Σ^+ and Λ_c^+ studies at the SPS with double crystal setup

D. Mirarchi (CERN, Geneva) L. Burmistrov, P. Robbe, A. Stocchi (LAL, Orsay) <u>A. Fomin</u>, A. Korchin (NSC KIPT, Kharkiv) A. Natochii (TSKNU, Kyiv)

alex.fomin@cern.ch

INTRODUCTION: Magnetic dipole moment (MDM) of short-living particles

$$ec{\mu}=rac{g}{2}\,rac{e}{m}\,ec{S},\qquad ec{S}=rac{\hbar}{2}ec{\sigma}$$

 $|g| = 2 \rightarrow$ a point-like Dirac particle

 $|g| \approx 2 \rightarrow$ a radiative corrections

 $|g| \approx 2 \rightarrow$ a composite structure or NP

Particle	ст	g-factor	Comments		Experir	nent
e-		– 2.002 319 304 361 82 (52)	exp.	most accurate determinations of $\boldsymbol{\alpha}$	Harvard	2008
μ-	659 m	– 2.002 331 8 <mark>361</mark> (10)	theor.	SM prediction		
		– 2.002 331 8 <mark>418</mark> (13)	exp.	3.4 σ deviation	BNL: E821	2006
τ-	87 µm	- 2.002 354 42 (10)	theor.	SM prediction		
		– 2.0 <mark>36 (34</mark>)	exp.	σ (e+e- → e+e- τ+τ-)	LEP2: DELPHI	2004
		– 2.002 (6)	exp.	assuming EDM $_{\tau} = 0$	from LEP and SLD	2000
		no direct measurement	exp.	Proposed in arxiv:1810.06699		
р		+ 5.585 694 702 (17)	exp.			
n		- 3.826 085 45 (90)	exp.			
Σ+	2.4 cm	+ 6.233 (25)	exp.	world-average value		
		+ 6.1 (12) _{stat} (10) _{syst}	exp.	using Bent Crystals	Fermilab	1992
Λ _c +	60 µm	+ 1.90 (15)	theor.	assuming $g_c \approx 2$		
		not measured	exp.	Feasibility studies at LHC		

alex.fomin@cern.ch

 Θ , L, R – deflecting angle, length, curvature radius of the crystal

V.G. Baryshevsky, Sov. Tech. Phys. Lett. 5 (1979) 73.

V.L. Lyuboshits, Sov. J. Nucl. Phys. 31 (1980) 509.

PRINCIPLE OF MEASUREMENT: Angular analysis

alex.fomin@cern.ch

$$\begin{split} \Lambda_c^+ &\to \Lambda^0(p\pi^-) \,\pi^+ & \alpha = 0.91 \,(15) & Br = 1.3 \cdot 0.64 \,\% \\ \Lambda_c^+ &\to \Delta^{++}(p\pi^+) \,K^- & \alpha = 0.67 \,(30) & Br = 1.1 \,\% \end{split}$$

 $\Sigma^+ \to p \pi^0$ $\alpha = 0.98(2)$ Br = 52%

alex.fomin@cern.ch

PRINCIPLE OF MEASUREMENT: Spectra-angular distribution

$$\Delta g = \frac{2}{\alpha \xi \gamma \Theta} \sqrt{\frac{3}{N_{\Lambda_c}}} \qquad \qquad \Lambda_c \text{ spectra} \qquad \qquad \Delta g = \frac{2}{\alpha_j \xi \Theta} \sqrt{\frac{3}{\Phi t \frac{\Gamma_j}{\Gamma} \eta_{det}^{(j)} \int \frac{\partial N_{tar+crys}}{\partial \varepsilon} \gamma^2 d\varepsilon}}$$

Spectra-Angular distribution of Λc (Pythia 8.2)

- p-p collision in fixed target at LHC

Ac spectra after the target

$$\frac{\partial N_{\text{tar}}}{\partial \varepsilon} = \frac{\rho N_A A_{\text{tar}}}{M_{\text{tar}}} \sigma_{\Lambda_c} \frac{\partial N}{\partial \varepsilon} \int_{0}^{L_{\text{tar}}} e^{-\frac{L}{c \tau \gamma}} dL$$

