A light neutralino in hybrid models of supersymmetry breaking

E. Dudas¹, S. Lavignac² and J. Parmentier^{1,2}

¹Centre de Physique Théorique Ecole Polytechnique, France

²Institut de Physique Théorique CEA Saclay, France

GDR SUSY

ヘロト ヘアト ヘビト ヘビ

This talk is based on 0808.0562[hep-ph], to appear in Nucl. Phys. B.

イロト イポト イヨト イヨ

Duality

quarks Q and anti-quarks \widetilde{Q} with N_c colors, N_f flavors For $N_c < N_f < 3/2N_c$

 N_f flavors, N= $N_f - N_c$ colors quarks q, antiquarks \tilde{q} and meson X

Superpotential

 $W = hq X \widetilde{q} - h\mu^2 \operatorname{Tr} X$

Intriligator, Seiberg and Shih, hep-th/0602239

Why SUSY is broken

$$F_{X_i^j}=hq_i^a\widetilde{q}_a^j-{
m h}\mu^2$$
11

A light neutralino in hybrid models of supersymmetry breaking

Mediation of SUSY breaking : General Scheme

	Gauge Mediation			
MSSM		Hidden Sector		
	Gravity Mediation	_		

Gravity Mediation

- Natural μ , B μ
- Generates Flavor Changing Neutral Currents
- LSP neutralino

Gauge Mediation

 Have to find a mechanism to generate μ, Bμ

< □ > < □ > < □ > < □ > <</p>

- Flavor Blind process
- LSP gravitino

Having both mediations

Hybrid models

Do messengers interact with the GUT sector?

Emilian Dudas, Stephane Lavignac, J.P. A light neutralino in hybrid models of supersymmetry breaking

ヘロン 人間 とくほ とくほ とう

1

Model : coupling messengers to the GUT sector

Our Model

Lets consider

- ISS as a hidden sector
- Messengers coupled to the other fields by φ(λ_XX + λ_ΣΣ)φ̃, with Σ = diag(2,2,2,-3,-3)v that breaks SU(5)

Model building characteristics

Why studying this coupling?

- Gravitational effects : $m_{3/2} \sim (0.1 0.01) \Lambda_{GM}$
- One free parameter λ_{Σ}
- Doublet and triplet messengers have different masses $M = \lambda_{\Sigma} 6 v Y$

ヘロト ヘアト ヘヨト ヘ

Shape of potentials

Quantum Corrections at one loop for ISS + messengers

We can explicitly compute the Coleman-Weinberg potential and we find

• Metastability for $\lambda_X < 10^{-2}$

•
$$< X > \neq$$
 0

Mass term for the Higgs

Non-renormalisable term ... but non negligeable !

$$W_{1} = \lambda_{1} \frac{q\bar{q}}{M_{Pl}} H_{u} H_{d} \rightarrow \mu$$
$$W_{2} = \lambda_{2} \frac{\chi^{2}}{M_{Pl}} H_{u} H_{d} \rightarrow B\mu$$

Emilian Dudas, Stephane Lavignac, J.P. A light neutralino in hybrid models of supersymmetry breaking

UV spectrum

5-5

$$M_{3} = \frac{1}{2} N_{m} \frac{\alpha_{3}}{4\pi} \frac{\lambda_{X} F_{X}}{\lambda_{\Sigma} v} M_{2} = -\frac{1}{3} N_{m} \frac{\alpha_{2}}{4\pi} \frac{\lambda_{X} F_{X}}{\lambda_{\Sigma} v} m_{Q}^{2} : m_{U^{c}}^{2} : m_{D^{c}}^{2} : m_{L}^{2} : m_{E^{c}}^{2} \approx 0.79 : 0.70 : 0.68 : 0.14 : 0.08$$

10-10

$$M_{3} = \frac{7}{4} N_{m} \frac{\alpha_{3}}{4\pi} \frac{\lambda_{X} F_{X}}{\lambda_{\Sigma} \nu} \\ M_{2} = 3 N_{m} \frac{\alpha_{2}}{4\pi} \frac{\lambda_{X} F_{X}}{\lambda_{\Sigma} \nu} \\ m_{Q}^{2} : m_{U^{c}}^{2} : m_{D^{c}}^{2} : m_{L}^{2} : m_{E^{c}}^{2} \\ \approx 8.8 : 5.6 : 5.5 : 3.3 : 0.17$$

Commun feature

 $M_{1,1-loop,GM} \sim \text{Tr}(Y^2/M)$ $M_{1,1-loop,GM} \sim \text{Tr}(Y) = 0!$ $M_1 \sim m_{3/2}$ \neq Universality for gauginos $M_1: M_2: M_3 = \alpha_1: \alpha_2: \alpha_3$

How far can we go in the hierarchy ?

Limits come from

- Heavy masses for the messengers
- Gravitational effects interesting
- Neutralino LSP

A light neutralino in hybrid models of supersymmetry breaking

IR spectrum

Constraint by Dark Matter

What are the bounds on $m_{\chi_1^0}$?

