

SEARCHING FOR DI-HIGGS PRODUCTION WITH THE ATLAS DETECTOR

Elizabeth Brost Northern Illinois University

Northern Illinois University

INTRODUCTION

THE LHC

Northern Illinois University

THE ATLAS DETECTOR

muon system

hadron calorimeter

EM calorimeter

inner detector

Elizabeth Brost - Northern Illinois University

muon neutrino

INTRODUCTION

THE HIGGS BOSON

- Discovered in 2012 at the LHC mass: 125.09 GeV spin: 0
- Main production mode: gluon-gluon fusion
- Couples to itself unique chance to probe electroweak symmetry-breaking (Higgs potential) – if we can observe it!

OUTLINE

- Searching for di-Higgs production
- Data collection for di-Higgs searches
- Object and event selection
- Results of di-Higgs searches and combination
- Prospects for di-Higgs searches at the HL-LHC

SEARCHING FOR DI-HIGGS PRODUCTION

U**niversitv**

SM AND BSM DI-HIGGS PRODUCTION

- Standard Model: small! ggF σ (HH) = 33.41 fb @ 13 TeV
 - + destructive interference between processes involving
 Higgs self-coupling and box-diagram with two ttH vertices

- Beyond the Standard Model: possible enhancements?
- top quark Yukawa enhancements? enhanced selfcoupling? resonant production via a heavy scalar? addition of a ttHH vertex?

 Image: Comparison of the selfoutput of the selfthe selfnew scalar?

 Image: Comparison of the selfthe self-the selfthe self-the selfthe self-the self-the self-the self-the selfthe self-the sel

Elizabeth Brost - Northern Illinois University

HOW TO SEARCH FOR HH AT ATLAS

in this talk, focus on:

DISCRIMINANT VARIABLES

The Higgs masses, m_{H1} and m_{H2} , and the four-body mass, m_{HH} can be used to discriminate between signal and background:

The resolution of the signal mass peak and the relative normalization of the signal and background vary greatly per channel

THE FOUR-BODY MASS

Different processes contribute to the m_{HH} spectrum at different masses:

At $\kappa_{\lambda} = \lambda_{HHH}/\lambda_{SM} = 0$, the only contributions are from the box diagram

- Maximal destructive interference at $\kappa_{\lambda} = 2$
- At $\kappa_{\lambda} >= 5$, the triangle diagram dominates

2015+2016 DATA

36.1/FB DATA COLLECTED BY THE ATLAS EXPERIMENT IN 2015 + 2016

- ► Lower pileup in 2015/2016 (<µ> = 23.7 vs. 37.3 now)
- Lower instantaneous luminosity (13.8*10³³/cm²s vs 21.4 now)

HOW TO TRIGGER ON HH EVENTS?

- Choose a trigger that is as efficient as possible, while keeping a low enough threshold to be able to reconstruct the Higgs mass
- HH → yybb: loose diphoton triggers, with 25/35 GeV photon p_T threshold
- ► HH → bbττ: single- (p_T > 80-160 GeV) and di-tau (p_T > 25/35 GeV) triggers for $\tau_{had}\tau_{had}$, single lepton and lepton +tau triggers (p_T > 24-26 GeV) for $\tau_{lep}\tau_{had}$
- ► HH → bbbb: one or two jets passing online b-tagging (plus additional non-b-tagged jets)

OBJECTAND EVENT SELECTION

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2016-15/

YYBB: OBJECT PRE-SELECTION

- > require two b-tagged jets, with $|\eta| < 2.5$, $p_T > 25$ GeV:
 - if: two jets pass 70% WP: 2 b-tag category (most sensitive)
 - else if: one jet passes 60% WP: 1 b-tag category (use BDT to choose 2nd jet)
 - else: 0 b-tag control region

thern Illinois

YYBB: 1 B-TAG BDT

- Train BDT on correct and incorrect second jet selections, in signal and background MC (background has no correct choice!)
- Variables considered: jet p_T, di-jet p_T, di-jet mass, jet η, di-jet η, di-jet Δη, passes 77%/85% WP, ranking from best to worst in: p_T, best match to m_H, di-jet p_T

HOW DO WE SEARCH FOR HH → YYBB?

