AUTOMATIC ONE-LOOP CALCULATIONS IN THE MSSM

Nans BARO

Institut für Theoretische Physik E (Aachen)

in collaboration with Fawzi BOUDJEMA, Guillaume CHALONS and Andrei SEMENOV

GDR SUSY - Orsay [04/12/08]

NANS BARO (AACHEN)

1-LOOP CALCULATIONS IN THE MSSM

04/12/08 1/18

< ∃ > <

A lot of parameters (~100 without CP violation)

A lot of interactions (~ 5000 vertices)

Calculations become extremely tedious and involved. Even more so at one-loop...

NANS BARO (AACHEN)

1-LOOP CALCULATIONS IN THE MSSM

04/12/08 2 / 18

SECTORS MSSM

Fermions u, d (Quark) e, v (Lepton) $\tilde{H}_{1,2}^{0}, \tilde{H}_{1,2}^{+}$ $\tilde{B}, \tilde{W}_{3}, \tilde{W}^{+}$ \tilde{g} (Gluino) Bosons $\tilde{u}_{1,2}, \tilde{d}_{1,2}$ (Squark) $\tilde{e}_{1,2}, \tilde{\nu}$ (Slepton) h^0, H^0, A^0, H^+ (Higgs) γ, Z^0, W^+ (EW gauge) g (Gluon)

A lot of parameters (~100 without CP violation)

A lot of interactions (~ 5000 vertices)

Calculations become extremely tedious and involved. Even more so at one-loop...

NANS BARO (AACHEN)

1-LOOP CALCULATIONS IN THE MSSM

SECTORS MSSM

Fermions u, d (Quark) e, γ (Lepton) $\tilde{\chi}^{0}_{1,2,3,4}$ (Neutralino) $\tilde{\chi}^{\pm}_{1,2}$ (Chargino) \tilde{g} (Gluino) Bosons $\tilde{u}_{1,2}, \tilde{d}_{1,2}$ (Squark) $\tilde{e}_{1,2}, \tilde{\gamma}$ (Slepton) h^0, H^0, A^0, H^+ (Higgs) γ, Z^0, W^+ (EW gauge) g (Gluon)

A lot of parameters (~100 without CP violation)

A lot of interactions (~ 5000 vertices)

Calculations become extremely tedious and involved. Even more so at one-loop...

NANS BARO (AACHEN)

1-LOOP CALCULATIONS IN THE MSSM

SECTORS MSSM

Fermions u, d (Quark) e, γ (Lepton) $\tilde{\chi}^{0}_{1,2,3,4}$ (Neutralino) $\tilde{\chi}^{\pm}_{1,2}$ (Chargino) \tilde{g} (Gluino) Bosons $\tilde{u}_{1,2}, \tilde{d}_{1,2}$ (Squark) $\tilde{e}_{1,2}, \tilde{\nu}$ (Slepton) h^0, H^0, A^0, H^+ (Higgs) γ, Z^0, W^+ (EW gauge) g (Gluon)

A lot of parameters (~100 without CP violation)

A lot of interactions (~ 5000 vertices)

Calculations become extremely tedious and involved. Even more so at one-loop...

NANS BARO (AACHEN)

SHIFTS

 $g
ightarrow g + \delta g$ $m_{ij}^2
ightarrow m_{ij}^2 + \delta m_{ij}^2$ $\phi_i
ightarrow (\delta_{ij} + \frac{1}{2} \delta Z_{ij}) \phi_j$

- M_i^2 is the pole of the propagator: $\hat{\Sigma}_{ii}(M_i^2) = 0$
- residue at the pole is 1: $\hat{\Sigma}'_{ii}(M_i^2) = 0$
- no transition on the external legs: $\hat{\Sigma}_{ij}(M_i^2) = 0$ and $\hat{\Sigma}_{ji}(M_j^2) = 0$

SHIFTS

 $g
ightarrow g + \delta g$ $m_{ij}^2
ightarrow m_{ij}^2 + \delta m_{ij}^2$ $\phi_i
ightarrow (\delta_{ij} + \frac{1}{2} \delta Z_{ij}) \phi_j$

