DE LA RECHERCHE À L'INDUSTRIE

Les aimants supraconducteurs Application à la physique des particules et à l'imagerie médicale

Lionel QUETTIER

lionel.quettier@cea.fr

Laboratoire d'Etudes des Aimants Supraconducteurs Irfu/DACM

www.cea.fr

The very first magnet!

0,5 Gauss / 5.10-5 T

Permanent magnet (NdFeB, 0.5T)

Resistive magnet (2T)

MRI magnet (Siemens 3T)

DE LA RECHERCHE À CINDUSTRIE

AND A LOT OF APPLICATIONS!

WHY SUPERCONDUCTIVITY ?

Gilles Holst, student of Kamerlingh Onnes writes a short note to the Royal Academy of the Netherlands on April 8th, 1911 :

... thus the mercury at 4.2 K has entered a new state, which, owing to its particular electrical properties, can be called the state of superconductivity...

1933: Meissner and Ochsenfeld discover perfect *diamagnetic* characteristic of superconductivity

- Ohms' law is not longer valid!
- Low electrical consumption (mainly to operate the cryogenic system)
- High current density
- Compact winding can be used to generate high magnetic fields in a large volume

DE LA RECHERCHE À L'INDUSTI

A LARGE CHOICE OF SC MATERIALS

NbTi

YBCO

BSCCO

MgB₂

Large variety of wires/tapes/cables

DE LA RECHERCHE À L'INDUSTR

Cez

Jeng in LTS and HTS conductors at 4.2K and 1.9K

Conductor Source: http://fs.magnet.fsu.edu/~lee/plot/plot.htm

A LARGE CHOICE OF SC WIRES AND CABLES...

Cost is a key driver!

NbTi

- Dominant commercial superconductor
- MRI is biggest user of NbTi SC wire
- Bendable, ductile, low cost (\$1/kA.m)
- Tc=9,3K, Bc2=11,4 @ 4,23K

Nb3Sn

- Primary high field SC
- Brittle
- Tc=18K, Bc2 ≈ 23-29K
- Higher cost (x 5 price of NbTi)

MgB2

- Brittle
- Tc=39K, Bc2=40T
- Higher cost (x 5 price of NbTi)

Technology based on ReBCO super expensive (x 10 to 20) and not mature enough for large industrial applications

MAGNET OPTIMISATION IS A COMPLEX PROBLEM...

How physicists depict the CMS detector...

How engineers built it...

The specification has to define several parameters

- Central field value (usually the highest...)
- Magnet aperture (usually the largest...)
- Magnet outer dimensions (usually the smallest...)
- Useful area or volume (usually the largest...)
- Field quality (dipole uniformity, field gradient, field integral, sagitta, momentum resolution,...)
- Fringe field (low, even close to the magnet)
- Operating mode (AC/DC)

Main parameters from the specification: Field B, length L, radius R

Parameters relevant for the physics

. B, BL (deflection), d^mB/d^mR (gradients), BL² (sagitta), BL² (momentum resolution), B³R², etc...

Parameters relevant for the magnet designer

- . B² R (mechanical forces)
- . B² R/e, with e coil thickness (stresses , protection in case of quench)

Parameters relevant for the ressource manager

. Cost : $C = \alpha (RL)^{0.8} + \beta (B^2 R^2 L)^{0.7}$ (from A. Hervé) $C(M\$) = 0.5(E_s(MJ))^{0.662}$ $C(M\$) = 0.4(B(T)V)^{0.635}$ (from Green and Lorant)

OPTIMIZATION OF SUPERCONDUCTING COILS

A complex problem...