resonant search

- Excellent diphoton mass resolution!
- \cdot Cut on $m_{bb},$ fit the data in $m_{\gamma\gamma}$
 - signal: Double-sided Crystal Ball

 $m_{\gamma\gamma}$

- background: exponential
- Set limits on di-Higgs cross section and varied Higgs self-coupling

- Cut on m_{bb} and $m_{YY,}$ fit the data in m_{YYjj}
 - signal: Gaussian with exponential tails
 - background: Novosibirsk for low masses (260-500 GeV), exponential for high masses (500-1000 GeV)
- Set limits on $\sigma(X) \rightarrow HH$

YYBB: RESONANT MODELING

Scale the dijet mass to 125 GeV for both signal and background: ≌ 0.3

This improves the signal resolution and accuracy

HH → YYBB BACKGROUNDS

non-resonant search

main backgrounds:

SM Higgs to diphotons

- \cdot ggF, VBF, WH, ZH, ttH, bbH, tH
- shape and normalization from MC

$\cdot \gamma \gamma (+\gamma j+j\gamma+jj) + jets$

• use MC model to choose a background fit function only

 $m_{\gamma\gamma}$

resonant search

main backgrounds:

- SM Higgs to diphotons and SM di-Higgs to γγbb
 - shape and normalization from MC

·γγ + jets

 use MC model to choose a background fit function only

m_{YYj}

- define two non-orthogonal selections:
 - "loose" jet selection for 260 < m_X < 500 GeV, and setting limit on self-coupling
 - "tight" jet selection for 500 < m_X < 1000 GeV, and non-resonant search

Iorthern Illinois

Iniversity

Northern Illinois

J**niversitv**

YYBB: EVENT SELECTION

- "loose" jet selection for 260 < m_X < 500 GeV, and setting limit on self-coupling
- "tight" jet selection for 500 < m_X < 1000 GeV, and non-resonant search

ANALYSIS STRATEGY

NIL

Elizabeth Brost - Northern Illinois University

24

HOW DO WE SEARCH FOR $HH \rightarrow YYBB$?

YYBB SEARCH IS STATS-LIMITED, BUT...

 largest systematic uncertainties from: photon ID, JES/JER, flavor-tagging

Source of systematic uncertainty		% effect relative to nominal Non-resonant analysis				in the 2-tag (1-tag) category Resonant analysis: BSM HH			
		SM HH signal		Single- H bkg		Loose selection		Tight selection	
Luminosity Trigger Pile-up modelling	r S	$\pm 2.1 \\ \pm 0.4 \\ \pm 3.2$	(± 2.1) (± 0.4) (± 1.3)	$\pm 2.1 \\ \pm 0.4 \\ \pm 2.0$	(± 2.1) (± 0.4) (± 0.8)	$\pm 2.1 \\ \pm 0.4 \\ \pm 4.0$	(± 2.1) (± 0.4) (± 4.2)	$\pm 2.1 \\ \pm 0.4 \\ \pm 4.0$	(± 2.1) (± 0.4) (± 3.8)
Photon	identification isolation energy resolution energy scale	$\pm 2.5 \\ \pm 0.8$	(±2.4) (±0.8) -	$\begin{array}{c} \pm 1.7 \\ \pm 0.8 \end{array}$	(± 1.8) (± 0.8) -	$\pm 2.6 \\ \pm 0.8 \\ \pm 1.0 \\ \pm 0.9$	(± 2.6) (± 0.8) (± 1.3) (± 3.0)	$\pm 2.5 \\ \pm 0.9 \\ \pm 1.8 \\ \pm 0.9$	(± 2.5) (± 0.9) (± 1.2) (± 2.4)
Jet	energy resolution energy scale	$\pm 1.5 \\ \pm 2.9$	(± 2.2) (± 2.7)	$\pm 2.9 \\ \pm 7.8$	$(\pm \ 6.4)$ $(\pm \ 5.6)$	$\pm 7.5 \\ \pm 3.0$	(± 8.5) (± 3.3)	$\pm 6.4 \\ \pm 2.3$	(± 6.4) (± 3.4)
Flavour tagging	<i>b</i> -jets <i>c</i> -jets light-jets	$ \pm 2.4 \pm 0.1 < 0.1 $	(± 2.5) (± 1.0) (± 5.0)	$\pm 2.3 \\ \pm 1.8 \\ \pm 1.6$	(± 1.4) (± 11.6) (± 2.2)	± 3.4	(±2.6) -	± 2.5	(±2.6) - -
Theory	$PDF + \alpha_S$ Scale EFT	$\pm 2.3 \\ +4.3 \\ -6.0 \\ \pm 5.0$	$(\pm 2.3) \\ (+4.3) \\ (-6.0) \\ (\pm 5.0)$	$\pm 3.1 \\ +4.9 \\ +7.0$	(± 3.3) (+ 5.3) (+ 8.0) n/a	n/an/an/an/an/an/an/an/a		n/a n/a n/a n/a	

