Relic density at one-loop with neutralino/chargino coannihilation

CHALONS Guillaume

in collaboration with N. Baro Laboratoire d'Annecy-le-Vieux de Physique THéorique

4 décembre 2008

1/25

CHALONS Guillaume Relic

Relic density at one-loop with neutralino/chargino coannihilation

ERA OF PRECISION MEASUREMENTS

RELIC DENSITY OF DARK MATTER

- WMAP : $0.098 < \Omega_{DM} h^2 < 0.114$ (10% precision)
- PLANCK : 2% precision

ERA OF PRECISION MEASUREMENTS

RELIC DENSITY OF DARK MATTER

- WMAP : $0.098 < \Omega_{DM} h^2 < 0.114$ (10% precision)
- PLANCK : 2% precision

POSSIBLE CANDIDATE :NEUTRALINO (SUPERSYMMETRY)

- At tree-level : $m_h < m_Z$ but we never saw the Higgs
- At one loop : the Higgs receives huge corrections
- More generally SUSY processes are known to give large radiative corrections.
- Models for the relic abundance valid at tree-level can be excluded at one-loop and vice-versa.

ERA OF PRECISION MEASUREMENTS

RELIC DENSITY OF DARK MATTER

- WMAP : $0.098 < \Omega_{DM} h^2 < 0.114$ (10% precision)
- PLANCK : 2% precision

POSSIBLE CANDIDATE :NEUTRALINO (SUPERSYMMETRY)

- At tree-level : $m_h < m_Z$ but we never saw the Higgs
- At one loop : the Higgs receives huge corrections
- More generally SUSY processes are known to give large radiative corrections.
- Models for the relic abundance valid at tree-level can be excluded at one-loop and vice-versa.

\Rightarrow RADIATIVE CORRECTIONS ARE IMPORTANT

COSMOLOGY+PARTICLE PHYSICS

RELIC DENSITY

$$\Omega_{DM}h^2 \simeq rac{3 imes 10^{-27} cm^3 s^{-1}}{\langle\sigma(\chi\chi o SM)v
angle}$$

COSMOLOGY+PARTICLE PHYSICS

RELIC DENSITY

$$\Omega_{DM}h^2 \simeq rac{3 imes 10^{-27} cm^3 s^{-1}}{\langle\sigma(\chi\chi o SM)v
angle}$$

PRECISION

- Need to know precisely $\sigma \Rightarrow$ one-loop calculations
- Parameters reconstruction at the LHC/LC
- Check the underlying cosmological scenario

CHALONS Guillaume Relic density at one-loop with neutralino/chargino coannihilation

SOME PREVIOUS WORK AT 1-L IN SUSY

EW + QCD corrections

 $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \gamma \gamma, Z \gamma, gg$: processes only possible at one-loop order (Boudjema,Semenov,Temes)[hep-ph:0507127]

 ${ ilde \chi}_1^0{ ilde \chi}_1^0 o ZZ, W^+W^-$ (Baro,Boudjema,Semenov)[hep-ph :0710.1821,Phys.Lett B660(2008) 550]

$${ ilde\chi}^0_1{ ilde\chi}^0_1 o au^+ au^-, bar b$$
 (Baro,Boudjema,Semenov)[hep-ph :0710.1821,Phys.Lett B660(2008) 550]

Co-annihilation with $ilde{ au}$ (Baro,Boudjema,Semenov)[hep-ph :0710.1821,Phys.Lett B660(2008) 550]

QCD corrections

Co-annihilation with \tilde{t} (Freitas)[Phys.Lett. B652 (2007) 280]

Relic density at one-loop with neutralino/chargino coannihilation

Example with MicrOMEGAs

With one-loop effective lagrangian :

Example with MicrOMEGAs

With one-loop effective lagrangian :

\Rightarrow EXCLUSION OF MODELS AT ONE-LOOP

Relic density at one-loop with neutralino/chargino coannihilation

5/25

Example with **SloopS**

With full one-loop electroweak corrections :