Ac spectra after the crystal

$$\frac{\partial N_{\text{tar+crys}}}{\partial \varepsilon} = \frac{\partial N_{\text{tar}}}{\partial \varepsilon} \eta_{\text{def}} e^{-\frac{L_{\text{crys}}}{c \tau \gamma}}$$

alex.fomin@cern.ch

LHC

 $\Theta = 3 - 6 \text{ mrad}$

SPS

SENSITIVITY STUDIES : Optimal crystal parameters

$$\Delta g = \frac{1}{\alpha |P| \Theta} \sqrt{\frac{12}{\Phi t \eta_{\text{det}} Br_j \int \frac{\partial N_{\text{tar+crys}}}{\partial \varepsilon} \gamma^2 d\varepsilon}}$$

$$\Delta g_{\rm norm}^{-1} = \frac{\Theta}{\Theta^0} \sqrt{\frac{\int \frac{\partial N_{\rm tar+crys}}{\partial \varepsilon} \gamma^2 \, d\varepsilon}{\int \frac{\partial N_{\rm tar+crys}}{\partial \varepsilon} \gamma^2 \, d\varepsilon}}$$

alex.fomin@cern.ch

SENSITIVITY STUDIES : Optimal crystal parameters

Optimal crystal for Σ^+ $\theta_x = 10-30$ mrad R = 2 m, L = 2-6 cm

SIMULATION RESULTS : Pile-up estimation

	Λ_{c^+}	p	π+	<i>K</i> +	Σ+	energy
per initial p	3.2 ×10 ⁻⁵	3.6	3.4	0.36	0.04	—
per produced Λ_{c^+}	1	1.1 ×10 ⁵	1.1 ×10 ⁵	1.1 ×10 ⁴	1.2 ×10 ³	—
per deflected Λ_{c^+} (5 mrad)	1	2.0 ×10 ⁶	0.8 ×10 ⁶		~10 ³	150 GeV
per deflected Λ_{c^+} (20 mrad)	1	6.0 ×10 ⁶	0.6 ×10 ⁶		~10 ³	200 GeV

alex.fomin@cern.ch

POSSIBLE SETUP : Measuring the MDM of Λ_c at SPS

alex.fomin@cern.ch

POSSIBLE SETUP : Measuring the MDM of Λ_c at SPS

POSSIBLE MEASUREMENT : Channeling efficiency of π^+ produced in the target

for $\Theta = 15$ mrad

- the deflection efficiency is lower
- but the BG separation is much better !

alex.fomin@cern.ch

SIMULATION RESULTS : Efficiency of MDM measurement

Place	Dreese	Efficiency (per process)						
		π+	Σ+ →p π ⁰	$\Lambda_{c^+} \rightarrow \Lambda_0 \ \pi_+$		$\Lambda_{c}^{+} \rightarrow \Delta^{++} K^{-}$		
	Process	3cm, 2 m	2 cm, 2 m	1.5cm, 1m	1cm, 1.4m	8 cm, 20 m	7 cm, 5 m	crystal (L, R)
		270 GeV	270 GeV	270 GeV	270 GeV	7 TeV	7 TeV	p energy
target	production & decay	0.9	0.017	3.0 · 10 ⁻⁶	3.0 · 10 ⁻⁶	0.5 · 10 ⁻⁴	0.5 · 10 ⁻⁴	
crystal	collimation	0.05	0.004	0.0024	0.0028	0.007	0.0028	
	decay	_	_	0.017	0.06	0.21	0.07	
	deflection	0.09	0.24	0.16	0.3	0.27	0.06	
	Total (per <i>p</i>)	0.4 · 10 ⁻³	1.4 · 10 -5	2.0 · 10 ⁻¹¹	1.7 · 10 ⁻¹⁰	2.2 · 10 ⁻⁸	0.7 · 10 ⁻⁹	
detector	purity	0.5—1	0.4	0.13	-	0.5	0.5	
	BF · decay	_	0.2	0.002	0.0026	0.011	0.011	
	MDM	_	0.012	0.022	0.0021	0.18	0.4	
	MDM (per <i>p</i>)	_	1 0 ⁻⁸	1 0 ⁻¹⁶	10 ⁻¹⁵	2.1 · 10 ⁻¹¹	1.3 · 10 ⁻¹²]

$$\Delta g = \sqrt{\frac{1}{N_{\rm POT} \ \eta_{\rm det} \ \eta_{\rm MDM}}}$$

Thank you for your attention !