- M_i^2 is the pole of the propagator: $\hat{\Sigma}_{ii}(M_i^2) = 0 \rightarrow \delta M^2$
- residue at the pole is 1: $\hat{\Sigma}'_{ii}(M_i^2) = 0$
- no transition on the external legs: $\hat{\Sigma}_{ij}(M_i^2) = 0$ and $\hat{\Sigma}_{ji}(M_j^2) = 0$

SHIFTS

$$g \rightarrow g + \delta g$$

$$m_{ij}^2 \rightarrow m_{ij}^2 + \delta m_{ij}^2$$

$$\varphi_i \rightarrow (\delta_{ij} + \frac{1}{2} \delta Z_{ij}) \varphi_j$$

- M_i^2 is the pole of the propagator: $\hat{\Sigma}_{ii}(M_i^2) = 0 \rightarrow \delta M^2$
- residue at the pole is 1: $\hat{\Sigma}'_{ii}(M_i^2) = 0$
- no transition on the external legs: $\hat{\Sigma}_{ij}(M_i^2) = 0$ and $\hat{\Sigma}_{ji}(M_i^2) = 0$

SHIFTS

$$g \rightarrow g + \delta g$$

$$m_{ij}^2 \rightarrow m_{ij}^2 + \delta m_{ij}^2$$

$$\varphi_i \rightarrow (\delta_{ij} + \frac{1}{2} \delta Z_{ij}) \varphi_j$$

- M_i^2 is the pole of the propagator: $\hat{\Sigma}_{ii}(M_i^2) = 0 \rightarrow \delta M^2$
- residue at the pole is 1: $\hat{\Sigma}'_{ii}(M_i^2) = 0 \rightarrow \delta Z_{ii}$
- no transition on the external legs: $\hat{\Sigma}_{ij}(M_i^2) = 0$ and $\hat{\Sigma}_{ji}(M_i^2) = 0 \rightarrow \delta Z_{ij}$

Tree Level

[9]

NANS BARO (AACHEN)

1-LOOP CALCULATIONS IN THE MSSM

04/12/08 4/18

→ ∃ →

[9]

[2223,2538,855]

[2223,2538,855]

[2223,2538,855]

Tree Level

[9]

[2223,2538,855]

Counterterms

 C_{UV}

[42]

 \rightarrow Automatic tools

A code for the calculation of loops diagrams in the MSSM with application to collider physics, astrophysics and cosmology

Complete and coherent renormalisation of the MSSM On-Shell scheme

04/12/08 5 / 18

► < Ξ > <</p>

CODE

04/12/08 6 / 18

LANHEP (A.SEMENOV)

Particles, lagrangian, counterterms...

vector A/A: (photon, gauge).

scalar h/h:('Light Higgs', mass Mh, width wh), H/H:('Heavy higgs', mass MHH, width wHh).

lterm -F**2/4 where

F=deriv^mu*B0^nu-deriv^nu*B0^mu.

```
let al=g*sQl*tau*sql/2,
    a2=g*sQ2*tau*sq2/2,
    a3=g*sQ3*tau*sq3/2,
    a4=g*sL1*tau*sl1/2,
    a5=g*sL2*tau*sl2/2,
    a6=g*sL3*tau*sl3/2,
    a7=g*sH1*tau*sh1/2,
    a8=g*sH2*tau*sh2/2.
```

lterm - (a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8) ** 2 /2.

```
transform h->h*(1+dZhlhl/2)+H*dZhlhh/2.
```

infinitesimal dphlhl = '-ReTilde[SelfEnergy[prt["h"]->prt["h"], Mh]]'.

