UA9 Collaboration meeting 12.03.19

Silicon Strip Beam Telescope at H8

J Borg, G. Hall, G. Iles, T. James, M. Pesaresi

UA9 LAL March 2019

NUMBER OF TEST BEAMS

Some statistics

Reminder: "standard" layout

Performance, in several beam species, analysed and reported in a couple of conference presentations

300 (2014), 134, 400 (2014).

- [8] M. Pesaresi, W. Ferguson, J. Fulcher, G. Hall, M. Raymond, M. Ryan, and O. Zorba, Design and performance of a high rate, high angular resolution beam telescope used for crystal channeling studies, J. Instrum. 6, P04006 (2011).
- [9] G. Hall, G. Auzinger, J. Borg, T. James, M. Pesaresi, M. Raymond A high angular resolution silicon microstrip telescope for crystal channeling studies Nucl. Instrum. Meth. A https://doi.org/10.1016/j.nima.2018.08.060
- [10] MA Gordeeva MP Gurey AS Denisov et al IETP Lett 54 (1991) 487-490

Measurements in H8 beam

- Data taken with range of beam particles •
 - 400 GeV/c p, 180 GeV/c π , light and heavy ions, e.g. Pb and Xe
 - Large number of different crystals and types of crystal characterised

Ion beam measurements

- Special operating conditions needed for ions because of very large dE/dx
 - Signal size = Z².MIP => 2916 MIP [Xe] 6724 MIP [Pb]
 - Amplifier designed for linear operation up to a few MIP signals in 300-500µm silicon

20 40 80 100

150A GeV/c Xe data

V_{sensor}= 3.6V (cf. 150V normally)

- include clusters <20 strips (cf. 8)
- peak cluster size \approx 3 [Xe] (cf. 1-2)
- strip threshold ≈ 5 MIP
- $\sigma(\Delta\theta) = 7.7 \mu rad$

Track reconstruction

- Fitting procedure
 - 2D hit required in each plane
 - Two straight line fits
 - Three parameter fit (θ_{in} , θ_{out} , d_0) per projection
 - includes multiple scattering error correlations
 - $-\chi^2 cut$
- Angular resolution
 - alignment run events (no crystal) => $\sigma(\Delta \theta)$ = 5.2 μ rad in x and y
 - simulation predicts 4.4µrad

beam	Z	Α	p [GeV/c]	sigma [µrad]	sigma estimated [µrad]
р	1	1	400	5.4	5.4
Xe	54	131.2	19680	7.8	5.9
Pb	82	207.2	6216	29.6	28.5
pi	-	-	180	12.3	12.0

θ_{out}

d

θ_{in}

Imperial College London Z

Evaluation of long crystals

• Some new issues

LONG CRYSTAL RECONSTRUCTION

- Special configuration and reconstruction required for longitudinally 'long' crystals (> 10 mm), with large deflection angles (> 1 mrad)
- 4 plane configuration (deflection angle too large for particle to be seen in most downstream plane)

14

Long crystal analysis

- Has this been sufficiently accurate, or is more attention needed?
- Additional complication from non-negligible crystal thickness
- Must calculate, and correct for the true effective deflection vertex
 - Requires special analysis for each crystal

Future UA9

- In absence of CERN beams, a recent proposal to use FNAL in 2020
 - Some significant practical issues, and seems no longer likely
 - However, it raises questions about what if anything should be done next
 - Pixels (at least those available) offer pros and cons

Order 400k particles per spill possible

Pixel-based telescope

- No detailed analysis, but can offer qualitative remarks
 - Pro 2D spatial measurements, multi-hit capability
 - Cons no less material, and perhaps more, per station
 - spatial resolution not optimal, without special efforts
 - Neutral how to cover larger area, if required

Other thoughts

Construct new modules and digital DAQ •

A telescope with digitization in the planes

Existing hardware/firmware Sensor module interface boards

- - Adapter from mDP to APV hybrid
 - Temperature sensor
 - LDO Voltage regulators
- Digitizer FMC cards
 - Digitizes signals from sensor modules
 - Provides supply voltages for the APVs
 - Peltier driver for temperature control
- EC7 firmware exists, but needs extending:
 - Cluster finding/zero suppresion
 - DAQ integration

Preliminary thoughts

Sensor modules

- 6x APV25+D0 sensor
 - 14 modules exists (12 in planes, 2 at IC)
 - Some sensors show some signs of radiation damage
 - Limited to 142kHz trigger rate due to APVMUX
- Alternative: build new modules without APVMUX
 - Sensors from old modules could probably be reused but some risk that some would be damaged
 - Would allow up to 285kHz trigger rate
 - New PCBs and other hardware needs to be developed

Thoughts on options

- Incremental, or significant, improvement?
 - New measurements, or simply more of similar?
 - Online data reconstruction?

Other possible improvements

- Mounting hardware that allows repeatable positioning
- Tilt planes relative to beam to increase charge sharing
- Spatially/directionally selective silicon sensor trigger using CBC module
- More flexible sensor planes where individular modules can be swapped
- What are long term requirements?
 - Longevity, reliability, increased area, use by "non-experts", improved performance, reduced material,...?