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2016-16/

Northern Illinois University

OBJECT AND EVENT SELECTION

BBTAUTAU: OBJECT SELECTION

two selections: lep+had, had+had – based on the tau decays

HOW DO WE SEARCH FOR HH \rightarrow BBTAUTAU?

m_{bb}/m_{ττ}

non-resonant search

resonant search*

 Train a dedicated BDT for each mass • Train a BDT on SM HH signal, and on signal with varied self-coupling ($\kappa_{\lambda} = 20$) point Higgs and di-Higgs candidate Higgs and di-Higgs candidate masses used as input to the BDT masses used as input to the BDT • Scale m_{bb} and $m_{\tau\tau}$ to the Higgs mass • Scale m_{bb} and m_{TT} to the Higgs mass when constructing mbbur when constructing mbbur Simultaneous fit of 3 BDT distributions • Fit the 3 BDT results for each mass point (one had+had, two lep+had- based on the triggers used)

 $m_{bb\tau\tau}$

Northern Illinois

- lep+had SLT resonant: m_{HH}, m_{bb}, m_{ττ}^{MMC}, ΔR(τ,τ), ΔR(b,b), MET, MET centrality, transverse W mass, Δφ(H,H), Δp_T(*l*, τ_{had-vis}), subleading b-jet p_T
- lep+had SLT non-resonant, LTT: m_{HH} , m_{bb} , $m_{\tau\tau}^{MMC}$, $\Delta R(\tau, \tau)$, $\Delta R(b,b)$, transverse W mass
- had+had: m_{HH}, m_{bb}, m_{ττ}^{MMC}, $\Delta R(\tau, \tau)$, $\Delta R(b,b)$, MET centrality

lep+had channel

Northern Illinois U**niversitv**

ANALYSIS STRATEGY

HOW DO WE SEARCH FOR HH → BBTAUTAU?

BBTAUTAU: SYSTEMATICS

largest systematic uncertainties from: fake tau estimation, AM/AMING
 flavor-tagging, hadronic tau ID

Source	Uncertainty (%)					
Total	± 54					
Data statistics	± 44					
Simulation statistics	± 16					
Experimental Uncertainties						
Luminosity	± 2.4					
Pileup reweighting	± 1.7					
$ au_{ m had}$	± 16					
Fake- τ estimation	\pm 8.4					
b-tagging	\pm 8.3					
Jets and $E_{\rm T}^{\rm miss}$	\pm 3.3					
Electron and muon	± 0.5					
Theoretical and Modeling Uncertainties						
Тор	± 17					
Signal	\pm 9.3					
$Z \to \tau \tau$	\pm 6.8					
SM Higgs	± 2.9					
Other backgrounds	± 0.3					

Northern Illinois University

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2016-31/

BBBB: OBJECT SELECTION

HOW DO WE SEARCH FOR HH → BBBB?

*also consider Randall-Sundrum graviton (RSG) model for spin 2, not covered in this talk

ANALYSIS STRATEGY

HOW DO WE SEARCH FOR HH → BBBB?