NANS BARO (AACHEN)

1-LOOP CALCULATIONS IN THE MSSM

$F \text{ORMCALC}_{(\text{T.Hahn})}$

Automatic generation of \sim 5000 vertices involving the counterterms!

```
(*----- h h h -----*)
C[ S[3], S[3], S[3] ] == 3/4 I * {
{ -2 A00555 , A00519 dZhhhl -3 A00555 dZhlhl -4 A01380 dZg
+ 6 A01380 dZw3 + 2 A00555 dXwz - A01381 dXH + 2 A01382 dZb + 2 A01383 dZbw3} }
```

```
(*----- H+ H+ H- H- -----*)
C[ S[6], S[6], -S[6], -S[6] ] == -1/2 I * {
{ A03898 , 2 A03899 dZg -3 A03899 dZw3 -2 A03900 dZf1 + 2 A03901 dZf2 - A03902 dZb - A03903
dZbw3 } }
```

FEATURES OF THE CODE

- Optimisation with classes
- Flexibility (between renormalisation schemes)
- Non linear gauge fixing

04/12/08 8 / 18

$F \text{ORMCALC}_{(\text{T.Hahn})}$

Automatic generation of \sim 5000 vertices involving the counterterms!

```
(*----- h h h -----*)
C[ s[3], s[3], s[3] ] == 3/4 I * {
{ -2 A00555 , A00519 dZhhhl -3 A00555 dZhlhl -4 A01380 dZg
+ 6 A01380 dZw3 + 2 A00555 dXwz - A01381 dXH + 2 A01382 dZb + 2 A01383 dZbw3} }
```

```
(*----- H+ H+ H- H- ------*)
C[ S[6], S[6], -S[6], -S[6] ] == -1/2 I * {
{ A03898 , 2 A03899 dZg -3 A03899 dZw3 -2 A03900 dZfl + 2 A03901 dZf2 - A03902 dZb - A03903
dZbw3 } }
```

FEATURES OF THE CODE

- Optimisation with classes
- Flexibility (between renormalisation schemes)
- Non linear gauge fixing

USUAL GAUGE FIXING

$$\mathcal{L}^{GF} = -\frac{1}{\xi_{W}} |\partial_{\mu}W^{+\mu} + i\xi_{W}\frac{g}{2}vG^{+}|^{2} \\ -\frac{1}{2\xi_{Z}}(\partial_{\mu}Z^{0\mu} + \xi_{Z}\frac{g}{2c_{W}}vG^{0})^{2} - \frac{1}{2\xi_{A}}(\partial_{\mu}A^{\mu})^{2}$$

CHECKS

- UV finite
- IR finite
- Gauge independent

• • • • • • • • • • • •

NANS BARO (AACHEN)

1-LOOP CALCULATIONS IN THE MSSM

04/12/08 9 / 18

USUAL GAUGE FIXING

$$\mathcal{L}^{GF} = -\frac{1}{\xi_{W}} |\partial_{\mu}W^{+\mu} + i\xi_{W}\frac{g}{2}vG^{+}|^{2} -\frac{1}{2\xi_{Z}}(\partial_{\mu}Z^{0\mu} + \xi_{Z}\frac{g}{2c_{W}}vG^{0})^{2} - \frac{1}{2\xi_{A}}(\partial_{\mu}A^{\mu})^{2}$$

$$\sqrt{\sqrt{2^{0}}} \sqrt{\frac{-i}{q^{2}-m_{Z^{0}}^{2}+i\epsilon}} \left[g_{\mu\nu} + (\xi_{Z}-1) \frac{q_{\mu}q_{\nu}}{q^{2}-\xi_{Z}m_{Z^{0}}^{2}} \right]$$

 $\xi = 1$ (loop library)

Non linear

CHECKS

- UV finite
- IR finite
- Gauge independent

NANS BARO (AACHEN)

1-LOOP CALCULATIONS IN THE MSSM

04/12/08 9 / 18

USUAL GAUGE FIXING

$$\mathcal{L}^{GF} = -\frac{1}{\xi_{W}} |\partial_{\mu}W^{+\mu} + i\xi_{W}\frac{g}{2}vG^{+}|^{2} -\frac{1}{2\xi_{Z}} (\partial_{\mu}Z^{0\mu} + \xi_{Z}\frac{g}{2c_{W}}vG^{0})^{2} - \frac{1}{2\xi_{A}} (\partial_{\mu}A^{\mu})^{2}$$

$$\bigvee_{q^{2}-m_{z^{0}}^{2}+i\epsilon}^{Z^{0}}\left[g_{\mu\nu}+(\xi_{Z}-1)\frac{q_{\mu}q_{\nu}}{q^{2}-\xi_{z}m_{z^{0}}^{2}}\right]$$