- Field map specification
- Current transport capacity (choice of conductor)
- Operating temperature and cooling method
- Peak field on the conductor
- Quench protection
- Mechanical stresses
- Manufacturing techniques
- Economical constraints

MAIN TECHNICAL CHALLENGES

High magnetic field, high current, large useful volume, large stored energy, high mechanical forces and stresses

SC state requires low temperatures

Complex cryogenic system; it has to be optimized (compact, autonomous, minimum consumption)

Protection in case of quench

- Dissipate the stored energy
- Manage the quick temperature elevation in the SC system and the high voltages in the coils

Mechanical forces

- High strength/stress must be hold by the conductor and/or the external support structure
- Electrical insulation must also withstand the stress (shear stress in particular)

Advanced manufacturing techniques required

- Superconductors
- Electrical insulation
- Challenging manufacturing techniques

Dimensions:

- Manufacturing dimensions and tolerances, handling
- Road transportation $R_{max} \sim 3.5 \text{ m}$

DE LA RECHERCHE À L'INDUSTI

MAGNET PROJECTS AT CEA

DE LA RECHERCHE À L'INDUSTI

MAGNET PROJECTS AT CEA

WHY USING MAGNETIC FIELDS IN PARTICLE ACCELERATORS?

A magnet creates a force that acts on any other magnet, electric current, or moving charged particle.

Dipoles to bend the beam:

Sextupoles to correct chromaticity:

Quadrupoles to focus it:

Example of magnetic configurations (room temperature magnets)

DE LA RECHERCHE À L'INDUSTR

WHAT'S NEXT AFTER THE LHC...

100 TeV !

Magnet cost: 8T-60%; 16T-70%-20T-80%

- Need to increase the field, while reducing the cost
- Not just innovations... But real breakthroughs are needed!

FRESCA 2 (NB3SN)

14.6T obtained in April 2018 (World record) 18

DE LA RECHERCHE À L'INDUSTI

MAIN DIPOLE STUDIES (16T) AND ASSOCIED R&D

DE LA RECHERCHE À L'INDUSTRIE

DIPOLE BLOCK DESIGN FOR EUROCIRCOL

Within the ECC program => CEA Saclay in charge of the double aperture block-type configuration

2D mechanical model

Aperture	50 mm	
I _{op}	10176 A	
LL margin HF	14.0 %	
B _{bore}	16 T	
B _{peak} HF	16.7 T	
σ_x / σ_{VM}		
RT loading	-147 / 136 MPa	
Cool-down	-180 / 165 MPa	
Excitation	-185 / 167 MPa	

- Design Study ECC
- Fabrication experience with FRESCA2

FRESCA2

OF LA RECHERCHE À L'INDUSTR

DIPOLE MODEL TOWARD FCC

CERN-CEA collaboration agreement to design and fabricate a single aperture block model at CEA \Rightarrow FCC Flared-ends Dipole Demonstrator: F2D2 => as close as possible to ECC

Conductor parameters	HF	LF
Strand diameter	1.1 mm	0.7 mm
Cu/nonCu ratio	0,8	2
Jc at 4.2 K and 16 T	1200 A/mm2	
Cable number of strands	21	34
Unreacted bare cable width	12.579 mm	
Unreacted bare cable thickness	1.969 mm	1.253 mm
HT cable thickness dim. change	4.6 %	4.5 %
HT cable width dim. change	1.3 %	
Reacted bare cable width	12.74 mm	
Reacted bare cable thickness	2.06 mm	1.31 mm
Insulation thickness at 50 MPa	0.150 mm	

70.0 Y [mm] 60.0	High field conducto (HF)	Low fiel r conduct (LF)	d tor
50.0-	10	22	
40.0-	10	22	
30.0-			
20.0-	5	21	
10.0 — C	pera 5	21	
0.0 0.0 Compone	10.0 20.0 30.0 ent: B	40.0 50.0 60.0) 70.0 80.0 X [mm]

2D magnetic parameters	
l _{op}	10469 A
LL margin HF	14.0 %
LL margin LF	15.4%
B _{bore}	-15.54 T
B _{peak} HF	16.20 T
B _{peak} LF	11.85 T
b ₃ at nominal	2.98
b ₃ at injection	-14.80
b ₅	-0.50
b ₇	-2.98
b ₉	-1.46

OF LA RECHERCHE À L'INDUSTR

DIPOLE MODEL TOWARD FCC

DE LA RECHERCHE À L'INDUSTR

FCC MAIN QUADRUPOLE/SEXTUPOLE/OCTUPOLE


```
(MS)
```


(MO)

DE LA RECHERCHE À L'INDUSTRIE

NB₃SN MAGNET TOWARD FCC FCC MQ (I)

Within CERN-CEA collaboration

• In CEA tradition => design study of main quadrupole for FCC

• Design study:

- 2 layer versus 4 layer designs ?
- Margin of the quadrupoles?

