

ÉMITTANCE-MÈTRE IPHC : DÉVELOPPEMENTS EN COURS

T. Adam, P. Graehling, M. Heine, V. Juste, C. Maazouzi, F.Osswald*, E. Traykov, IPHC/IN2P3/CNRS, Université de Strasbourg

S. Mitrofanov, R. Kabytayeva, FLNR/JINR, Dubna, Russia

F. Poirier, F. Bulteau-Harel, ARRONAX, Nantes

L'émittance-mètre a été conçu à l'IPHC il y a une dizaine d'années et bénéficie depuis de mises au point et du retour d'expérience des utilisateurs qui ont conduit à ce programme de développement. Le programme comporte une partie théorique et expérimentale et concerne l'étage électronique d'entrée, le comportement thermique de la tête de mesure, l'élimination de contaminants du faisceau et la radioprotection

EXPÉRIENCES

CALCULS

Etude thermique

Le travail consiste à étudier le comportement de la fente d'entrée et de l'écran thermique lorsqu'ils sont soumis à l'irradiation d'un faisceau d'ions en basse énergie de 300 W en régime continu et pulsé

Validation thermique du modèle numérique

Il s'agit de déposer une puissance de 300 W sur une surface composée de tungstène (fente) ou de cuivre (écran thermique) en alignant le faisceau sur la fente (ouverture de 120 μ m). De préférence avec plusieurs points de mesure entre 10 et 300 W en DC. Dépôt avec spot de rayon entre 1 à 50 mm. La température maximale se situe sur le bord de la fente et atteint plusieurs centaines de °C. On se limite en service à 100 °C en jouant sur les paramètres faisceau. Le point de fonctionnement est fixé par un rapport puissance/surface pour respecter une température limite. D'autres valeurs sont possibles en jouant sur la structure temporelle du faisceau

SPÉCIFICATIONS

L'émittance-mètre est un scanner de l'espace des phases

Oxygène atmosphérique Panache (réactions secondaires) Comburant ombustible Buse du Température maximale chalumeau de la flamme

> **Option 3** à évaluer : Chauffage par induction

Caractérisation de l'étage électronique d'entrée Convertisseur courant-tension

Synoptique		PHC		NI	TREK
generale de l'acquisition	Courant- voltage convertor		Sampling		ESD Voltage v+1

+ buffer de mémoire tampon pour traitement pulse/pulse offline et mesure d'émittance dynamique !

Mesure de la linéarité et de la BP du convertisseur courant-tension. Cas déterminant aux faibles intensités (< 50 nA). La BP augmente avec l'intensité mais diminue avec la capacité de la charge (~ 1 pF)

Tests fonctionnels complets sur site de l'implanteur 200 kV ACACIA/iCUBE/INSIS. Installation en cours de préparation avec le concours du FLNR/JINR et du LPSC

Enceinte tampon

Pouvoir d'arrêt de la fente d'entrée

Le pouvoir d'arrêt est plus faible pour les protons. La profondeur de pénétration est < 4 µm. L'épaisseur de la fente (0,3 mm au minimum, profil triangulaire) suffit amplement pour arrêter tous les ions et former un pinceau de faisceau précis pour l'analyse. Par contre, son inclinaison ne favorise pas la dissipation de la chaleur déposée par le faisceau (incidence normale). Un compromis est nécessaire pour réduire l'émission de surface

A ion (amu)	U (kV)	Charge state	Kinetic energy (keV)	Range (µm)	Note
1	100	1	100	0.46	Proton
1	700	1	700	3.85	Proton
14	100	1	100	0.65	Nitrogen 1*
14	700	1	700	4	Nitrogen 1*
132	100	1	100	0.13	Xenon 1 ⁺
132	4	25	100	0.13	Xenon 25⁺
132	100	25	2500	2.51	Xenon 25⁺
238	100	1	100	0.1	Uranium 1+
238	4	25	100	0.1	Uranium 25⁺
238	100	25	2500	1.29	Uranium 25⁺
238	100	40	4000	2.08	Uranium 40⁺

Incidence orthogonale sur tungsten (selon SRIM2013)