6/25

PRESENT STUDY : COANNIHILATION WITH CHARGINOS/NEUTRALINOS

- It is already known that calculating the relic density including coannihilation effects can significantly change the results.
- Regions of parameters difficult to probe (in mSUGRA) in colliders are regions where coannihilation comes into account for the relic density.
- Coannihilation can be important for Higgsino-like, mixed or gaugino-like neutralino.
- It should be included in calculation whenever $|\mu| \lesssim 2|M_1|$
- Can push the relic density in or out the cosmologically interesting region, as one-loop calculations do.

A coherent renormalisation scheme and a choice of input parameters

A coherent renormalisation scheme and a choice of input parameters

To generate counter-terms, for SUSY gigantic task

A coherent renormalisation scheme and a choice of input parameters

To generate counter-terms, for SUSY gigantic task

Loop Integrals to handle Gram determinant when $v \rightarrow 0$

A coherent renormalisation scheme and a choice of input parameters

To generate counter-terms, for SUSY gigantic task

Loop Integrals to handle Gram determinant when $v{\rightarrow}0$

To deal with IR and collinear divergencies \rightarrow include bremsstrahlung.

INPUT PARAMETERS IN CHARGINO/NEUTRALINO SECTOR

AT TREE-LEVEL...

• The 4x4 neutralino mass matrix is defined as :

$$Y = \begin{pmatrix} M_1 & 0 & -c_\beta s_W M_Z & s_\beta s_W M_Z \\ 0 & M_2 & c_\beta c_W M_Z & -s_\beta c_W M_Z \\ -c_\beta s_W M_Z & c_\beta c_W M_Z & 0 & -\mu \\ s_\beta s_W M_Z & -s_\beta c_W M_Z & -\mu & 0 \end{pmatrix}$$

• The 2x2 chargino mass matrix is :

$$X = \begin{pmatrix} M_2 & \sqrt{2}s_\beta M_W \\ \sqrt{2}c_\beta M_W & \mu \end{pmatrix}$$

INPUT PARAMETERS IN CHARGINO/NEUTRALINO SECTOR

AND AT ONE-LOOP

• The 4x4 neutralino CT mass matrix is defined as :

$$\delta Y = \begin{pmatrix} \delta M_1 & 0 & \delta Y_{13} & \delta Y_{14} \\ 0 & \delta M_2 & \delta Y_{23} & \delta Y_{24} \\ \delta Y_{13} & \delta Y_{23} & 0 & -\delta \mu \\ \delta Y_{14} & \delta Y_{24} & -\delta \mu & 0 \end{pmatrix}$$

• The 2x2 CT chargino mass matrix is :

$$\delta X = \begin{pmatrix} \delta M_2 & \sqrt{2} s_\beta M_W (\frac{1}{2} \frac{\delta M_W^2}{M_W^2} + c_\beta^2 \frac{\delta t_\beta}{t_\beta}) \\ \sqrt{2} c_\beta M_W (\frac{1}{2} \frac{\delta M_W^2}{M_W^2} - s_\beta^2 \frac{\delta t_\beta}{t_\beta}) & \delta \mu \end{pmatrix}$$

- With this sector we can determine M_1, M_2, μ and the corresponding counter-terms $\delta M_1, \delta M_2, \delta \mu$
- Remaining counter-terms are determined in the gauge and higgs sector $(\delta \alpha (\text{defined with } \alpha(0)), \delta M_W^2, \delta s_W^2, \delta t_\beta)$.
- To determine it we trade these parameters to physical observables (input parameters like masses)
- Different choice of input parameters (chargino/neutralino sector) :