- No bound from colliders !
- bound from dark matter constraint (relic density)

What is the ligthest neutralino that we can build in this model?

- $m_{\chi_4^0} \leq$ 40 GeV would need R-parity violation
- $m_{\chi^0_{\star}} \sim$ 40 GeV with light sleptons
- *m*_{χ⁰₁} ≥ 40 GeV but less interesting for the moment...

FCNC

Light Sleptons \rightarrow FCNC in the lepton sector Difficult to avoid because of the very few parameters of the model

ъ

GMSB vs hybrid mediation

From B.C. Allanach et al., hep-ph/0202233

 $\Lambda=40\,{\rm TeV},\quad M_{\rm mes}=80\,{\rm TeV},\quad N_{\rm mes}=3,\quad \tan\beta=15,\quad \mu>0.$

イロト イポト イヨト イヨト

■ ▶ ■ ■

GMSB vs hybrid mediation

Emilian Dudas, Stephane Lavignac, J.P. A light neutralino in hybrid models of supersymmetry breaking

Conclusions

From the model building point of view

- Explicit models of supersymmetry breaking
- Quite constrained model
- Correct EWSB
- Correct relic abundance
- Still FCNC

Even if gauge mediation, light neutralino as a signature Waiting for the LHC ...

イロト イポト イヨト イヨト

æ –

model	1	2	3	3 bis	4	5	6
N(5.5)	1	6	0	0	0	1	3
N(10 10)	0	0	1	1	4	1	1
M_{GM}	1000	200	300	300	110	220	160
M_1	50	50	50	85	80	85	85
$\tan\beta$	30	24	15	15	9	15	15
$sign(\mu)$	+	+	+	+	+	+	+
h	114.7	115.0	115.2	115.2	116.5	114.6	114.8
A	779.2	645.4	892.2	892.4	1015	735.8	662.7
H^0	779.2	645.5	892.4	892.6	1015	735.9	662.8
H^{\pm}	783.3	650.3	895.7	895.9	1018	740.1	667.5
$\tilde{\chi}_{1}^{\pm}$	259.4	305.0	560.2	560.3	676.7	408.0	223.9
$\tilde{\chi}_2^{\pm}$	747.8	636.8	693.9	694.0	970.4	590.4	597.5
$\tilde{\chi}_{1}^{0}$	24.5	23.5	23.2	42.9	38.1	43.0	42.9
$\tilde{\chi}_2^0$	259.4	305.0	560.1	560.3	677.1	408.0	223.9
$\tilde{\chi}_{3}^{0}$	743.3	629.8	596.9	597.1	691.0	570.8	589.2
$\tilde{\chi}_{4}^{0}$	745.7	634.7	693.8	693.9	970.4	590.4	596.3
$ Z_{11} $	0.9982	0.9975	0.9971	0.9971	0.9978	0.9968	0.9969
$ Z_{13} $	0.0599	0.0708	0.0750	0.0755	0.0648	0.0792	0.0772
ĝ	1064	1207	1097	1097	1527	1028	1063
\tilde{t}_1	984.6	927.3	861.7	861.6	1080	795.7	809.5
\tilde{t}_2	1156	1074	1240	1240	1468	1058	1002
\bar{u}_1, \bar{c}_1	1195	1087	1135	1135	1361	1006	987.9
\tilde{u}_2, \tilde{c}_2	1240	1115	1327	1327	1555	1118	1043
\tilde{b}_1	1128	1040	1123	1123	1356	995.4	966.2
\tilde{b}_2	1169	1079	1224	1224	1451	1038	987.1
$\widetilde{d}_1, \widetilde{s}_1$	1184	1085	1134	1134	1360	1005	987.1
\tilde{d}_2, \tilde{s}_2	1243	1117	1329	1329	1557	1121	1046
$\tilde{\tau}_1$	242.2	99.0	86.3	89.3	87.0	96.7	95.2
$\tilde{\tau}_2$	420.3	289.4	696.2	696.3	753.1	498.6	349.8
$\tilde{e}_1, \tilde{\mu}_1$	294.4	150.6	131.5	133.6	105.4	123.6	117.4
$\tilde{e}_2, \tilde{\mu}_2$	413.4	275.1	699.1	699.2	754.1	500.1	348.5
$\tilde{\nu}_{\tau}$	396.6	260.5	691.4	691.5	749.0	491.4	337.6
$\tilde{\nu}_e, \tilde{\nu}_\mu$	405.8	263.6	694.8	694.9	750.1	493.9	339.5
$\Omega_{c0}h^2$	6.40	0.428	0.279	0.122	0.124	0.118	0.116

Emilian Dudas, Stephane Lavignac, J.P.

A light neutralino in hybrid models of supersymmetry breaking

mSUGRA vs hybrid mediation

From B.C. Allanach et al., hep-ph/0202233

Emilian Dudas, Stephane Lavignac, J.P.

A light neutralino in hybrid models of supersymmetry breaking

Comparisons