Emission de surface Cas du déflecteur

L'émission de surface diminue avec l'énergie des ions incidents et augmente

échantillons de 120 μm de large. Les ions sont déviés par un déflecteur électrostatique selon un angle fonction de leur vitesse, de leur charge et de leur masse. Ceux présentant le rapport Q/A correspondant à la tension appliquée atteignent la CF qui

mesure l'intensité du pinceau

 $\underline{\theta} \approx \frac{\Delta V L_2}{4 Ug} \frac{(L_2 + 2L_3)}{(L_1 + L_2 + L_3)} \qquad \Delta V: \text{ tension appliquée aux plaques} \\ \Theta: \text{ angle de divergence} \\ U: \text{ tension d'accélération du faisceau} \\ g, L1, L2, L3: \text{ dimensions du détecteur} \end{cases}$

Principe d'analyse des faisceau par la méthode Allison

Parameter	Value	Note	
Scan plane	Single/horiz. or vertic.	Emittance distributions	
Scan speed	Few min. to few hours	Resolution dependant	
Scan length	<u>≺</u> 123 mm	Horiz.	
Total displacement length	250 mm	Probe position at rest	
Resolution in position	100 <i>µ</i> m		
Resolution in angle	100 <i>µ</i> rad		
Angular acceptance	+/- 100 mrad		
Energy	10-100 keV/q	1 <u>≤</u> q <u>≤</u> 25	
Charge state (positive)	1-25 (Xe)	Standard range	
Current intensity	10-3000 µA		
Power CW (DC)	≤ 300 W	With cooling	
Emittance normalized	0.01-1 π mm.mrad	Max range	
Beam transverse envelop	≤ 80 mm in diam.	Beam aligned on axis	
Time structure	DC or pulsed		
Electron repeler	1 kV		

Principales spécifications

ue avec l'énergie des jons incidents et

Objectifs des développements

- Étudier le comportement thermique et définir des termes de correction
- Proposer un outil pratique pour calculer les conditions limites des paramètres faisceau
 Caractériser la réponse en fréquence de l'étage d'entrée, établir une correction des mesures pour les faibles courants
- Envisager une amélioration de la vitesse de mesure d'émittance
 Estimer la précision et la limite en énergie
- Evaluer les risques en radioprotection et estimer l'activité induite par l'accélérateur
 Réaliser des études génériques pour préparer une innovation

avec leur masse atomique. Le scattering et le sputtering augmentent en incidence rasante. Pour des angles < 85°, l'émission diminue fortement et l'étude des distributions angulaires permet d'affiner le choix de l'angle de profilage de la surface pour réduire les contaminants dans le faisceau

Angle (°) 70 85° 85° Range (μm) 0.21 0.15 0.05 Backscattering (ion/1000) 100 486 610 Angle (°) ~10-120 486 610 Sputtering (atom/ion) Cr 0.1041 Cr 0.3824 Cr 0.7327 Fe 0.7828 Fe 3.57 Fe 6.24 Ni 0.927 Ni 0.9770 Ni 152	Ion energy (keV)	700	700	100
Range (μm) 0.21 0.15 0.05 Backscattering (ion/1000) Angle (°) 100 ~ 10-120 486 610 Sputtering (atom/ion) Cr 0.1041 Fe 0.7828 Cr 0.3824 Fe 3.57 Fe 6.24 Cr 0.7327 Fe 6.24	Angle (°)	70	85°	85°
Backscattering (ion/1000) Angle (°) 100 ~ 10-120 486 610 Sputtering (atom/ion) Cr 0.1041 Cr 0.3824 Cr 0.7327 Fe 0.7828 Fe 3.57 Fe 6.24 Ni 0.1022 Ni 0.9770 Ni 1523	Range (µm)	0.21	0.15	0.05
Sputtering (atom/ion) Cr 0.1041 Cr 0.3824 Cr 0.7327 bit 0.1023 Fe 3.57 Fe 6.24	Backscattering (ion/1000) Angle (°)	100 ~ 10-120	486	610
Angle $\binom{9}{2}$ = 20,160 = 20,150 = 210,160	Sputtering (atom/ion)	Cr 0.1041 Fe 0.7828 Ni 0.1922 ~ 20.160	Cr 0.3824 Fe 3.57 Ni 0.8779 ~ 20,150	Cr 0.7327 Fe 6.24 Ni 1.53

Enceinte pour tests

Préparation du dispositif de radioprotection pour exploitation future : Mesure de dose et d'activation sur échantillons au DC280 du FLNR au JINR. Comparaison avec les simulations MC

Estimation de l'activation induite, de l'activité résiduelle et inventaire radiologique. Modèle de terme source neutrons+gammas et cible simplifiée avec FLUKA

Les simulations Monte Carlo prennent en compte plusieurs scenarii et profils d'irradiation afin d'évaluer la radioactivité résiduelle et les doses max induites notamment par activation neutronique : travail en cours...