- With this sector we can determine M_1, M_2, μ and the corresponding counter-terms $\delta M_1, \delta M_2, \delta \mu$
- Remaining counter-terms are determined in the gauge and higgs sector $(\delta \alpha (\text{defined with } \alpha(0)), \delta M_W^2, \delta s_W^2, \delta t_\beta)$.
- To determine it we trade these parameters to physical observables (input parameters like masses)
- Different choice of input parameters (chargino/neutralino sector) :
 - $m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_1^+}, m_{\tilde{\chi}_2^+}$ (usual scheme)

- With this sector we can determine M_1, M_2, μ and the corresponding counter-terms $\delta M_1, \delta M_2, \delta \mu$
- Remaining counter-terms are determined in the gauge and higgs sector $(\delta \alpha (\text{defined with } \alpha(0)), \delta M_W^2, \delta s_W^2, \delta t_\beta)$.
- To determine it we trade these parameters to physical observables (input parameters like masses)
- Different choice of input parameters (chargino/neutralino sector) :
 - $m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_1^+}, m_{\tilde{\chi}_2^+}$ (usual scheme)
 - $m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\chi}_{1}^{+}}$

- With this sector we can determine M_1, M_2, μ and the corresponding counter-terms $\delta M_1, \delta M_2, \delta \mu$
- Remaining counter-terms are determined in the gauge and higgs sector $(\delta \alpha (\text{defined with } \alpha(0)), \delta M_W^2, \delta s_W^2, \delta t_\beta)$.
- To determine it we trade these parameters to physical observables (input parameters like masses)
- Different choice of input parameters (chargino/neutralino sector) :
 - $m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_1^+}, m_{\tilde{\chi}_2^+}$ (usual scheme)
 - $m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\chi}_{1}^{+}}$
 - remaining masses get a correction at one-loop.

CHALONS Guillaume Relic density at one-loop with neutralino/chargino coannihilation

- With this sector we can determine M_1, M_2, μ and the corresponding counter-terms $\delta M_1, \delta M_2, \delta \mu$
- Remaining counter-terms are determined in the gauge and higgs sector $(\delta \alpha (\text{defined with } \alpha(0)), \delta M_W^2, \delta s_W^2, \delta t_\beta)$.
- To determine it we trade these parameters to physical observables (input parameters like masses)
- Different choice of input parameters (chargino/neutralino sector) :
 - $m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_1^+}, m_{\tilde{\chi}_2^+}$ (usual scheme)
 - $m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\chi}_{1}^{+}}$
 - remaining masses get a correction at one-loop.

 $\implies \mathsf{DIFFERENT} \mathsf{ PREDICTIONS}$ $(different <math>\delta M_1, \delta M_2, \delta \mu$)

SOME REMARKS

- For general purpose the first input scheme is well adapted :
 - only diagonalisation of a 2x2 matrix
 - for a mSUGRA type model we can reconstruct easily the fundamental parameters (provided that $M_1 \ll M_2 \ll |\mu|$)

SOME REMARKS

- For general purpose the first input scheme is well adapted :
 - only diagonalisation of a 2x2 matrix
 - for a mSUGRA type model we can reconstruct easily the fundamental parameters (provided that $M_1 \ll M_2 \ll |\mu|$)
- But some drawbacks :

•
$$\delta' s \propto rac{1}{\mu^2 - M_2^2}$$

- $\tilde{\chi}^0_2$ gets a correction at one-loop \Rightarrow care must be taken if it's on an external leg
- For calculation of relic density at one-loop the $2^{\rm nd}$ input scheme is better suited in case of coannihilation between $\tilde{\chi}^0_1$ and $\tilde{\chi}^0_2$

• t_{β} doesn't represent a physical observable \rightarrow several definitions :

- t_{β} doesn't represent a physical observable \rightarrow several definitions :
- \overline{DR} : δt_{β} is a pure divergence

- t_{β} doesn't represent a physical observable \rightarrow several definitions :
- \overline{DR} : δt_{β} is a pure divergence
- $DCPR: \delta t_{\beta}$ is defined with $\hat{\Sigma}_{A^0Z^0}(m_A^2) = 0$

