Implementation and validation of the MSSM in FeynRules.

Benjamin Fuks (IPHC Strasbourg)

In collaboration with C. Duhr (UCL), N. Christensen (MSU) & MadGraph people.

GDR SUSY meeting @ LAL (Orsay) December 04, 2008

Outline		

Motivation

FeynRules

- What is FeynRules?
- Example: the QCD Lagrangian

3 Implementation of the general MSSM

- The model
- Validation

Motivation 00		
Outline		

- What is FeynRules?
- Example: the QCD Lagrangian

- The model
- Validation

Introduction to leading order automated tools

- One of the LHC purposes: which model of new physics is the correct one?
 - * We need data [which are hopefully coming next year in the next-to-leading years].
 - * We need theoretical predictions for all BSM models.

Confront data and theory

- But...
 - * Often we have to calculate more than 1.000 (even 10.000) diagrams.
 - * The help of automated tools is mandatory.
- Tools zoology
 - * CalcHEP/CompHEP [Pukhov et al. (1999); Boss et al. (2004)].
 - * FeynArts/FormCalc [Hahn (1999,2001)].
 - * Herwig [Corcella et al. (2001); Bahr et al. (2008)].
 - * MadGraph/MadEvent [Alwall et al. (2007); Maltoni, Stelzer (2003)].
 - * Sherpa [Gleisberg et al. (2004)].
 - * Whizard/Omega [Moretti et al. (2001); Kilian et al. (2007)].
 - * ...

Implementing new physics models in diagram calculators

- Why using several programs?
 - * Each has its own strengths and weaknesses.
 - * Golden project: simultaneous implementation of a new model.
 - * Compare the results.

• Implementing a new model \equiv writing a list of Feynman rules.

- * Often one vertex at a time.
- * Tedious and error prone process.
- * Each program has its own conventions.
- * Validation and bug corrections.
- * E.g. the general MSSM without four-scalars vertices: $\mathcal{O}(1000)$ vertices.

FeynRules [Duhr and Christensen (2008)]

* Automization.

- * Mathematica-based package calculating Feynman rules from a Lagrangian.
- * Generating a model file appropriate for each program.

	FeynRules 0000000	
Outline		

FeynRules

- What is FeynRules?
- Example: the QCD Lagrangian

3 Implementation of the general MSSM

- The model
- Validation

4 Summary - outlook

FeynRules in details

• Input:

- * Particles and fields.
- * Gauge groups.
- * Parameters (masses, coupling constants, mixing matrices,...).
- * The Lagrangian.
- Processing in Mathematica a list of generic vertices.

• Re-processing the list to:

- * A T_EX-file.
- * A FeynArts/FormCalc model file.
- * A MadGraph/MadEvent model file.
- * A CalcHep/CompHep model file.
- * A Sherpa model file.

Is your favourite code missing? \Rightarrow Contact us !

The FeynRules philosophy

- * Theorist-friendly environment to develop new models: Mathematica-based.
- * Filling the gap between model building and collider phenomenology. 1) Lagrangian \rightarrow FeynRules \rightarrow model file for your Monte Carlo code. 2) Monte Carlo code \rightarrow phenomenology.
- * Avoid separate implementations of a model on different programs. FeynRules does it for you!
- * Exploit the strengths of the different programs!

 Motivation
 FeynRules
 Implementation of the general MSSM
 Summary-outlook

 00
 00000
 0
 0
 0

Example: the QCD Lagrangian - parameters

• Parameters of the model:

Parameters	
aS == {	
Tex	-> Subscript[\[Alpha],s],
ParameterType	-> External,
BlockName	-> SMINPUTS,
OrderBlock	-> 3,
InteractionOrder	-> {QCD, 2},
Description	-> "Strong coupling constant at the Z pole."},
gs == {	
TeX	-> Subscript[g, s],
ComplexParameter	-> False,
ParameterType	-> Internal,
Value	-> Sqrt[4 Pi aS],
InteractionOrder	-> {QCD, 1},
ParameterName	-> "G",
Description	-> "Strong coupling constant"}

* Contains all the information needed by the Monte Carlo codes.

