Precision tools for the LHC: resummation and MC generators.

Benjamin Fuks (IPHC Strasbourg)

In collaboration with G. Bozzi (ITP Karlsruhe), J. Debove, M. Klasen (LPSC Grenoble), Q. Li (ITP Karlsruhe) and C. Weydert (LPSC Grenoble).

> GDR SUSY meeting @ LAL (Orsay) December 04, 2008

Outline		

Precision tools for the LHC: resummation and MC generators

Motivation		
Outline		

Precision tools for the LHC: resummation and MC generators

Soft and collindear radiation (1)

We consider the production of a colorless final state F:

- * with an invariant-mass M,
- * with a transverse momentum q_T .
- The partonic invariant-mass and transverse-momentum distributions at $\mathcal{O}(\alpha_s)$:

$$\begin{aligned} \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}M^2} &= \hat{\sigma}^{(0)}(M)\,\delta(1-z) + \alpha_s\,\hat{\sigma}^{(1)}(M,z) + \mathcal{O}(\alpha_s^2), \\ \frac{\mathrm{d}^2\hat{\sigma}}{\mathrm{d}M^2\,\mathrm{d}q_T^2} &= \hat{\sigma}^{(0)}(M)\,\delta(q_T^2)\delta(1-z) + \alpha_s\,\hat{\sigma}^{(1)}(M,z,q_T) + \mathcal{O}(\alpha_s^2), \end{aligned}$$

where $z = M^2/s$.

Problem: soft and collinear radiation.

Some result

Soft and collindear radiation (2)

Problem: soft and collinear radiation.

• Qualitative point of view.

- * Related to the emission of:
 - $\diamond~$ a parton parallel-moving to the emitting one.
 - $\diamond~$ a parton with vanishing four-momentum.

 \equiv experimentally undistinguishable states.

- Quantitative point of view.
 - Related to the infrared singularities.
 - $\label{eq:alpha} \diamond \ \alpha_s^n \Big(\frac{\ln^m(1-z)}{1-z} \Big)_+ \ \text{and} \ \frac{\alpha_s^n}{q_T^2} \ln^m \frac{M^2}{q_T^2} \ \text{terms in the distributions.}$
 - \diamond Large at $z \lesssim 1$ or small q_T .

Fixed-order theory unreliable in these kinematical regions.

Precision predictions require resummation to all orders or parton showers.

Motivation	Resummation and parton showers	Some results	Summary - Outlook
00		00	O
Outline			

	Resummation and parton showers •0000	
Resummatio	n	

- Conjugate spaces introduced:
 - * Mellin transform: N variable conjugate to $\tau = M^2/s_h$.
 - * Fourier transform: Impact-parameter b conjugate to q_T .
- * Hadronic cross sections: convolutions \rightarrow products.
- * Factorization of the soft-collinear radiation in a Sudakov form factor.

$$\mathcal{W}_{ab}(N,b) = \mathcal{H}_{ab}(N) \exp \left\{ \mathcal{G}(N,b) \right\}.$$

- The *H*-coefficient:
 - * Can be computed perturbatively as series in α_s , from fixed-order results.
 - * Is process-dependent.
 - * Contains real and virtual collinear radiation, hard contributions.
- The Sudakov form factor \mathcal{G} :
 - * Can be computed perturbatively as series in $\alpha_s \log$.
 - * Is process-independent (universal).
 - * Contains the soft-collinear radiation.

Parton showers: initial state radiations

- The shower is built through a Monte Carlo technique:
 - * Backwards evolution scheme: start from the hard-scattering partons.
 - * Ordering of the partons (virtualities, p_T , emission angles,...).
 - * Branching or not branching ? \Rightarrow Sudakov form factor.
- Resummed Sudakov vs. shower Sudakov:
 - * Different order of the series in $\alpha_s \log$.
 - * Resummation: next-to-next-to-leading logarithms are known.
 - * Parton showers: only leading logarithms are included.