- Reduce complexity of the quad vs the dipoles => 2 layer quad
- 20 % margin (instead of 14 % for the dipoles)
- Nominal gradient of 360 T/m

- Conductor definition
 - Small aperture => cable windability is a concern

CABLE PARAMETER	FCC quad (v12)
Strand diameter	0.85 mm
Cu/NonCu	1.65
Nb of strands	35
Cable bare width (before/after HT)	15.956/16.120 mm
Cable bare mid-thick.(before/after HT)	1.493/1.538 mm
Cable width expansion	1.0 % (ECC)
Cable thickness expansion	3.0 % (ECC)
Keystone	0.40°
Insulation thickness per side (5 MPa)	0. 150 mm

MAGNET PARAMETER	Values
Nominal current	22500 A
Peak field	10.52 T
Gradient	367 T/m
Loadline margin	20.0 %
Temperature margin	4.6 K

NB₃SN MAGNET TOWARD FCC FCC MQ (II)

MAGNET PARAMETER	Unit	Values
Nominal current	А	22500
Peak field	Т	10.52
Gradient	T/m	367
Stored energy (2 apertures)	kJ/m	520
Azimuthal force (per ½ coil)	kN/m	1740
Radial force (per 1/2 coil)	kN/m	780

Support structure: Self supported collar

Collaring	Stress relaxation	Cold	Powering
<mark>peak</mark>	<mark>peak</mark>	<mark>peak</mark>	<mark>peak</mark>
average	average	average	average
-101.5	-91.4	- <mark>88.5</mark>	-111.1
-85.5	-76.9	-73.2	-69.7

Protection Tiina Salmi TUT

Use of a CLIQ Unit Hot spot temperature < 350 K (ECC)

DE LA RECHERCHE À L'INDUSTI

ea

4 MATERIALS

DE LA RECHERCHE À L'INDUSTRI

HTS HIGH FIELD R&D OVERVIEW

Detection/Protection

Detection difficult due to very low propagation velocities during a quench.

Protection not easy due to very high energy margin (high Tc)

 Numeric Magnet Safety System, more accurate and faster (FPGA)

Remove/replace insulation between turns :

 NOUGAT project

 # HTS insert HTS with Metal-as-insulation winding

 Internal R&D "No Insulation-Partial Insulation – Metal-as-Insulation" # study of stability/protection/

time constants of different windings

Stability/Homogeneity

Mechanics

- *MI winding* co-wound tape is a strong mechanical reinforcement
- M. ALHarake PhD : mechanical study of non impregnated windings at very high fields

GOAL: 10 T HTS INSERT IN 20 T RESISTIVE OUTSERT

Cez

- 4 years project (oct 2014 2018)
- Fundings from French National Research Agency (lead LNCMANR)
- Collaborative project with CNRS Grenoble (LNCMI, Neel institute)
- Double pancakes, 6 mm-w ReBCO
- Metal-as-Insulation winding
- Prototypes (1 SP, 2 DP), codes (current dynamics...)
- 9 DP, \sim 2 kms of conductors

2 DP proto tests 6.93 T + 20 T res VonMises > 800 MPa Validation of fabrication, assembly and testing techniques and mechanics

NOUGAT insert tests (9DP) First phase (2018) 12.8 T + 8 T res Second phase (2019) @10 T+20 T res VM # 500 MPa

ÉEL COM

LNCMI

TOWARD HTS ACCELERATOR MAGNETS: EUCARD

Parameter	Built Magnet	Unit
# of turns central coil layer 1	30	turns
# of turns external coils layer 2	24	turns
# of turns external coils layer 3	10	turns
Engineering current density	235	A/mm ²

TOWARD HTS ACCELERATOR MAGNETS: EUCARD

Nominal current	Α	2800
Central field wo / w SCIF	Т	5.4 /
(screening current induced		4.7
field)		
Temperature	K	4.2
Stocked energy	kJ	12.5
Inductance	mΗ	3.2
Temperature margin	K	29
Load line margin	%	47