 ξ = 1 (loop library)
 CHECKS

 • UV finite

 • IR finite

 • Gauge independent

 Nans BARO (Aachen)

 1-LOOP CALCULATIONS IN THE MSSM

 04/12/08
 9/18

NON LINEAR GAUGE FIXING

$$\mathcal{L}^{GF} = -\frac{1}{\xi_{W}} |(\partial_{\mu} - ie\tilde{\alpha}A_{\mu} - igc_{W}\tilde{\beta}Z_{\mu}^{0})W^{+\mu} + i\xi_{W}\frac{g}{2}(v + \tilde{\delta}h^{0} + \tilde{\omega}H^{0} + i\tilde{\kappa}G^{0} + i\tilde{\rho}A^{0})G^{+}|^{2} - \frac{1}{2\xi_{Z}}(\partial_{\mu}Z^{0\mu} + \xi_{Z}\frac{g}{2c_{W}}(v + \tilde{\epsilon}h^{0} + \tilde{\gamma}H^{0})G^{0})^{2} - \frac{1}{2\xi_{A}}(\partial_{\mu}A^{\mu})^{2} - \frac{1}{2\xi_{Z}}(\partial_{\mu}Z^{0\mu} + \xi_{Z}\frac{g}{2c_{W}}(v + \tilde{\epsilon}h^{0} + \tilde{\gamma}H^{0})G^{0})^{2} - \frac{1}{2\xi_{A}}(\partial_{\mu}A^{\mu})^{2} - \frac{1}{2\xi_{A}}($$

INPUT PARAMETERS

The MSSM contains 8×3 SUSY breaking parameters for sfermions, 3×3 fermion masses and 12 parameters for gauge couplings, scalar potential and the SUSY breaking gaugino masses:

$$\underbrace{g,g',g_s,\underbrace{v_1,v_2}_{\text{gauge}},\underbrace{m_1,m_2,m_{12}}_{\text{v.e.v.}},\mu,\underbrace{M_1,M_2,M_3,M_{\tilde{Q}_L},M_{\tilde{u}_R},M_{\tilde{d}_R}}_{\text{SUSY breaking}},\underbrace{A_u,A_d}_{\text{trilinear}}}$$

Set of parameters directly connected to the physical quantities:

$$\underbrace{\alpha(0), m_W, m_Z}_{\text{EW}}, \underbrace{t_{\beta} = v_2/v_1, m_A, T_1, T_2}_{\text{Higgs}}, \underbrace{m_{\chi_1^+}, m_{\chi_2^+}}_{\text{Chargino}}, \underbrace{m_{\chi_1^0}}_{\text{Neutralino}}, \underbrace{g_s, m_{\tilde{g}}}_{\text{QCD}}, \underbrace{m_{\tilde{u}_1}, m_{\tilde{d}_1}, m_{\tilde{d}_2}, \Gamma_u, \Gamma_d}_{\text{Squark}}$$

How to define $tan(\beta)$?

 t_{β} doesn't represent a physical/measurable quantity

We have many different ways/schemes to define it:

 \overline{DR}

 δt_{β} is a pure divergence

DCPR

 δt_{β} is defined by the condition: $\hat{\Sigma}_{A^0Z^0}(m_{A^0}^2) = 0$

MH

 δt_{β} is defined from the measurement of the heaviest CP-even Higgs mass m_{H^0} (we loose a correction but the definition is physical)

Αττ

 δt_{β} is defined from the decay $A^0 \rightarrow \tau^+ \tau^-$ (vertex $\propto m_{\tau} t_{\beta}$)

How to define $tan(\beta)$?

 t_{β} doesn't represent a physical/measurable quantity

We have many different ways/schemes to define it:

DR NOT PHYSICAL

 δt_{β} is a pure divergence

DCPR NOT PHYSICAL

 δt_{β} is defined by the condition: $\hat{\Sigma}_{A^0Z^0}(m_{A^0}^2) = 0$

MH

 δt_{β} is defined from the measurement of the heaviest CP-even Higgs mass m_{H^0} (we loose a correction but the definition is physical)

