SuperRelic: the relics of SuperIso

Alexandre Arbey

Centre de Recherche Astrophysique de Lyon

GDR Supersymétrie – Orsay – December 3rd, 2008

Outline

- Overview
- Sensitivity to the Cosmological Model

3 SuperRelic

- Motivations
- Structure
- Status
- Future developments

・ロ・・ (日・・ (日・・ (日・)

크

Overview Sensitivity to the Cosmological Model

Relic density

The recent observations of the WMAP satellite, combined with other cosmological data impose the dark matter density range at 95% C.L.:

 $0.088 < \Omega_{DM} h^2 < 0.12$

(ロ) (同) (E) (E)

Overview Sensitivity to the Cosmological Model

Overview Sensitivity to the Cosmological Model

・ロ・・聞・・ ほ・・ ほ・

크

Relic density

In the Standard Model of Cosmology:

 at and before nucleosynthesis time, the expansion is dominated by radiation

$${\it H}^{2}=$$
8 $\pi {\it G}/$ 3 $imes
ho_{
m rad}$

 the evolution of the number density of supersymmetric particles follows the equation

$$rac{dn}{dt} = -3Hn - \langle \sigma_{\text{eff}} v \rangle (n^2 - n_{\text{eq}}^2)$$

Overview Sensitivity to the Cosmological Model

・ロ・・ (日・・ (日・・ 日・)

Ξ.

Relic density

Effective invariant annihilation rate W_{eff} :

(ij: SUSY coannihilating particles / kl: SM outgoing particles)

$$\frac{dW_{\rm eff}}{d\cos\theta} = \sum_{ijkl} \frac{p_{ij}p_{kl}}{32\pi p_{\rm eff}S_{kl}\sqrt{s}} \sum_{\rm helicities} \left| \sum_{\rm diagrams} \mathcal{M}(ij \to kl) \right|^2$$

Thermal average of effective cross section:

$$\langle \sigma_{\rm eff} v \rangle = \frac{\int_0^\infty dp_{\rm eff} p_{\rm eff}^2 W_{\rm eff} K_1\left(\frac{\sqrt{s}}{T}\right)}{m_1^4 T \left[\sum_i \frac{g_i}{g_1} \frac{m_i^2}{m_1^2} K_2\left(\frac{m_i}{T}\right)\right]^2}$$

(K_{1,2}: modified Bessel functions)

Overview Sensitivity to the Cosmological Model

Relic density

In the Standard Model of Cosmology:

 at and before nucleosynthesis time, the expansion is dominated by radiation

$$H^2=8\pi G/3 imes
ho_{
m rad}$$

 the evolution of the number density of supersymmetric particles follows the equation

$$rac{dn}{dt} = -3Hn - \langle \sigma_{ ext{eff}} v
angle (n^2 - n_{ ext{eq}}^2)$$

 solving this equation leads to the relic density of SUSY particles in the present Universe

Problem: we have no good constraints on the pre-BBN era!

 \Rightarrow the expansion rate can be different from what expected in standard cosmology...

Overview Sensitivity to the Cosmological Model

Relic density

For example, the expansion rate modification can be parametrized by adding a new density ρ_D : ($T_0 \sim BBN$ temperature)

$$H^2 = 8\pi G/3 \times (\rho_{rad} + \rho_D)$$
 with $\rho_D(T) = \rho_D(T_0)(T/T_0)^{n_D}$

- *n*_D = 4: radiation-like behavior
- n_D = 6: behavior of a scalar field dominated by its kinetic term
- $n_D > 6$: extra-dimension effects
- We introduce $\kappa_D = \rho_D(T_0)/\rho_{rad}(T_0)$

The modified expansion is in agreement with the observations provided $n_D > 4$ and $\kappa_D < 1$

Such a modification can drastically change the calculated relic density!