Matching to the fixed order

- Fixed-order calculations.
 - * Reliable far from the critical kinematical regions ($z \ll 1$, $q_T \gg 0$).
 - * Spoiled in the critical regions ($z \sim 1$, $q_T \sim 0$).
- Resummation / parton showers.
 - * Needed in the critical regions.
 - * Not justified far from the critical regions.
- Intermediate kinematical regions:
 - * Both fixed order and resummation / parton showers contribute.

Information from both fixed order and resummation / parton shower is required. \Rightarrow consistent matching procedure.

Monte Carlo and resummation for BSM processes

- Soft and collinear radiation.
 - Resummation: next-to-leading logarithms.
 - * Parton showers in general: leading logarithms.
 - * If we have momentum conservation at each branching \Rightarrow (leading logs)₊. e.g. PYTHIA.
- Matched with matrix elements.
 - Resummation: next-to-leading order.
 - * Monte Carlo codes in general: leading order.
 - Sometimes next-to-leading order: e.g. MC@NLO and POWHEG.
- Comparison: resummation vs. PYTHIA vs. MC@NLO.
 - * PYTHIA: nice process library.
 - * MC@NLO: one of the state-of-the-art Monte Carlo generators.
 - * Resummation: best precision.

Remark

Too small process libraries in MC@NLO and resummation codes.

Motivation 00	Resummation and parton showers	Some results 00	Summary - Outlook O
Summary of	the three codes		
 PYTHIA: [Sjöstrand, Mrenna, Skands (2006)] * Parton showers ordered either by virtua * Momentum conservation at each brand * Matched with leading order matrix elements 		lities or by p _T . hing. nents.	

PYTHIA: Leading order + leading logarithms + momentum-conservation.

- MC@NLO: [Frixione, Webber (2002)]
 - * Parton showers ordered by angles (HERWIG [Corcella et al. (2001)]).
 - * Matched with next-to-leading order matrix elements.

MC@NLO: Next-to-leading order + leading logarithms.

- Resummation for BSM: [BenjF, Klasen, Ledroit, Li, Morel (2008)]
 - * Next-to-leading logarithmic Sudakov.
 - * Matched with next-to-leading order matrix elements.

BSM Resummation: Next-to-leading order + next-to-leading logarithms.

Motivation 00	Resummation and parton showers 00000	Some results	Summary - Outlook O
Outline			

[BenjF, Klasen, Ledroit, Li, Morel (2008)]

- PYTHIA: mass-spectrum multiplied by a K-factor of 1.26.
- PYTHIA q_T -spectrum much too soft, peak not well predicted.
- Good agreement between MC@NLO and resummation.

NLO matrix elements are a great improvement.

Precision tools for the LHC: resummation and MC generators

Benjamin Fuks - GDR SUSY - 04/12/2008 - 13

	Some results ○●	

Resummation for slepton pair production

- SUSY scenarios: slepton masses \approx 100-200 GeV.
- Resummation effects:
 - * Finite results at small q_T .
 - * Resummation effects important even at intermediate q_T .
 - * Small *M*: $d\sigma^{(res)} \approx d\sigma^{(exp)} \equiv$ perturbative theory.
 - * Large *M*: $d\sigma^{(F.O.)} \approx d\sigma^{(exp)} \equiv$ pure resummation.

		Summary - Outlook O
Outline		

Summary - Outlook

- Soft and collinear radiation:
 - * Large logarithmic corrections.
 - * Parton showers and resummation are required.
 - * Correct quantification of those radiation.

• Precision predictions for BSM theories

- * PYTHIA is (often) not enough.
- * MC@NLO reaches (almost) the same precision level as resummation. BUT: easier implentation in the analysis chains of any experiment.

Outlook

Implementation of other processes in the precision tools.

- * Resummation.
- * MC@NLO.
- * POWHEG?