SPS Σ^{+}studies at the SPS with double crystal

Roberto Rossi, Luigi Salvatore Esposito, Walter Scandale LAL participation to UAg 2019-2024 Workshop

Outline

To support EDM/MDM measurements in the LHC, the SPS can be used as test-bench to investigate the feasibility to identify secondary particles channeled in a double-crystal setup.

To be studied:

- Σ^{+}Production

Find optimal condition for \sum^{+}tagging: energy, angular distribution, background
These are prerequisites for the choice of the precession crystal deflection and length

- Optics layout

Evaluate post-LS2 space availability in LSS5 (for a detector)
Investigate the necessity for a new absorber for deflected particles

- Detection

Σ^{+}Production

EN
Engueranc DEPARTMENT

Σ^{+}Simulation setup

Beam:

SPS COAST p beams @ 270 GeV
Target:

$$
\begin{aligned}
& \mathrm{W}-50 \mathrm{~mm} \text { and } 10 \mathrm{~cm} * \\
& \mathrm{Cu}-50 \mathrm{~mm} \text { and } 15 \mathrm{~cm} *
\end{aligned}
$$

*corresponding to 1 interaction length

Σ^{+}Production energy

Highest Σ^{+}flux emerging with target 1 interaction length long.

Σ^{+}Decay Length

For Σ^{+}with energies $<10 \mathrm{GeV}$, the decay length is $<20 \mathrm{~cm}$.

For Σ^{+}@ 50 GeV , the decay length increase to a more reasonable 1 m

Σ^{+}production estimation

The number of Σ^{+}produced by the interactions of a deflected beam with a target can be evaluated with 2018 SPS COAST proton beam @ 270 GeV

No ADT

- Flux of protons lost from the machine in single channeling setup : $\sim 1.5 \mathrm{e} 7 \mathrm{p} / \mathrm{s}$
- Assuming 90% of single channeling multi-turn efficiency
- A production on target (1 interaction length) $1 \mathrm{e}-4 \Sigma^{+}$@~200 GeV per primary

Thus, $\sim 1.3 e 3 \Sigma^{+} / s$ @ 200 GeV will emerge from target and interact with the second crystal
With ADT @ 30\%

- the flux of protons lost from the machine with single channeling configuration is $\sim 6.5 \mathrm{e} 7 \mathrm{p} / \mathrm{s}$, i.e. the production rate is increase by a factor of 4 .

NB. The transmission factor of the right energy Σ^{+}, that emerge from the target with the right angle to be channeled is being studied by means of FLUKA simulations

SPS LSS5 Layout

EN
enainerinc DEPARTMENT

Overview LSS5 layout

Roman Pot \qquad TACW \qquad

Scenarios - Double Channeling w/Tagging

The schematic shows a conceptual layout of a double crystal setup for a particles tagging experiment.
MediPixes can be used, but we might also have space for other detectors.

Scenarios - Double Channeling w/Tagging

In LSS_{5}, according to post-LS2 drawings, we could have 1 m upstream the OF.51710. and 9 m downstream

The downstream space is just in front of the new SPS Dump (!)

Second Crystal Angle

In FNAL, a 4.5 cm long crystals with a bending angle of 1.6 mrad was used for Σ^{+}@ 375 GeV
This means that a crystal with ~ 10 mrad bending angle would be necessary to select Σ^{+}@ 50 GeV

For tagging only purpose, it is not needed such a large deflection angle.
Bending angles of about 1 mrad are well contained inside the aperture, and will be easily absorbed by present UAg installations.

Layout limitations with large bending angle

For a $2^{\text {nd }}$ crystal bending angle of about

- 10 mrad, the beamlet hits the QF. 51710 in the present configuration.
- 9 to 7 mrad , the beamlet exits the larger pipe (green box) in the free zone, but it does not hit the dump aperture (red box), where it would be absorbed.

A new absorber would be needed to intercept all the beamlets deflected more than 1 mrad, before it hits the QD. 51810 aperture.

Using present configuration for machine optics and $1^{\text {st }}$ crystal

Possible layout to be investigated

To avoid problems on controlling the deflected beams, a solution is to move the CRY 5 after OD.51810.

This half period is occupied only by UA9 installations and would be relatively free to use.

TO BE VERIFIED

Conclusions

The highest flux of Σ^{+}is achieved using a 1 interaction length long target

- Might be an operation issue the handling of such an object

Decay length is very short ($\sim 1 \mathrm{~m}$ for Σ^{+}@ 50 GeV)

- Channeling is still possible if the second crystal is very close to the target
- Few Σ^{+}are produced per primary proton and deflected by the second crystal
- The SPS high flux, and ADT might help to gain statistics

The space available in the present layout is still limited

- A detector(s) has to be investigated for the tagging purpose
- Large bending angle for second crystal will require modification to the present layout
- Deflections of $[1,9]$ mrad would clear the restriction of OF.51710, still a dedicated absorber must be installed in front of the new dump
- Deflections of $[7,9]$ mrad would exit the beam pipe before the new dump

Future Studies

Finalizing studies on angular distribution of emerging Σ^{+}Investigate further aperture restriction an layout availability\square Open investigation on possible detectors and tagging strategies

Backup

Σ^{+}Production energy

Highest Σ^{+}flux for energy lower that 10 GeV

Preliminary

First proposal is to swap crystal 5 (TCPC.51795) with Russian Cherenkov (TQCD.51794)
This will allow to have a new independent target (BSHV.51793) + crystal configuration, and an extra Cherenkov radiator behind the crystal. Also moving the XRP from dispersive area to the available slot downstream CRY3/4 (TECS.51799), could be an interesting change for new measurements.

NB. Piezo-Gonio TCPC. 51795 has a limit for the crystal weight (has for LHC crystals).
At moment a OM LHC-type crystal is installed, but with a larger bending angle ($\sim 150 \mu \mathrm{rad}$)

Overview LSS5 layout with modifications

| | | | | | | | | | in |

Roman Pot \qquad TACW \qquad