* Contains the TEX-form required to write the TEX file.

FeynRules ○○○●○○○	

Example: the QCD Lagrangian - gauge group

• The gauge group $SU(3)_C$:

Gauge group	
SU3C == {	
Abelian	-> False,
GaugeBoson	-> G,
StructureConstant	-> f,
DTerm	-> dSUN,
Representations	-> {T, Colour},
CouplingConstant	-> gs
}	

- * We have defined the gauge boson G as the gluon field.
- * We have associated the parameter gs as the QCD coupling constant.
- * The structure functions, the representations, ... are defined.

FeynRules ○○○○●○○	

Example: the QCD Lagrangian - particles

• The quark fields:

Pa	rtic	le	list
1 0	I LIC		1136

F

[1]	== {		
	ClassName	->	q,
	ClassMembers	->	{d, u, s, c, b, t},
	FlavorIndex	->	Flavour,
	SelfConjugate	->	False,
	Indices	->	<pre>{Index[Flavour],Index[Colour]},</pre>
	Mass	->	{MQ, MD, MU, MS, MC, MB, MT },
	Width	->	{WQ, 0, 0, 0, 0, 0, WT},
	ParticleName	->	{"d", "u", "s", "c", "b", "t"},
	AntiParticleName	->	{"d~", "u~", "s~", "c~", "b~", "t~"},
	PDG	->	$\{1, 2, 3, 4, 5, 6\},\$
	PropagatorLabel	->	{"q", "d", "u", "s", "c", "b", "t"},
	PropagatorType	->	Straight,
	PropagatorArrow	->	Forward}

- * Organized in classes \Rightarrow implicit summations \equiv compact Lagrangian.
- * Contains all the information needed by the Monte Carlo codes.

Example: the QCD Lagrangian - the Lagrangian

• The QCD Lagrangian is

$$\mathcal{L}_{
m QCD} = -rac{1}{4}G^a_{\mu
u}G^{a\mu
u} + ar{q}_f ig(i\partial\!\!\!/ - m_f + g_s G^a T^aig)q_f,$$

where we are summing over the quark flavours.

```
Lagrangian
LQCD = -1/4 * FS[G, mu, nu, a] * FS[G, mu, nu, a] +
I*qbar.Ga[mu].del[q, mu] - MQ[f] * qbar[s,f,c].q[s,f,c] +
gs * G[mu,a] * qbar.Ga[mu].T[a].q
```

- * The gluon strength tensor is automatically defined with the gauge group.
- * Implicit summations over the flavours.
- * Easy debugging.

Example: the QCD Lagrangian - results

• We obtain the Feynman rules

Results

```
FeynmanRules[LQCD, FlavorExpand->False]
```

```
Vertex 1

Particle 1 : Vector , G

Particle 2 : Dirac , q<sup>†</sup>

Particle 3 : Dirac , q

Vertex:

i g_{S} \gamma_{S_2,S_3}^{\mu_1} \delta_{f_2,f_3} T^a_{m_2,m_2}
```

- * Explicit flavour expansion possible.
- * We would have then six vertices, one for each flavour.

	Implementation of the general MSSM	
Outline		

FeynRules

- What is FeynRules?
- Example: the QCD Lagrangian

3 Implementation of the general MSSM

- The model
- Validation

Implementation of the general MSSM in FeynRules

- A general version of the MSSM is considered.
 - * All possible mixings in the scalar sector. $\Rightarrow 6 \times 6$ flavour violating mixing matrices.
 - * All possible complex phases.
 - * One exception (presently): CP violating Higgs mixing.
- Usual MSSM limit easily taken.
- We want a Lagrangian as easy as possible.
 - * Partially written in the interaction basis.
 - * Partially written in the mass basis.

