $T^{2}/(T + S + 2R)$

- T rate of true coincidences
- S rate of scatter coincidences
- R rate of random coincidences

$NECR_{TOF} = D/\Delta x^* NECR$

28.09.2018V. Sharyy: PET developments @IRFU

Contrast Recovery

- Use iterative Maximum Likelihood Expectation Maximization (MLEM) imge reconstruction 3D algorithm with TOF.
- Open source code CASToR, French collaboration: ww.castor-project.org
- Use Image Quality Phantoms (NEMA 2-2012 standard) with two initial S/B contrast: x8 or x4
- Observe reasonable contrast recovery

Reconstructed image of IQ NEMA Phantom. Scan time 15 min, TOF 180 ps, initial contrast 8xBG 28.09.2018 V. Sharyy: PET developments @IRFU

Further Developments: ClearMind

28.09.2018

Conclusion

- Development of the cutting-edge technology for use in PET, but not only.
- Main directions: high spatial precision and high TOF resolution
- Study a potential of the Cherenkov radiation for whole-body PET scanner by simulation and hardware test and identified main limitations for use of the Cherenkov technology.
- The ongoing developments at IRFU have an ambition to overtake the identified limitations.

28.09.2018