Αττ

 δt_{β} is defined from the decay $A^0 \rightarrow \tau^+ \tau^-$ (vertex $\propto m_{\tau} t_{\beta}$)

CHECKS ON THE CODE

TREE LEVEL CALCULATIONS

Comparison with public codes: Grace and CompHEP

Cross-section [pb]	SloopS	CompHEP	Grace	
$h^0 h^0 \rightarrow h^0 h^0$	3.932×10^{-2}	3.932×10^{-2}	3.929×10^{-2}	-
$W^+ W^- \rightarrow \tilde{t}_1 \bar{t}_1$	7.082×10^{-1}	7.082×10^{-1}	7.083×10^{-1}	
$e^+e^- \rightarrow \tilde{\tau}_1 \bar{\tilde{\tau}}_2$	2.854×10^{-3}	2.854×10^{-3}	2.854×10^{-3}	
$H^+H^- \rightarrow W^+W^-$	6.643×10^{-1}	6.643×10^{-1}	6.644×10^{-1}	# 200
Decay [GeV]				# 200 processes checked
$A^0 \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$	1.137×10^{-0}	1.137×10^{-0}	1.137×10^{-0}	-
$\tilde{\chi}_1^+ \rightarrow t \bar{\tilde{b}}_1$	5.428×10 ⁰	5.428×10 ⁰	5.428×10^{-0}	
$H^{0} \rightarrow \tilde{\tau}_{1} \tilde{\tau}_{1}$	7.579×10^{-3}	7.579×10^{-3}	7.579×10^{-3}	
$H^+ \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^0$	1.113×10^{-1}	1.113×10^{-1}	1.113×10^{-1}	_

ONE-LOOP CORRECTIONS THAT DO NOT NEED RENORMALISATION Comparison with public codes: PLATON and DarkSUSY

Boudjema, Semenov, Temes, Phys. Rev. D72 (2005) 055024, hep-ph/0507127

- $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \gamma \gamma$
- $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow gg$
- $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow Z^0 \gamma$

APPLICATIONS IN THE HIGGS SECTOR

B., Boudjema, Semenov, Phys. Rev. D (in press), 0807.4668 [hep-ph]

H^{+}, h^{0}

Comparison with Freitas, Stockinger, Phys. Rev. D66 (2002) 095014, hep-ph/0205281

$t_{\beta} = 3$	mhmax	large μ	nomix		
Tree Level	72.51	72.51	72.51		
DCPR	134.28	97.57	112.26		
MH	140.25	86.68	117.37		
Αττ	134.25	97.59	112.27		
$\overline{\text{DR}} \overline{\mu} = m_{A^0}$	134.87	98.10	112.86		
Light Higgs mass m_{h^0}					

$A^0 ightarrow au^+ au^-, A^0 ightarrow Z^0 h^0, H^0 ightarrow Z^0 Z^0, H^0 ightarrow au^+ au^-$

$t_{\beta} = 3$	mhmax	large μ	nomix	
Tree Level	9.35×10^{-3}	9.35×10^{-3}	9.35×10^{-3}	
DCPR	-1.09×10^{-4}	-7.96×10^{-5}	-1.09×10^{-4}	
MH	$+6.28 \times 10^{-3}$	-7.91×10^{-3}	$+4.47 \times 10^{-3}$	
$A \tau \tau$	-1.45×10^{-4}	-7.09×10^{-5}	-1.01×10^{-4}	
$\overline{\mathrm{DR}} \overline{\mu} = m_{A^0}$	$+5.08 \times 10^{-4}$	$+3.24 \times 10^{-4}$	$+4.17 \times 10^{-4}$	
$H^0 \rightarrow \tau^+ \tau^-$ at one-loop with no QED				

APPLICATIONS TO COLLIDER PHYSICS

B., Boudjema, in preparation

ONE-LOOP CORRECTION TO MASSES

- Sfermion $ilde{ au}$, $ilde{b}$ Comparison with Hollik, Rzehak, Eur. Phys. J. C32 (2003) 127, hep-ph/0305328
- Neutralino $\tilde{\chi}^0_{2,3,4}$ Comparison with Fritzsche, Hollik, *Eur. Phys. J.* C24 (2002) 619, hep-ph/0203159