• Model parameters.

- * Follow a SLHA-2-like format, the SLHA-FR format.
- * Provided with a C++ translator from SLHA1/2 to SLHA-FR.

- Analytical cross sections: FeynArts/FormCalc interface.
 - * Check of the FC-produced formulas with litterature.
 - ✓ All 2 → 2 SUSY particle pair hadroproduction processes.
 - **X** $2 \rightarrow 3$ processes: FormCalc-6.0 issue.

MadGraph/MadEvent

- * Limit of the usual MSSM.
- * Numerical check versus the MadGraph-Stock MSSM model.
- * MG-Stock was validated by the CATPISS collaboration [Hagiwara et al. (2006)].
- ✓ 320 decay widths.
- ✓ 456 2 → 2 SUSY particle pair production processes.
- $2 \rightarrow 3$ processes: ongoing work (good for the signs in the vertices).

22.10.2008, IPHC Strasbourg

& Our first milestone: 776 succesfully tested processes !

Validation (2)

• Some examples:

Process	MG-FR	MG-Stock	Result
b,t~>sd1,su1~	$3.9273 imes10^{-1}$	$3.9192 imes 10^{-1}$	OK: 0.206675%
b,t~>sd1,su6~	3.6715×10^{-1}	$3.675 imes 10^{-1}$	OK: 0.0952381%
b,t~>sd2,su1~	4.2427×10^{-1}	4.2506×10^{-1}	OK: 0.185856%
b,t~>sd2,su6~	$4.7632 imes10^{-1}$	$4.7523 imes 10^{-1}$	OK: 0.229363%
b,t~>x1-,n1	$5.6383 imes 10^{-4}$	5.6449×10^{-4}	OK: 0.11692%
b,t~>x1-,n2	5.9582×10^{-3}	5.9638×10^{-3}	OK: 0.0938999%
b,t~>x1-,n3	5.2845×10^{-3}	5.2925×10^{-3}	OK: 0.151157%
b,t~>x1-,n4	$6.5567 imes 10^{-3}$	$6.5586 imes 10^{-3}$	OK: 0.0289696%
b,t~>x2-,n1	2.2335×10^{-3}	2.235×10^{-3}	OK: 0.0671141%
b,t~>x2-,n2	5.8572×10^{-3}	5.8536×10^{-3}	OK: 0.0615006%
b,t~>x2-,n3	2.3739×10^{-2}	2.3737×10^{-2}	OK: 0.00842566%
b,t~>x2-,n4	2.1151×10^{-2}	$2.1143 imes 10^{-2}$	OK: 0.0378376%
b,t~>h-,h1	$6.9053 imes 10^{-3}$	$6.8954 imes10^{-3}$	OK: 0.143574%
b,t~>h-,h2	1.392×10^{-3}	1.3915×10^{-3}	OK: 0.0359324%
b,t~>h-,h3	1.3642×10^{-3}	1.3656×10^{-3}	OK: 0.102519%
b,t~>z,h-	1.2562×10^{-2}	1.2558×10^{-2}	OK: 0.0318522%

Validation (3)

• Some examples (cont'd):