- t_{β} doesn't represent a physical observable \rightarrow several definitions :
- \overline{DR} : δt_{β} is a pure divergence
- $DCPR: \delta t_{eta}$ is defined with $\hat{\Sigma}_{\mathcal{A}^0 Z^0}(m_{\mathcal{A}}^2) = 0$
- MH : δt_{β} is defined from the measure of the mass m_H (problematic)

- t_{β} doesn't represent a physical observable \rightarrow several definitions :
- \overline{DR} : δt_{β} is a pure divergence
- $DCPR: \delta t_{eta}$ is defined with $\hat{\Sigma}_{A^0Z^0}(m_A^2) = 0$
- MH : δt_{β} is defined from the measure of the mass m_H (problematic)
- $A^0 \tau \tau$: δt_β is defined from the decay $A^0 \rightarrow \tau^+ \tau^- (vertex \propto m_\tau t_\beta)$

- t_{β} doesn't represent a physical observable \rightarrow several definitions :
- \overline{DR} : δt_{β} is a pure divergence
- $DCPR: \delta t_{eta}$ is defined with $\hat{\Sigma}_{A^0Z^0}(m_A^2) = 0$
- MH : δt_{β} is defined from the measure of the mass m_H (problematic)
- $A^0 \tau \tau$: δt_β is defined from the decay $A^0 \rightarrow \tau^+ \tau^- (vertex \propto m_\tau t_\beta)$

Only MH, $A^0 \tau \tau$ are gauge independent

⇒ MIXED CASE to have coannihilation channels $M_1 = 110 \, GeV, M_2 = 127 \, GeV, \mu = -245 \, GeV$ $\tan \beta = 10, M_A = 600 \, GeV$ $m_{\tilde{f}} = 600 \, GeV, m_{\chi_1^0} = 106 \, GeV$

At tree-level :

- $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to W^+ W^-$: 40%
- $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow W^+ W^-$: 6%
- $\tilde{\chi}_1^0 \tilde{\chi}_1^+ \rightarrow W^+ Z : 5\%$
- $\tilde{\chi}_1^0 \tilde{\chi}_1^+ \rightarrow u \bar{d}$: 9%
- $\tilde{\chi}_1^0 \tilde{\chi}_1^+ \rightarrow c \bar{s}$: 9%

OVERVIEW OF THE CALCULATION

At tree-level we have for process involving W's 7 diagrams

At one-loop we have \simeq 7000 diagrams \rightarrow need for automation

A code for calculating one-loop diagrams including a complete and coherent renormalisation of the MSSM with an OS scheme (cf Nans Baro's talk).

OVERVIEW OF THE CALCULATION

Using this program we calculated the one-loop cross section in the 2 schemes presented above :

• $m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_1^+}, m_{\tilde{\chi}_2^+}$ (olclc2 scheme)

• $m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\chi}_1^+}$ (olo2c1 scheme) And for both schemes we analyzed the t_β scheme dependence

For one-loop calculations several checks have to be done :

- UV finiteness
- IR safety (for process involving quarks we used the soft approximation to deal with *g* emission)
- gauge independence

FROM PARTICLE PHYSICS TO COSMOLOGY

To calculate the relic density we had to :

• use an approximation for thermal average :

$$\langle \sigma_{ij} v_{ij} \rangle = a_{ij} + 6(b_{ij} - a_{ij}/4)/x \quad (x = m_{\tilde{\chi}_1^0}/T)$$

• include coannihilation (Boltzmann factor $\propto e^{-(m_{NLSP}-m_{LSP})}$) Our final formula is :

$$\Omega h^{2} = \left(\frac{10}{\sqrt{g_{*}(x_{F})}} \frac{x_{F}}{24}\right) \frac{0.237 \times 10^{-26} \text{ cm}^{3} \text{ s}^{-2}}{x_{F} \text{ J}}$$
$$J = \int_{x_{F}}^{\infty} \langle \sigma v \rangle_{eff} dx / x^{2}$$
$$\langle \sigma v \rangle_{eff} = \sum_{ij} \frac{g_{i,eff} g_{j,eff}}{g_{eff}^{2}} \langle \sigma_{ij} v_{ij} \rangle$$