CHARGINO DECAYS

Comparison with Fujimoto et al., Phys. Rev. D75 (2007) 113002, hep-ph/0701200

Decays [GeV]	Tree Level	Grace	SloopS MH
${ ilde \chi}_1^+ o u_{ au} { ilde au}_1^+$	3.91×10^{-2}	$3.78 imes 10^{-2}(-3\%)$	$3.79 \times 10^{-2}(-3\%)$
${ ilde \chi}_1^+ o au^+ { ilde u}_ au$	$1.47 imes 10^{-2}$	$1.48 imes 10^{-2} (0\%)$	$1.47 imes 10^{-2}(0\%)$
${ ilde \chi}^+_1 o W^+ { ilde \chi}^0_1$	$9.65 imes10^{-4}$	$1.28 imes 10^{-3} (+33\%)$	$1.19 imes 10^{-3} (+23\%)$
$\tilde{\chi}_2^+ \to \nu_\tau \tilde{\tau}_2^+$	$1.54 imes 10^{-1}$	$1.48 imes 10^{-1} (-4\%)$	$1.40 imes 10^{-1} (-9\%)$
${ ilde \chi}_2^+ o au^+ { ilde u}_ au$	$6.89 imes 10^{-2}$	$5.70 imes 10^{-2} (-17\%)$	$5.27 imes 10^{-2} (-24\%)$
$ ilde{\chi}^+_2 o W^+ ilde{\chi}^0_1$	$1.93 imes 10^{-1}$	$2.07 imes 10^{-1} (+7\%)$	$2.02 imes 10^{-1} (+5\%)$
$ ilde{\chi}^+_2 o W^+ ilde{\chi}^0_2$	$8.67 imes10^{-1}$	$9.93 imes 10^{-1} (+15\%)$	$9.75 imes 10^{-1} (+12\%)$
${ ilde \chi}_2^+ o Z^0 { ilde \chi}_1^+$	$7.53 imes 10^{-1}$	$8.56 imes 10^{-1} (+14\%)$	$8.06 imes 10^{-1} (+7\%)$

APPLICATIONS TO COLLIDER PHYSICS

B., Boudjema, in preparation

LINEAR COLLIDER

Comparison with Fujimoto et al., Phys. Rev. D75 (2007) 113002, hep-ph/0701200

04/12/08 15 / 18

APPLICATIONS TO COLLIDER PHYSICS

B., Boudjema, in preparation

LINEAR COLLIDER

Comparison with Kovarik, Weber, Eberl, Majerotto, Phys. Rev. D72 (2005) 053010, hep-ph/0506021

NANS BARO (AACHEN)

04/12/08 16 / 18

APPLICATIONS TO DARK MATTER

A FEW EXAMPLES

B., Boudjema, Semenov, Phys. Lett. B660 (2007), 0710.1821[hep-ph]

Neutralino Bino Neutralino Mixed

Coannihilation with a stau

A (10) × A (10) × A (10)

QCD corrections

COANNIHILATION WITH A CHARGINO

B., Chalons, in preparation (see this afternoon!)

$$\begin{array}{c} \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow W^+ W^- \\ \tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow W^+ W^- \\ \tilde{\chi}_1^0 \tilde{\chi}_1^\pm \rightarrow W^\pm Z^0 / u \bar{d} \end{array}$$

04/12/08 17 / 18

CONCLUSION

- Complete renormalisation of the MSSM
- Mass corrections, Decays, Cross-sections at colliders
- Relic density at one-loop in various scenarios
- Other renormalisation schemes (Chargino/Neutralino, Sfermion)
- Automatisation of $e^+e^- \to XX$ or $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to XX$ at one-loop
- MSSM including CP violation
- Interface with MicrOMEGAs...
- Renormalisation of the QCD sector

Public/Private website: http://code.sloops.free.fr/

04/12/08 18 / 18

A (10) < A (10) < A (10)</p>