

W/Z+jets MC and constraints from data

Samuel Calvet December 4th 2008

Hard scattering

+ ISR, FSR

Jet, pT>15/20 GeV

Hard scattering

+ ISR, FSR

Jet, pT>15/20 GeV

The issue

Multiple Parton Interaction,... Minimum biais

Samuel Calvet

Outline

- Experiments can use LO or ~LL (ME+PS) MC to simulate these main signals/backgrounds
 - NLO not yet available for large jet multiplicity
- Today :
 - State of the art : some data/MC comparisons
 - How can we try to improve our data vs MC agreement?
 - A precise measurement
 - Future MC would benefit from that

p/r

p

Z→ee pT, detector level

- The distributions on the previous slides were at the detector level.
- One can unfold the data in order to come back to the particle level :
 - (GeV) DØ Run II Use a migration matrix to 180 bring back the jets to particle Particle Jet p_{T} Π 160 level, cone size 0.5 140 Leptons after QED FSR 120 100 80 60 40 20 80 20 60 140 160 180 200 40 Measured Jet p_{τ} (GeV) Samuel Calvet W+jets MC ar

$Z \rightarrow \mu \mu$, ≥ 1 jet, jet pT>20GeV, unfolded

- At low pT, data are in between alpgen+pythia and alpgen+herwig
- Above 40 GeV the ratio is flat

 \rightarrow equivalent to a scale factor $\sim 1.7/1.5$

DataZ $\rightarrow \mu\mu$, \geq 1jet, jet pT>20GeV, unfolded

Various MC tunes...

- The underlying event (UE) is really not negligible for the generators ME+PS
- An other test: varying the tune of pythia in alpgen+pythia
 - Tune A: based on underlying event studies at CDF
 - Developed using CTEQ5L: LO PDF & LO α_s
 - Tune DW: same as A + the intrinsic kT adjusted to describe CDF RunI Z pT + small tune to describe D0 RunII di-jet $\Delta \varphi$
 - CTEQ5L
 - Tune QW: same as DW
 - CTEQ6M: NLO PDF, NLO α_s

Data / ALPGEN UE, ISR, FSR, ... 1.2 Large Z pT appears better 1.1 described using NLO PDF 0.9 (I am not saying it is correct) alpgen+pythia, **tune QW** 0.8 50 150 200 250 100 300 Z_{P_r/GeV} W+jets MC and constraints

How do we improve our MC ?

How do we improve our MC ?

- Sherpa, Alpgen+... are "improved LO" (almost LL) MC
- It is not surprising they can not describe perfectly the data
- Fix : include NLL information into our LO MC
 - ResBos gives a resummed differential cross-section of the Z boson in agreement to the data, in the low Z pT region

How do we improve our MC? (here, alpgen+pythia)

- One can reweight alpgen events according to ResBos Z pT, in the low pT region
- Use the unfolded data to describe the pT above 30 GeV

How do we improve our MC ? (here, alpgen+pythia)

◆ $Z \rightarrow \mu \mu + \ge 2jets$: no additional scale factor (~1.2 before RW)

From Z to W simulation

- We know the Z pT simulation is not perfect, so there is no reason to assume the W pT simulation to be correct
- Unfortunately there is not W pT measurement with similar precision as for $Z \rightarrow ee$ on the market
 - Rely on theory for the W pT/Z pT ratio (NLO) :
 - use W pT from ResBos at low pT
 - use (unfolded data Z pT)
 - x (NLO ratio) at high pT
 - Melnikov-Petriello code
 - NLO ratio in agreement with **NNLO** ratio
 - NN 3.0 atio At the moment, an additional scale factor is needed for W+2jets (~1.25)
 - Hopefully the W pT RW will fix it

100

DØ WORK IN PROGRESS

10

pt

0.9

0.7

0.6

0.5

$W \rightarrow e_{v}$, ≥ 2 jets, jet 1 (2) pT> 30 (20) GeV

MC comparison : is there a matching effect ?