Process	MG-FR	MG-Stock	Result
tau-,vt~>sl1-,sv1~	1.2619×10^{-2}	1.261×10^{-2}	OK: 0.0713719%
tau-, vt~>s16-, sv1~	5.7656×10^{-2}	5.7647×10^{-2}	OK: 0.0156123%
tau-, vt~>x1-, n1	2.2155×10^{-2}	2.2162×10^{-2}	OK: 0.0315856%
tau-, vt~>x1-, n2	2.0793×10^{-2}	2.0788×10^{-2}	OK: 0.0240523%
tau-,vt~>x1-,n3	2.0889×10^{-3}	2.0851×10^{-3}	OK: 0.182245%
tau-, vt~>x1-, n4	3.3175×10^{-3}	3.3171×10^{-3}	OK: 0.0120587%
tau-, vt~>x2-, n1	2.0102×10^{-3}	2.011×10^{-3}	OK: 0.0397812%
tau-, vt~>x2-, n2	3.3299×10^{-3}	3.3284×10^{-3}	OK: 0.0450667%
tau-, vt~>x2-, n3	2.5187×10^{-2}	2.5226×10^{-2}	OK: 0.154602%
tau-,vt~>x2-,n4	2.2665×10^{-2}	2.2631×10^{-2}	OK: 0.150236%
tau-,vt~>h-,h1	2.1315×10^{-6}	2.1436×10^{-6}	OK: 0.564471%
tau-,vt~>h-,h2	4.7254×10^{-3}	4.7229×10^{-3}	OK: 0.0529336%
tau-,vt~>h-,h3	$4.716 imes 10^{-3}$	4.729×10^{-3}	OK: 0.2749%
tau-,vt~>w-,h1	7.3062×10^{-3}	7.3161×10^{-3}	OK: 0.135318%
tau-, vt~>w-, h2	8.1658×10^{-3}	8.1661×10^{-3}	OK: 0.00367372%
tau-,vt~>w-,h3	8.1923×10^{-3}	8.1858×10^{-3}	OK: 0.0794058%
tau-,vt~>z,h-	1.3762×10^{-2}	1.377×10^{-2}	OK: 0.0580973%

Validation (4)

• Some examples (cont'd):

Process	MG-FR	MG-Stock	Result
g,a>su1,su1~	5.9465×10^{-2}	5.9485×10^{-2}	OK: 0.0336219%
g,a>su2,su2~	$4.6418 imes 10^{-2}$	4.6371×10^{-2}	OK: 0.101356%
g,a>su3,su3~	4.636×10^{-2}	4.6361×10^{-2}	OK: 0.00215699%
g,a>su4,su4~	$4.561 imes 10^{-2}$	4.5558×10^{-2}	OK: 0.11414%
g,a>su5,su5~	$4.5588 imes 10^{-2}$	4.555×10^{-2}	OK: 0.0834248%
g,a>su6,su6~	4.4111×10^{-2}	$4.4146 imes 10^{-2}$	OK: 0.0792824%
g,a>sd1,sd1~	1.2235×10^{-2}	$1.2236 imes 10^{-2}$	OK: 0.00817261%
g,a>sd2,sd2~	1.1686×10^{-2}	$1.1693 imes 10^{-2}$	OK: 0.0598649%
g,a>sd3,sd3~	1.1659×10^{-2}	1.1662×10^{-2}	OK: 0.0257246%
g,a>sd4,sd4~	1.1659×10^{-2}	1.1665×10^{-2}	OK: 0.0514359%
g,a>sd5,sd5~	1.1298×10^{-2}	$1.1294 imes 10^{-2}$	OK: 0.035417%
g,a>sd6,sd6~	1.1286×10^{-2}	$1.1278 imes 10^{-2}$	OK: 0.0709346%

		Summary-outlook O
Outline		

FeynRules

- What is FeynRules?
- Example: the QCD Lagrangian

3 Implementation of the general MSSM

- The model
- Validation

Summary - Outlook

• FeynRules.

- * Mathematica-based package computing Feynman rules from a Lagrangian.
- * Generic output.
- * Generating model file feeding some as many MC codes as possible. [contact us to add yours].
- * The model library is getting bigger and bigger. [contact us to add your favourite one].

• The general MSSM model.

- * The implementation is achieved.
- * The validation is ongoing.

• FeynArts/FormCalc.

- * Find and fix the bug in FormCalc-6.0.
- * Check additional $2 \rightarrow 3$ processes.

• MadGraph/MadEvent.

- * Check the 2 \rightarrow 3 SUSY particle production processes.
- * Check the general MSSM \Rightarrow vs. XSUSY [BenjF & Herrmann (in preparation)].
- CalcHEP/CompHEP and Sherpa validation.