BBBB: EVENT RECONSTRUCTION

Northern Illinois University

- resolved: angle between the two jets depends on the Lorentz boost, and thus the four-jet mass
 - four-jet-mass dependent cuts on ΔR(j,j) to reconstruct the two Higgs candidates
- boosted: signal eff. depends on four-jet mass (2b cat. most efficient at high mass)

BBBB: EVENT SELECTION

- Resolved: additional cuts on p_T of the Higgs candidates, Δη between the Higgs candidates, and a top veto (X_{Wt}=√(m_W - 80 GeV / 0.1m_W)² + (m_t - 173 GeV / 0.1m_t)² > 1.5)
- Resolved and boosted: Signal and control regions are defined in a ring around the Higgs mass in a 2D (m_{jj1},m_{jj2}) plane – background is data-driven, using control regions

BBBB BACKGROUND MODELING

resolved: ~95% of background is from multi-jet events (data-driven)

- Define signal, control, and sideband regions in 2-tag selection
- Multi-jet background is estimated in sidebands and reweighted to correct for differences between 2- and 4-tag selections
- Similar method in boosted analysis using N_{btags} Northern Illinois University
 Elizabeth Brost - Northern Illinois University

BBBB BACKGROUND MODELING

BBBB: RESOLVED SYSTEMATICS

Iargest systematic uncertainties from: JES, flavor-tagging

	2015			2016				
Source	Background	Scalar	SM HH	$G_{\rm KK}$	Background	Scalar	SM HH	$G_{\rm KK}$
Luminosity	_	2.1	2.1	2.1	_	2.2	2.2	2.2
Jet energy	_	17	7.1	3.7	—	17	6.4	3.7
b-tagging	—	13	12	14	—	13	12	14
b-trigger	—	4.0	2.3	1.3	_	2.6	2.5	2.5
Theoretical	—	23	7.2	0.6	—	23	7.2	0.6
Multijet stat	4.2	—	—	_	1.5	_	—	—
Multijet syst	6.1		_	_	1.8		_	_
$tar{t}~{ m stat}$	2.1	_	_	_	0.8		_	_
$tar{t}$ syst	3.5	—	_	—	0.3		_	
Total	7.5	31	16	15	1.8	31	16	15

RESULTS + COMBINATION

University

YYBB: COMPARISON OF DATA TO BACKGROUND-ONLY FIT

Fit 1- and 2 b-tag categories in data simultaneously

- Best fit non-resonant signal: 0.04 pb (-0.21 pb) for loose (tight) selection
- Best-fit resonant
 signal: at 480 GeV
 (local significance of 1.2σ)
- No significant excess observed → set limits

YYBB: COMPARISON OF DATA TO BACKGROUND-ONLY FIT

Fit 1- and 2 b-tag categories in data simultaneously

- Best fit non-resonant signal: 0.04 pb (-0.21 pb) for loose (tight) selection
- Best-fit resonant
 signal: at 480 GeV
 (local significance of 1.2σ)
- No significant excess observed → set limits

Northern Illinois University

BBTAUTAU: COMPARISON OF DATA TO BDT OUTPUT

 Simultaneous fit of three categories (lep+had SLT, LTT and had+had)

► Z+HF

normalization from control region

- ttbar normalization
 from the low BDT
 score region of lep
 +had SLT
- No significant
 excess observed
 → set limits

Northern Illinois University

BBBB: COMPARISON OF DATA TO BACKGROUND MODEL

- Profile likelihood fit to 2015+2016 data simultaneously (resolved) and 2-, 3-, and 4-tag signal regions (boosted)
- The largest deviation from the background-only hypothesis is at 280 GeV (2.3σ global significance)
- no significant excess
 observed → set limits

Northern Illinois University

		-		
	observed	expected		
HH → γγbb	20.4*o _{sm}	26.3*o _{sm}		
HH → bbττ	12.6*σ _{SM}	14.6*σ _{SM}		
HH → bbbb	12.9*о _{ѕм}	20.7*о _{ѕм}		
combination	6.7*σ _{SM}	10.4*σ _{SM}		

n.b. these are slightly different than the published yybb limits, since this analysis uses asymptotics

Northern Illinois

University

NON-RESONANT LIMITS: HIGGS SELF-COUPLING

observed (expected) limits: -5.0 < $\kappa_{\lambda} = \lambda_{HHH}/\lambda_{SM}$ < 12.1 (-5.8 < κ_{λ} < 12.0)

Northern Illinois

University

RESONANT LIMITS: XS(X)*BR(X \rightarrow HH)

53

FUTURE: HOW TO IMPROVE?

