Radiative Upsilon Decays and a Light Pseudoscalar Higgs in the NMSSM¹

Florian Domingo

GDR SUSY 2008 - Orsay

in collaboration with Ulrich Ellwanger, Esteban Fullana, Cyril Hugonie, Miguel-Angel Sanchis-Lozano

December, 3rd 2008

¹F. Domingo, U. Ellwanger, E. Fullana, C. Hugonie and M. A. Sanchis-Lozano, arXiv:0810.4736 [hep-ph].

Introduction: Why consider a light CP-odd scalar in *°* Physics? Why in the NMSSM?

Recent experimental data in the Υ sector:

- **CLEO**: bounds on $\Upsilon \to \gamma(A_1 \to l^+l^-)$ [arXiv:0807.1427] \Rightarrow constraints m_{A_1} /coupling to $b\bar{b}$;
- **BABAR**: discovery of the $\eta_b(1s) b\bar{b}$ hadronic state [*arXiv:0807.1086*]... or perhaps?

 \rightarrow Possible Mixing of a light CP-odd scalar A_1 with the η_b : could explain why the observed mass is lower than what most QCD-based models for the hyperfine splitting $\Upsilon(1s) - \eta_b(1s)$ predict?

A light CP-odd Higgs A₁ in the NMSSM:

- $m_{A_1} \leq 10.5$ GeV: theoretical and phenomenologically realistic.
- Even a Favoured scenario: could explain the 2.3σ excess in e⁺e⁻ → Z + 2b for M_{2b} ~ 100 GeV at LEP [Dermisek,Gunion 2006]:
 → Possible signal for a NMSSM CP-even Higgs h₁, m_{h₁} ~ 100 GeV, decaying mostly in A₁A₁ (then, A₁ → ττ).

A light CP-odd A_1 in the NMSSM... ...With strong coupling to $b\bar{b}$!

NMSSM

- MSSM + Gauge-Singlet Superfield $\hat{S} = (S, \tilde{s})$
- Scale invariant Superpotential: $\lambda \hat{S} \hat{H}_u \hat{H}_d + \frac{\kappa}{3} \hat{S}^3 + \dots$
- Solution to the " μ -problem": $\langle S \rangle = s \neq 0 \Rightarrow \mu_{eff} = \lambda s$

CP-odd Higgs states (once Goldstone Boson removed)

$$\begin{pmatrix} \frac{2\lambda s(A_{\lambda}+\kappa s)}{\sin 2\beta} & \lambda v(A_{\lambda}-2\kappa s) \\ \lambda v(A_{\lambda}-2\kappa s) & -3\kappa sA_{\kappa} + \frac{\lambda v^2 \sin 2\beta}{2s}(A_{\lambda}+4\kappa s) \end{pmatrix} \leftarrow \text{Singlet}$$

- Light mass state: $A_1 = \cos \theta_A A_{MSSM} + \sin \theta_A A_S$
- Coupling to b quarks $\propto \frac{m_b}{v} X_d$, $X_d \equiv \cos \theta_A \tan \beta$

 $\Rightarrow m_{A_1} \le 2m_B \sim 10.5 \ GeV + Large X_d \sim 20 \ achievable$ $\longrightarrow Leads \ to \ important \ effects \ in \ the \ \Upsilon \ sector$

Previous Phenomenological Constraints on a light NMSSM Pseudoscalar

Investigation of the plane (m_{A_1}, X_d)

- Scan on a wide range of the parameter space of the NMSSM. (NMSSMTools Package)
- LEP Constraints.
- Constraints from B-physics: $BR(B \to X_s \gamma), BR(B^+ \to \tau^+ \nu_{\tau}), BR(B_s \to \mu^+ \mu^-), \Delta M_s$
- Anomalous Magnetic Moment of the Muon.

CLEO Bounds on Radiative Y Decays

 \Rightarrow Conservative approach: we keep *F* even if $F \rightarrow 0$ for $m_{A_1} \rightarrow 8.8$ GeV.

• No bound for $m_{A_1} \ge 8.8 \text{ GeV} \dots \text{Mixing } A_1/\eta_b$ significant?