Tree-level masses(GeV) : $M_1 = 110, M_2 = 127, \mu = -245$ $m_{\chi_1^0} = 106.47, m_{\chi_2^0} = 119.34, m_{\chi_1^+} = 118.20, m_{\chi_2^+} = 274.06$

Tree-level masses(GeV) : $M_1 = 110, M_2 = 127, \mu = -245$ $m_{\chi_1^0} = 106.47, m_{\chi_2^0} = 119.34, m_{\chi_1^+} = 118.20, m_{\chi_2^+} = 274.06$

We have $M_1 \lesssim M_2 \lesssim |\mu|$

Tree-level masses(GeV) : $M_1 = 110, M_2 = 127, \mu = -245$ $m_{\chi_1^0} = 106.47, m_{\chi_2^0} = 119.34, m_{\chi_1^+} = 118.20, m_{\chi_2^+} = 274.06$

Tree-level masses(GeV) : $M_1 = 110, M_2 = 127, \mu = -245$ $m_{\chi_1^0} = 106.47, m_{\chi_2^0} = 119.34, m_{\chi_1^+} = 118.20, m_{\chi_2^+} = 274.06$

Relic density at one-loop with neutralino/chargino coannihilation

Tree-level masses(GeV) : $M_1 = 110, M_2 = 127, \mu = -245$ $m_{\chi_1^0} = 106.47, m_{\chi_2^0} = 119.34, m_{\chi_1^+} = 118.20, m_{\chi_2^+} = 274.06$

^{18/25}

CORRECTED MASSES

$m_{{ ilde \chi}_1^0}, m_{{ ilde \chi}_1^+}, m_{{ ilde \chi}_2^+}$						
Masses	$m_{\chi_1^0}$	$m_{\chi^0_2}$	$m_{\chi^0_3}$	$m_{\chi_4^0}$	$m_{\chi_1^+}$	$m_{\chi_2^+}$
TL (Gev)	106.474	119.345	258.291	269.471	118.203	274.061
1-L (Gev) $A_{ au au}$		119.210	258.707	269.453		
1-L (Gev) <i>DR</i>		119.264	258.594	269.506		
1-L (Gev) MH		119.448	258.211	269.686		
$m_{ ilde{\chi}_1^0},m_{ ilde{\chi}_2^0},m_{ ilde{\chi}_1^+}$						
Masses	$m_{\chi_1^0}$	$m_{\chi^0_2}$	$m_{\chi^0_3}$	$m_{\chi^0_4}$	$m_{\chi_1^+}$	$m_{\chi_2^+}$
TL (Gev)	106.474	119.345	258.291	269.471	118.203	274.061
1-L (Gev) $A_{\tau\tau}$			254.959	270.802		266.254
1-L (Gev) <i>DR</i>			256.347	272.107		267.588
1-L (Gev) MH			261.068	276.545		272.125

PRELIMINARY RESULTS

Table of result for $\langle \sigma v \rangle$

$(\times 10^{-7} \text{ Cm}^2/\text{S})$									
$\chi_1^0\chi_1^0 \to W^+W^-$	Tree	ATT		DR		МН			
	Level	o1o2c1	o1c1c2	o1o2c1	o1c1c2	o1o2c1	o1c1c2		
а	3.37	+24.6%	+6.8%	+23.1%	+12.8%	+18.7%	+30.6%		
b	4.8	+18.8%	+4.2%	+18.8%	+8.3%	+12.5%	+25%		
$\chi_1^0\chi_2^0\to W^+W^-$									
а	32	+16.3%	+10%	+15.6%	+11.9%	+14.1%	+18.8%		
b	26	+15.3%	+7.7%	+15.3%	+11.5%	+15.3%	+13.3%		
$\chi_1^0 \chi_1^+ \to W^+ Z$									
а	13.5	+10.4%	+2.2%	+9.3%	+3.7%	+3.7%	+10.4%		
b	4.3	+2.3%	-4.6%	+2.3%	-2.3%	+4.7%	+9.3%		
$\chi_1^0\chi_1^+ ightarrow uar{d}$									
а	31.6	+15.5%	+7.3%	+14.9%	+9.8%	+12.3%	+15.7%		
b	-12.3	+12.2%	+4.1%	+11.4%	+6.7%	+8.9%	+15.4%		