- Searches are still stats-limited, so the full Run 2 dataset (150/fb, which we will have in hand in less than a month) will improve our reach
- Studying the use of more complex analysis strategies, such as multivariate algorithms (bbττ already uses a BDT to discriminate between signal and background)
- Current analyses only consider the ggF production mode VBF production is 7% of the Higgs cross section, and we can make use of the unique event topology to improve S/B
- Keep efficient trigger strategies, even with more difficult machine conditions

PROSPECTS FOR THE HL-LHC

$HH \rightarrow YYBB @ HL-LHC (ATL-PHYS-PUB-2017-001)$

▶ set expected limits using truth-level MC for $\sqrt{s} = 14$ TeV, $\int L = 3000$ fb⁻¹

- The truth-level objects are smeared according to predicted detector resolution at $<\mu> = 200$
- expected significance for non-resonant SM hh \rightarrow yybb: 1.05 σ

 $\begin{array}{l} \textbf{ limits on Higgs self-coupling: -0.8 < λ/λ_{SM} < 7.7$}\\ \textbf{Northern Illinois}\\ \textbf{University} \end{array} \\ \hline \end{array} \\ \textbf{Elizabeth Brost - Northern Illinois University}} \end{array}$

$HH \rightarrow BBBB @ HL-LHC (ATL-PHYS-PUB-2016-024)$

- extrapolate (ICHEP 2016) Run 2 results to $\sqrt{s} = 14$ TeV, $\int L = 3000$ fb⁻¹
- expected limit on non-resonant SM hh \rightarrow bbbb: 1.5* σ_{SM}
 - with current systematic uncertainties: $5.2*\sigma_{SM}$
- ▶ limits on Higgs self-coupling: $0.2 < \lambda/\lambda_{SM} < 7.0$ (-3.5 < $\lambda/\lambda_{SM} < 11$ syst)

DI-HIGGS AND THE FUTURE

- Studying electroweak symmetry breaking is one of the long-term goals of the LHC
- Measuring the Higgs self-coupling is one of the final open points in our suite of measurements of the properties of the Higgs boson— and it is nearly within our reach (at the HL-LHC?)
- Keeping up with our current rate of progress will require novel experimental techniques and data-collection methods!

BACKUP SLIDES

THE ATLAS TRIGGER SYSTEM

Reduce from 40 MHz bunch crossing rate to 1 kHz (which is sent to storage), while choosing interesting events

Northern Illinois University

YYBB: DETAILS ON MONTE CARLO SAMPLES

generators, PDF sets, cross sections for signal and background MC:

Process	Generator	Showering	PDF set	σ [fb]	Order of calculation of σ	Simulation
Non-resonant SM <i>HH</i> Non-resonant BSM <i>HH</i> Resonant BSM <i>HH</i>	MadGraph5_aMC@NLO MadGraph5_aMC@NLO MadGraph5_aMC@NLO	Herwig++ Pythia 8 Herwig++	CT10 NLO NNPDF 2.3 LO CT10 NLO	33.41 - -	NNLO+NNLL LO NLO	Fast Fast Fast
$\gamma\gamma$ plus jets	Sherpa	Sherpa	CT10 NLO	-	LO	Fast
$\begin{array}{l} ggH\\ \mathrm{VBF}\\ WH\\ q\bar{q} \rightarrow ZH\\ t\bar{t}H\\ gg \rightarrow ZH\\ b\bar{b}H\\ \mathrm{t-channel}\ tH\\ W\text{-associated}\ tH \end{array}$	Powheg-Box NNLOPS (r3080) [60] Powheg-Box (r3052) [61] Powheg-Box (r3133) [62] Powheg-Box (r3133) [62] MADGRAPH5_aMC@NLO Powheg-Box (r3133) MADGRAPH5_aMC@NLO MADGRAPH5_aMC@NLO	Pythia 8 Pythia Pythia Pythia 8 Pythia 8 Pythia 8 Pythia Pythia 8 Herwig++	PDF4LHC15 PDF4LHC15 PDF4LHC15 PDF4LHC15 NNPDF3.0 PDF4LHC15 CT10 NLO CT10 NLO CT10 NLO	$\begin{array}{c} 48520\\ 3780\\ 1370\\ 760\\ 510\\ 120\\ 490\\ 70\\ 20 \end{array}$	$N^{3}LO(QCD)+NLO(EW)$ NNLO(QCD)+NLO(EW) NNLO(QCD)+NLO(EW) NLO(QCD)+NLO(EW) NLO(QCD)+NLO(EW) NLO+NLL(QCD) NNLO(5FS)+NLO(4FS) LO(4FS) NLO(5FS)	Full Full Full Full Full Full Full Full