Overview Sensitivity to the Cosmological Model

Relic density

For a mSUGRA test-point with a relic density of $\Omega_{LSP} h^2 = 0.105$ (favored by WMAP) in the usual cosmological model, in the expansion rate modified scenario the computed relic density is changed:

크

Overview Sensitivity to the Cosmological Model

(a)

< ∃→

크

Relic density

Displacement of the WMAP limits in mSUGRA

Large even for a small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008)

Overview Sensitivity to the Cosmological Model

A B >
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ≣⇒

크

Relic density

Displacement of the WMAP limits in mSUGRA

Large even for a small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008)

Overview Sensitivity to the Cosmological Model

A B >
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ≣⇒

크

Relic density

Displacement of the WMAP limits in mSUGRA

Large even for a small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008)

Overview Sensitivity to the Cosmological Model

(a)

< ∃→

E

Relic density

Displacement of the WMAP limits in mSUGRA

Large even for a small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008)

Overview Sensitivity to the Cosmological Model

(a)

< ∃→

E

Relic density

Displacement of the WMAP limits in mSUGRA

Large even for a small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008)

Overview Sensitivity to the Cosmological Model

A B >
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ≣⇒

E

Relic density

Displacement of the WMAP limits in mSUGRA

Large even for a small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008)

Overview Sensitivity to the Cosmological Model

E.

Relic density

No public relic density calculator currently provides alternative cosmological models!

\implies SuperRelic...

Motivations Structure Status Future developments

SuperRelic

SuperRelic = SuperIso + relic density calculation (for a presentation of SuperIso, see Nazila's tomorrow talk!)

Motivations

- Alternative relic density calculator
- Easily usable to constrain SUSY
- Flexible cosmological model implementation
- Flexible particle physics model implementation
- Automatized
- Fast and/or precise
- Modular

Motivations Structure Status Future developments

SuperRelic

Structure of the code

- Generation of a SLHA file with Isajet of Softsusy
- Initialization of the variables using the SLHA file
- Generation of additional Higgs sector variables with FeynHiggs
- Calculation of *W*_{eff} with Fortran functions
- Calculation of $\langle \sigma_{\rm eff} v \rangle$ with C functions
- Solving of the Boltzmann equation with C functions
- Computation of the other SuperIso observables

・ロ・・ (日・・ (日・・ 日・)

Motivations Structure Status Future developments

SuperRelic

Structure of the code

- Initial calculation of the amplitudes with Mathematica / FeynArts / FormCalc / FORM
- Interfacing of the FormCalc-generated Fortran code with the SuperIso C-functions
- Use of LoopTools (if needed) to compute loop amplitudes
- Possibility to use of FeynArts model file generators (FeynRules, LanHEP, ...)
- Use of (precompiled) static libraries for the amplitude calculation

Motivations Structure Status Future developments

SuperRelic

Status

- Calculation of amplitudes within MSSM with MFV at tree level fully implemented
- Relic density within the cosmological standard model fully implemented
- Good agreement with Micromegas and DarkSusy
- Speed optimization in progress
- Improvement of the compatibility with various architectures and compilers
- Will soon be made available as a public beta release

・ロ・・ (日・・ ヨ・・

Motivations Structure Status

SuperRelic

Good agreement with DarkSusy!

æ

Motivations Structure Status Future developments

SuperRelic

Future developments

- Extension to the NMSSM
- Implementation of alternative cosmological models:
 - Presence of a primordial dark density
 - Presence of reheating / entropy modification
 - Non-thermal production of relic particles
 - ...

o ...

- Loop computation of amplitudes (structure ready, amplitudes still pending...)
- Extension to NMFV

くぼう くぼう くぼう

Conclusion

SuperRelic

Extension of SuperIso towards cosmological relics

Will include

- Alternative cosmological models...
- As well as alternative particle physics models...
- If possible at loop level...

Stay tuned for the first release of SuperRelic!!!

・ロ・・ (日・・ (日・・ (日・)

크