(...10 - 263 /..)

Relic density at one-loop with neutralino/chargino coannihilation

PRELIMINARY RESULTS

Table of result for $\langle \sigma v \rangle$ with $\alpha(0) \rightarrow \alpha(M_Z^2)$

$\chi_1^0\chi_1^0\to W^+W^-$	Tree	ATT		$\overline{\mathrm{DR}}$		MH	
	Level	o1o2c1	o1c1c2	o1o2c1	o1c1c2	o1o2c1	olc1c2
а	3.82	+9.9%	-2.6%	+8.6%	+0%	+4.7%	+15.8%
b	5.4	+5.6%	-7.4%	+5.6%	-3.7%	+0%	+11%
$\chi_1^0\chi_2^0\to W^+W^-$							
а	36.3	+2.5%	-3%	+1.9%	-1.4%	+0.6%	+4.7%
b	30	+0%	-6.7%	+0%	-3.3%	-3.3%	+2.7%
$\chi_1^0\chi_1^+ \to W^+ Z$							
а	15.2	-2.3%	-9.2%	-3.3%	-7.9%	-3.7%	-2%
b	4.9	-10%	-16.3%	-10%	-14.3%	-8.2%	-4.1%
$\chi_1^0\chi_1^+ \to u\bar{d}$							
а	35.8	+1.9%	-5.3%	+1.4%	-3.1%	-0.8%	+4.7%
b	-13.9	-0.7%	-7.9%	-1.4%	-5.6%	-3.6%	+2.2%

 $(\times 10^{-26} cm^3/s)$

CHALONS Guillaume

Relic density at one-loop with neutralino/chargino coannihilation

Correction to Ωh^2 with $\alpha(0)$

	ATT		D	R	MH	
	o1o2c1	o1c1c2	o1o2c1	o1c1c2	o1o2c1	o1c1c2
$\frac{\delta \Omega h^2}{\Omega h^2}$	-11.3%	-3.8%	-10.6%	-6.3%	-8.8%	-13.1%

Correction to Ωh^2 with $\alpha(M_7^2)$

	ATT		D	R	MH	
	o1o2c1	o1c1c2	o1o2c1	o1c1c2	o1o2c1	o1c1c2
$\frac{\delta \Omega h^2}{\Omega h^2}$	+1.7%	+9.2%	+2.4%	+6.7%	+4.2%	-0.1%

UNDERSTANDING THE CORRECTIONS

- With $\alpha(0) \rightarrow \alpha(M_Z^2)$ we reabsorb $\simeq 13\%$ of corrections
- The $m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\chi}_1^+}$ scheme is sensitive to δt_β whereas the cross-section is not and conversely for the other scheme.
- Constructive/Destructive effect of the various $\delta t_{\beta}/t_{\beta}$ contribution
- Most important channel is the exchange of the $\tilde{\chi}_1^+$ (strong $g_{\tilde{\chi}_1^+\tilde{\chi}_1^0W^+}$ coupling)
- Strong dependence of the tree-level cross-section with respect to M_2 (compared to the one in μ)

- Complete one-loop renormalisation of MSSM and modularity with different schemes
- Full understanding of the underlying physics of the radiative corrections in the chargino/neutralino sector.
- Reconstruction of fundamental parameters at one-loop.
- Introduce effective couplings?
- Connection with MicrOMEGAs