YYBB SIGNAL MONTE CARLO

- non-resonant signal
 - pp → HH → γγbb: ≈ NLO
 Madgraph+Herwig,
 reweighted to full NLO
 - > pp → HH → γγbb (varied κ_{λ}): LO Madgraph+Pythia
- resonant signal
 - ► $pp \rightarrow X \rightarrow HH \rightarrow \gamma\gamma bb: \approx NLO$ Madgraph+Herwig
 - m_X = 260, 275, 300, 325, 350, 400, 450, 500, 750, 1000 GeV

YYBB: RESONANT SIGNAL MODELING

- resonant signal is modeled with a Gaussian with exponential tails - simultaneous fit to all mass points
- constrain m_{jj} = m_H in the resonant search, to improve fourbody mass resolution

YYBB: CONTINUUM BACKGROUND MODELING, NON-RESONANT SEARCH

YYBB: CONTINUUM BACKGROUND MODELING, NON-RESONANT SEARCH

YYBB: CONTINUUM BACKGROUND MODELING, RESONANT SEARCH

YYBB: CONTINUUM BACKGROUND MODELING, RESONANT SEARCH

YYBB: FINAL EVENT YIELDS

	1-t	ag	2-tag		
	Loose selection	Tight selection	Loose selection	Tight selection	
Continuum background SM single-Higgs-boson background	$\begin{array}{rrr} 117.5 & \pm 4.7 \\ & 5.51 & \pm 0.10 \end{array}$	$\begin{array}{rrr} 15.7 & \pm \ 1.6 \\ 2.20 & \pm \ 0.05 \end{array}$	$\begin{array}{rrr} 21.0 & \pm \ 2.0 \\ 1.63 & \pm \ 0.04 \end{array}$	$3.74 \pm 0.78 \\ 0.56 \pm 0.02$	
Total background	123.0 ± 4.7	17.9 ± 1.6	22.6 ± 2.0	$4.30~\pm~0.79$	
SM Higgs boson pair signal	$0.219 {\pm} 0.006$	0.120 ± 0.004	$0.305 \pm \ 0.007$	0.175 ± 0.005	
Data	125	19	21	3	

YYBB: RESULTS

NON-RESONANT LIMITS: HH CROSS SECTION

Northern Illinois

Universitv

NON-RESONANT LIMITS: HIGGS SELF-COUPLING

- Parameterize the acceptance*efficiency as a function of κ_{λ}
- Theory cross section shown for illustration
- Set limits on the Higgs self-coupling: -8.2 < κ_λ < 13.2

YYBB: RESULTS

Northern Illinois

Universitv

- Blue line separates loose and tight selections
- Largest deviation from background-only hypothesis is at 480 GeV (local significance of 1.2σ) → No significant excess observed
- Maximum observed (expected) limit : 1.1 pb (0.9 pb) at 260 GeV
- Minimum observed (expected) limit: 0.12 pb (0.15 pb) at 1000 GeV