CALCULATION SCHEME: Effective deflected spectra 20 mrad (Optimal for MDM)

alex.fomin@cern.ch

D. Chen, et al. First Observation of Magnetic Moment Precession of Channeled Particles in Bent Crystals. Phys. Rev. Lett 69.3286 (1992)

a.

$\Sigma^+ = u \uparrow u \uparrow s \downarrow$

Mass $m = 1189.37 \pm 0.07$ MeV (S = 2.2) Mean life $\tau = (0.8018 \pm 0.0026) \times 10^{-10}$ s $c\tau = 2.404$ cm $(\tau_{\Sigma^+} - \tau_{\overline{\Sigma}^-}) / \tau_{\Sigma^+} = (-0.6 \pm 1.2) \times 10^{-3}$ Magnetic moment $\mu = 2.458 \pm 0.010 \ \mu_N$ (S = 2.1) $\begin{array}{l} \left(\mu_{\Sigma^+} + \mu_{\overline{\Sigma}^-}\right) / \mu_{\Sigma^+} = 0.014 \pm 0.015 \\ \Gamma(\Sigma^+ \to n\ell^+\nu) / \Gamma(\Sigma^- \to n\ell^-\overline{\nu}) < 0.043 \end{array}$

Hyperon Barvon Spectrometer Spectrometer DF Crystals 800GeV_{H1} Decay Region Proton 50 m 25 m 0 m 75 m b. Α DF Downbend Crystal Beam Upbend Crystal

$\Lambda_{C}^{+} = u \uparrow d \downarrow c \downarrow$

Mass $m = 2286.46 \pm 0.14$ MeV Mean life $\tau = (200 \pm 6) \times 10^{-15}$ s $c\tau = 59.9 \ \mu m$

$$\Delta g = \frac{1}{\alpha_j \left|\boldsymbol{\xi}\right| \Theta} \sqrt{\frac{12}{\Phi \ t \ \frac{\Gamma_j}{\Gamma} \ \eta_{\text{det}}^{(j)} \ \int \frac{\partial N_{\text{tar+crys}}}{\partial \varepsilon} \gamma^2 \ d\varepsilon}}$$

$$\xi$$
 th ^(rms) = -0.37
 ξ ex ^(rms) = -0.40(5)

- J.G. Korner, *et al.*, Z. Phys., C2:117, 1979.
- E.M. Aitala, *et al.*,
 Phys. Lett., B471:449,
 2000
- --- Fitted exp. data
 - G.R. Goldstein.
 FNAL, Batavia, Illinois, 1999.

 $\eta_{\text{def}}\left(\varepsilon, R, L\right) = \eta_{\text{ang}} \eta_{\text{ch}} \left(1 - \eta_{\text{dech}}\right)$

 deflected fraction of secondary beam

Angular acceptance

$$\eta_{\rm ang} = \operatorname{erf}\left(\sqrt{2} \ \theta_{\rm acc} \ \gamma\right)$$
$$\theta_{\rm acc} = \sqrt{\frac{2 \ U_{\rm eff}}{\varepsilon}} \left(1 - \frac{\varepsilon}{R} \frac{1}{U_x'}\right)$$

Channeling acceptance

$$\eta_{
m ch}\left(arepsilon,R
ight) = rac{\eta_{
m str}}{1+\left(rac{arepsilon}{R}~rac{1}{U_x^\prime\,k_ heta}
ight)^2}$$

Dechanneling probability

$$\eta_{
m dech}(\varepsilon, R, L) = 1 - e^{-\sqrt{\frac{L}{L_{
m dech}(\varepsilon, R)}}}$$

Dechanneling length

$$\begin{split} L_{\rm dech}(\varepsilon,R) &= L_{\rm max} \frac{\varepsilon}{\varepsilon_{\rm max}} \ e^{1 - \frac{\varepsilon}{\varepsilon_{\rm max}}} \\ L_{\rm max} &= k_{\rm dech} R \left(\frac{R_0}{R}\right)^{b_{\rm dech}} \\ \varepsilon_{\rm max} &= R \ F_{\rm dech} \end{split}$$

 $U_{\text{eff}}, U'_{x}, \eta_{\text{str}}, k_{\theta}, k_{\text{dech}}, R_{0}, b_{\text{dech}}, F_{\text{dech}}$ were found for Si, Ge and Ge* crystals

Secondary particle beam

- Primary particle beam
 - Parallel beam
 - Monochromatic
- Secondary particle beam
 - Uniform angular distribution
 - Wide energy distribution
 - Populated high energy states