Mixing A_1/η_b

Mixing of A_1 with a η_b resonance

• Effective Mass Matrix ([Drees, Hikasa 1990]; [Fullana, Sanchis 2007])

$$\mathcal{M}^{2} = \begin{pmatrix} m_{A_{10}}^{2} - im_{A_{10}}\Gamma_{A_{10}} & \delta m^{2} \\ \delta m^{2} & m_{\eta_{b0}}^{2} - im_{\eta_{b0}}\Gamma_{\eta_{b0}} \end{pmatrix} \xleftarrow{\leftarrow} A_{10} \quad , \quad \delta m^{2} = \left(\frac{3m_{\eta_{b}}^{3}}{8\pi v^{2}}\right)^{1/2} |R_{\eta_{b}}(0)| \times X_{d}$$

• Physical states:

$$\begin{cases} A_1 = \cos \alpha A_{10} + \sin \alpha \eta_{b0} \\ \eta_b = \cos \alpha \eta_{b0} - \sin \alpha A_{10} \end{cases}$$

Mixing A_1/η_b

Observed Mass State at BABAR

- Observed mass lower than what was predicted in most QCDbased models for the hyperfine splitting \rightarrow *effect of a A*₁?
- **Bounds** from such models apply to the **diagonal entry** $m_{\eta_{b0}}$.
- **Observed mass = eigenvalue** of the 2×2 mass matrix:

$$m_{obs}^2 \simeq \frac{1}{2} \left[m_{A_{10}}^2 + m_{\eta_{b0}}^2 \pm \sqrt{(m_{A_{10}}^2 - m_{\eta_{b0}}^2)^2 + 4\,\delta m^4} \right]$$

Lepton Universality: A possible Signal for a light A_1 ?

	$\mathcal{B}(e^+e^-)$	$\mathcal{B}(\mu^+\mu^-)$	${\mathscr B}(au^+ au^-)$	$R_{\tau/e}(nS)$	$R_{\tau/\mu}(nS)$
$\Upsilon(1S)$	2.38 ± 0.11	2.48 ± 0.05	2.60 ± 0.10	0.09 ± 0.06	0.05 ± 0.04
$\Upsilon(2S)$	1.91 ± 0.16	1.93 ± 0.17	2.00 ± 0.21	0.05 ± 0.14	0.04 ± 0.06
$\Upsilon(3S)$	2.18 ± 0.21	2.18 ± 0.21	2.29 ± 0.30	0.05 ± 0.16	0.05 ± 0.16

- Inclusive leptonic decays of Υ : photon undetected \Rightarrow possible excess in $\Upsilon \rightarrow \tau \tau$ due to $\Upsilon \rightarrow \gamma A_1$;
- Experimental status \rightarrow a general trend: $\sim 1\sigma$ excess in $\Upsilon \rightarrow \tau\tau$?
- Correction factor F? Optimistic estimate $F \sim 1/2...$
- Expecting improved data from (Super-)B factories!

 $X_d=12$, $m_{\eta_{b0}(1S,2S,3S)}=9.389,9.997,10.32~{\rm GeV}$, $\Gamma_{\eta_{b0}(1S,2S,3S)}=5~{\rm MeV}$

Conclusions:

- Light CP-odd Higgs in the NMSSM: well-motivated scenario $(2.3\sigma \text{ excess at LEP})! \Rightarrow$ Test it at B factories.
- Strong constraints from CLEO in $\Upsilon \to \gamma A_1$: focus on the region where $m_{A_1} \sim m_{\eta_b}$.
- $m_{A_1} \sim m_{\eta_b}$: Mixing A_1/η_b relevant.
 - \Rightarrow Possible explanation for the "light" mass observed at BABAR?
- For future searches of the light A_1 , the Breaking of Lepton Universality in inclusive $\Upsilon \rightarrow \tau \tau$ could be an interesting signal.

Mixing A_1/η_b

Observed Mass State at BABAR

- Observed mass lower than what was predicted by hyperfine splitting models \rightarrow *effect of a* A_1 ?
- Properties of the 2 × 2-mass matrix: $X_d \simeq (125 \text{GeV}^{-1}) \sqrt{(m_{A_{10}} - m_{obs})(m_{\eta_{b0}} - m_{obs})}$
- Conservative Bounds on $m_{\eta_{b0}} m_{obs}$ from hyp.-split. models: $-30 \text{ MeV} \le m_{\eta_{b0}} - m_{obs} \le 40 \text{ MeV} \implies X_d \le \begin{cases} (22 \text{ GeV}^{-1/2}) \sqrt{m_{obs} - m_{A_{10}}} & m_{A_{10}} \le m_{obs} \\ (25 \text{ GeV}^{-1/2}) \sqrt{m_{A_{10}} - m_{obs}} & m_{A_{10}} \ge m_{obs} \end{cases}$