ANALYSIS STRATEGY

BBTAUTAU: EVENT YIELDS BEFORE BDT CUTS

	$ au_{ m lep} au_{ m had}$		
	(SLT)	(LTT)	$ au_{ m had} au_{ m had}$ channel
$t\overline{t}$	17800 ± 1100	1475 ± 94	360 ± 100
Single top	1130 ± 110	72.9 ± 7.6	39.7 ± 5.9
Multi-jet fake- τ_{had}	-	-	294 ± 57
$t\bar{t}$ fake- $\tau_{\rm had}$	-	-	160 ± 120
Fake- τ_{had}	9000 ± 1100	475 ± 76	-
$Z \to \tau \tau + (cc, bc, bb)$	416 ± 97	117 ± 28	291 ± 91
Other	197 ± 32	14.5 ± 2.3	22.9 ± 5.9
SM Higgs	38 ± 10	4.1 ± 1.0	8.2 ± 2.1
Total Background	28610 ± 180	2159 ± 46	1178 ± 40
Data	28612	2161	1180
$G_{\rm KK}(300{\rm GeV},k/\overline{M}_{Pl}=1)$	23.6 ± 3.7	7.5 ± 1.2	13.1 ± 2.6
$G_{\rm KK}(500{\rm GeV},k/\overline{M}_{Pl}=1)$	42.4 ± 6.4	9.9 ± 1.5	36.3 ± 7.0
$G_{\rm KK}(1000/800({\rm LTT}){\rm GeV},k/\overline{M}_{Pl}=1)$	2.6 ± 0.4	1.06 ± 0.16	2.11 ± 0.43
$G_{\rm KK}(300{\rm GeV},k/\overline{M}_{Pl}=2)$	327 ± 50	82 ± 13	240 ± 46
$G_{\rm KK}(500{\rm GeV},k/\overline{M}_{Pl}=2)$	193 ± 29	39.7 ± 6.1	187 ± 36
$G_{\rm KK}(1000/800({\rm LTT}){\rm GeV},k/\overline{M}_{Pl}=2)$	8.6 ± 1.3	3.63 ± 0.56	7.9 ± 1.6
$X(300{ m GeV})$	39.1 ± 6.3	11.8 ± 1.9	17.9 ± 3.6
$X(500{ m GeV})$	3.41 ± 0.52	0.88 ± 0.13	2.84 ± 0.54
$X(1000/800(\mathrm{LTT})\mathrm{GeV})$	0.0267 ± 0.0041	0.0228 ± 0.0035	0.0222 ± 0.0044
NR HH	0.99 ± 0.13	0.225 ± 0.033	0.75 ± 0.14

BBTAUTAU: EVENT YIELDS AFTER BDT CUTS

	$ au_{ m lep} au_{ m had}$	π , π , channel	
	(SLT)	(LTT)	'had 'had Channel
$t\overline{t}$	18.2 ± 4.2	23.2 ± 1.7	4.5 ± 1.4
Single top	6.4 ± 1.3	3.7 ± 1.2	1.06 ± 0.57
Multi-jet fake- $\tau_{\rm had}$	_	-	3.89 ± 0.87
$t\bar{t}$ fake- $\tau_{\rm had}$	_	_	1.9 ± 1.4
Fake- τ_{had}	12.0 ± 2.3	6.6 ± 1.5	_
$Z \to \tau \tau + (cc, bc, bb)$	10.2 ± 2.6	7.7 ± 3.1	12.6 ± 3.6
Other	3.89 ± 0.69	1.51 ± 0.36	1.09 ± 0.32
SM Higgs	1.94 ± 0.43	0.58 ± 0.14	1.54 ± 0.41
Total Background	52.7 ± 4.5	39.5 ± 3.0	26.7 ± 3.5
Data	45	47	20
NR HH	0.49 ± 0.07	0.16 ± 0.02	0.55 ± 0.10

BBTAUTAU: NON-RESONANT LIMITS

		Observed	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$
τ τ (SIT)	$\sigma(HH \to bb\tau\tau)$ [fb]	52	38.4	52	72	100	134
'lep'had (OLI)	$\sigma/\sigma_{ m SM}$	21.3	15.7	21.1	29.3	40.8	55
$\sigma \sigma $ (ITT)	$\sigma(HH \to bb\tau\tau)$ [fb]	326	123	165	229	319	428
$\gamma_{\rm lep}\gamma_{\rm had}$ (LII)	$\sigma/\sigma_{ m SM}$	134	50	68	94	131	175
	$\sigma(HH \to bb\tau\tau)$ [fb]	57	37.2	49.9	69	96	129
$\tau_{\rm lep} \tau_{\rm had}$ Combined	$\sigma/\sigma_{ m SM}$	23.5	15.2	20.5	28.4	39.5	53
$\tau_{\rm had}\tau_{\rm had}$	$\sigma(HH \to bb\tau\tau)$ [fb]	40.0	22.8	30.6	42.4	59	79
	$\sigma/\sigma_{ m SM}$	16.4	9.33	12.5	17.4	24.2	32.4
All channels combined	$\sigma(HH \to bb\tau\tau)$ [fb]	30.9	19.4	26.0	36.1	50	67
	$\sigma/\sigma_{ m SM}$	12.7	7.93	10.7	14.8	20.6	27.6