130 mm

- Tested at CEA Paris Saclay and reached 5.4 T
- Next step: insertion of EUCARD in FRESCA2
 - Preparation is ongoing

130 mm

Phase 2

ø 99 mm

DE LA RECHERCHE À L'INDUSTRIE

TOWARD HTS ACCELERATOR MAGNETS: EUCARD2 COSΘ

	Unit	Cosθ	In FRESCA 2
Іор	kA	10.06	7.1
Вор	Т	5	2.6 + 13
Ic	kA	15.2	7.9
LL margin	(%)	34	10
T margin	K	30	8
Bore radius	mm	24	16

- Roebel cable $12 \times 1.0 \text{ mm}^2$, 15 tapes, 300 mm twist pitch
- 2x125µm insulation, fiberglass
- 17 turns

Dummy coil with SS Roeble cable

Practice assembly

Practice SC splice

- Magnet assembly by Summer 2019
- Standalone test in INFN LASA Sept 2019
- Test in FRESCA2 under discussion

OF LA RECHERCHE À L'INDUSTI

MAGNET PROJECTS AT CEA

Why high magnetic fields for MRI systems?

3T

SNR~B₀^{1.65}

Pohmann et al. Magn Reson Med 2016;75:801–809

Improvement of spatial and temporal resolution

7T

DE LA RECHERCHE À L'INDUSTR

IMAGE QUALITY VS. MAGNETIC FIELD

1 to 2 mm resolution

 $7T \approx 0.3 \text{ mm}$ resolution

Van der Kolk et al. Euro J Radiol 2013; 82: 708-718

```
DE LA RECHERCHE À L'INDUSTR
```

Cez

WORLD UHF MRI PARK 2001-2017

- B0 / Aperture 11.75 T / 900 mm
- Field stability 0.05 ppm/h
- Homogeneity < 0.5 ppm on 22 cm DSV
- 170 wetted double pancakes for the main coil
- 2 shielding coils to reduce the fringe field
- NbTi conductor @ 1.8 K

Stored Energy	338 MJ
Inductance	308 H
Current	1483 A
Length	5.2 m
Diameter	5 m
Weight	132 t

Magnet parameters

Neurospin Center CEA Saclay, France **DE LA RECHERCHE À L'INDUSTRI**

THE ISEULT 11.7 T MRI MAGNET PROJECT

11.7 T magnet windings (orange) / mechanical structure at 1.8 K (blue)/ cryostat (gray)

A DEDICATED COMPLEX INSTALLATION TO OPERATE THE MAGNET

Power supplies

Cryo-lines

48 V Batteries

Control room

Vacuum circuit

MCS/MSS/DAQ

Dump resistor

```
DE LA RECHERCHE À L'INDUSTI
```


THE ISEULT MAGNET

- Main coil made of 170 DPs
- NbTi conductors @ 1.8 K
- Quench protection based on an external resistance
- Operation in semi-persistent mode (power supply + FCL)

Lots of innovations compared with classical MRI magnets!

DE LA RECHERCHE À L'INDUSTR

2 WEEKS OF TRANSPORT FROM BELFORT TO SACLAY

MAGNET COMMISSIONING

- Cooldown in progress (4K at the moment)
- Nominal field expected in october 2019

- Magnets are everywhere, specially SC magnets
- Very important developments in superconductivity technologies over the last 40 years, thanks to particle physics and MRI business
- Technical challenges to build bigger and stronger magnets:
 - use of Nb₃Sn is the most mature option for future accelerators (i.e. FCC); use of HTS still need high tech R&D (from material science to electromagnetic/electromechanical engineering)
 - increase the operating temperature and simplify the cryogenics
 - reinforce conductor mechanical strength and protect the coils against quenches.
- HTS/Nb3Sn developments will strongly depends on the strategy chosen for future particles accelerators

Thank you for your attention

And thanks to M. Durante, P. Fazilleau, Hélène Felice, C. Lorin, T. Lecrevisse, D. Simon, E. Rochepault, Pierre Védrine