A precise measurement

• Z pT can be decomposed into 2 components a_{T} and a_{L}

 $p_T^{(2)}$

 $\Delta \phi^{ll}$

Hadronic Recoil

 a_L

• a_{τ} is ~insensitive to lepton pT resolution

 $\widehat{t} = \frac{\vec{p}_T^{(1)} - \vec{p}_T^{(2)}}{|\vec{p}_T^{(1)} - \vec{p}_T^{(2)}|} \qquad \underbrace{p_T^{(1)}}_{T}$

- This technique allows to use the muon channel @DØ.
- Reweight pythia samples with 15 ResBos predictions (corresponding to a grid of 15 g₂ parameters)

- Precise measure of g₂
 - 0.63 ±0.02(exp) ±0.04(pdf)
- Should help to tune the MC in the low pT region

Conclusion

- Tevatron experiments get enough events to test precisely the prediction of V+jets signals backgrounds
 - It is an unavoidable step on the road to discoveries/ precision measurements
 - Manpower dedicated on the understanding/modeling of these backgrounds (for example, V+jets task force @ DØ)
 - The needed massages of the MC's are better and better understood
 - Measurements of boson + heavy flavor still statistic limited (see back up)
- → Recent precise measurements should help the tuning and comparisons of MCs
- LHC will reap the benefits from all these works

Backup

$Z \rightarrow ee$, jet pT>15GeV, detector level

30

Run II Integrated Luminosity

19 April 2002 - 23 November 2008

Z+b-jets : Z \rightarrow ee/ $\mu\mu$ +b

- Secondary vertex tagging
- Data corrected to hadron level (R=0.7 cone jets)
- Fit the vertex mass by 3 templates (b, c, light)
- Measurement σ (Z+b-jets)=0.93 ±0.36 pb consistent with the theory 0.45±0.07 pb
- Pythia does a good job to predict the Z+b fraction
- Statistic limited

Samuel Calvet

L ~ 2.0 fb⁻¹ PYTHIA incl. E^{jet}₇>20 GeV 0.14 <u>P</u> ALPGEN |ŋ^{jet}|<1.5 0.12 ---- MCFM MCFM +Had.Corr. 0.1 0.08 0.06 jet pT б 0.04 σ 0.02 20 60 50 70 80 30 40 [GeV] 140 CDF data Positive Tags 120 light jets Jets / (0.5 √s=1.96 TeV c jets 100 L ~ 2.0 fb⁻¹ b jets E^{jet}>20 GeV 80 |η^{jet}|<1.5 N=193±23 N_=147±54 60 N₂=273±43 40 20 망 3.5 4 M_s (GeV/c²) 0.5 1 1.5 2 2.5 з Vertex mass W+jets MC and constraints

Z+ b jet. CDF RUN II Preliminary

√s≕1.96 TeV

CDF Data

35

0.18⊏^{×10⁻³}

0.16

[GeV⁻¹]

W+b-jets : W \rightarrow e/ $\mu\nu$ +b

- * "Ultratight" secondary vertex tagging → high b purity
- Templates : light, b and c
 - Fit the vertex mass distribution
 - NB: R=0.4 cone jets
- Measured cross-section 3.5 times larger than the prediction by Alpgen+herwig
 - Investigations are underway

Check the fractions on other variables

W+c-jets : W \rightarrow e/ $\mu\nu$ +c

- "Soft muon tagger" to select the c-jets Considering the 2 leptons:
- $N(W+c) = N^{OS-SS}_{tot} N^{OS-SS}$ bkg
- **Result:**
 - $\sigma(W+1c) = 9.8 + / -2.8(stat)^{+1.4}(sys) + / -0.6(lum)pb$
 - In agreement with NLO prediction : $11^{+1.4}$ pb

OS : opposite sign

SS: same sign