BBTAUTAU RESULTS

RESONANT LIMITS

BBTAUTAU RESULTS

ACC*EFF

BBTAUTAU RESULTS

RESONANT LIMITS

Northern Illinois University

BBBB: RESOLVED EVENT YIELDS

Sample	$2015~\mathrm{SR}$	$2016 \ \mathrm{SR}$	2015 CR 2016 CR
Multijet $t\overline{t}$, hadronic $t\overline{t}$, semileptonic	$\begin{array}{rrrr} 866 & \pm 70 \\ 52 & \pm 35 \\ 13.9 & \pm 6.5 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Total	930 ± 70	7130 ± 130	$956 \pm 50 7550 \pm 130$
Data	928	7430	969 7656
$G_{\rm KK} (800 \ GeV)$ Scalar (280 GeV) SM HH	12.5 ± 1.9 24 ± 7.5 0.607 ± 0.091	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

BBBB: BOOSTED EVENT YIELDS

	Two-	Thre	e-tag	Fou	r-tag	
Source	e Sideband	Control	Sideband	Control	Sideband	Control
Multij	jet 17280 ± 160	6848 ± 67	3551 ± 98	1425 ± 42	176 ± 23	70.4 ± 8.5
$t\bar{t}$	7850 ± 160	1485 ± 40	853 ± 82	162 ± 19	28 ± 19	6.4 ± 4.3
Total	25140 ± 180	8333 ± 67	4404 ± 77	1587 ± 36	204 ± 14	76.8 ± 7.8
Data	25137	8486	4403	1553	204	81
-		Two-ta	g T	hree-tag	Four-tag	
-	Multijet	3390 ± 1	50 702	± 63	32.9 ± 6.9)
	$t\bar{t}$	860 ± 1	10 80	± 33	1.7 ± 1.4	1
	Total	4250 ± 1	30 782	± 51	34.6 ± 6.1	
-	$G_{\rm KK}$ (2 TeV)	$0.97 \pm$	0.29 1	$.23 \pm 0.16$	0.40 ± 0.1	13
-	Scalar (2 TeV)	$28.2 \pm$	9.0 35	$.0 \pm 4.6$	10.9 ± 3.5	5
	Data	4376	801		31	
Nort	hern Illinois					

NIU University

Elizabeth Brost - Northern Illinois University

EXPERIMENT

BBBB: BOOSTED SYSTEMATICS

	Tw	ro-tag		Three-tag			Four-tag		
Source	Background	$G_{\rm KK}$	Scalar	Background	$G_{\rm KK}$	Scalar	Background	$G_{\rm KK}$	Scalar
Luminosity	-	2.1	2.1	-	2.1	2.1	-	2.1	2.1
JER	0.25	0.74	1	1.4	0.93	0.93	0.45	1.1	1.5
JMR	0.52	12	12	1.4	12	13	7.9	13	14
$\mathrm{JES}/\mathrm{JMS}$	0.43	1.7	2.1	2.0	1.9	2.2	1.3	3.7	5.7
b-tagging	0.83	27	29	0.48	2	2.9	1.1	28	28
Bkgd estimate	2.8	-	-	5.8	-	-	16	-	-
Statistical	0.6	1.2	1.3	1.3	1.0	1.1	3.1	1.6	1.9
Total Syst	3.1	30	32	6.6	13	14	18	31	32

EVENT DISPLAY

4B EVENT DISPLAY: RESOLVED SELECTION

Northern Illinois University

BBBB RESULTS

ACC*EFF RESOLVED

Northern Illinois University

BBBB RESULTS

Northern Illinois University

ACC*EFF BOOSTED

Elizabeth Brost - Northern Illinois University

BBBB RESULTS

NON- RESONANT LIMITS

Observed	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$
13.0	11.1	14.9	20.7	30.0	43.5

University

SPIN O RESONANT LIMITS

SPIN 2 RESONANT LIMITS

University

University

SPIN 2 RESONANT LIMITS

NON-RESONANT LIMITS: HIGGS SELF-COUPLING

acceptance*efficiency curves for each channel

HH → γγbb

Northern Illinois

University

 $HH \rightarrow bb\tau\tau$

HH → bbbb

