

NOvA Oscillation Results

European Research Council Established by the European Commission

Jeff Hartnell

University of Sussex

LAL Seminar 1st October 2019

Introduction

- Why study neutrinos?
- Neutrino oscillations

- NOvA experiment and physics goals
 - NuMI beam
 - NOvA detectors

- Muon neutrino disappearance
- Electron neutrino appearance
- NC analysis

US University of Sussex

Why study neutrinos?

Two Major Questions

Why is the matter – antimatter asymmetry of the universe so large?

Neutrinos
 leptogenesis

- Neutrino oscillations can test CP
 - NOvA has some sensitivity, DUNE/Hyper-K much more

US University of Sussex

Jeff Hartnell, LAL Seminar Oct/19

How does the mass hierarchy come into play?

$\Delta m^2{}_{31}$ and $\Delta m^2{}_{32}$ differ by 3%

Small effect

JUNO's planned measurement involves this

Matter Effect & Mass Hierarchy

- Neutrinos (and antineutrinos) travel through matter not antimatter
 - electron density causes asymmetry (fake CPv!)
 - via specifically CC coherent forward elastic scattering
 - different Feynman diagrams for v_e and \overline{v}_e interactions with electrons so different amplitudes

Where have we got to?

It's hard to overstate ...

- The past ~7 years saw a major breakthrough in neutrino physics
 - Measurement of θ_{13} has gone from just an upper limit to one of the best measured angles
- A new door has been opened to probing CP violation, mass hierarchy and octant of θ_{23}

Reactor Experiments Provided Breakthrough on θ_{13}

• Daya Bay, RENO and Double Chooz

What we know and don't know

Starting with v_{μ}

→ Need a leap in precision on θ_{23} (and Δm_{32}^2)

 ν_e appearance:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}(\Delta m_{32}^{2}L/4E)$$

Daya Bay reactor experiment:
$$\sin^{2}(2\theta_{13}) = 0.084 \pm 0.005$$

...plus potentially
large CPv and
matter effect
modifications!

Long-baseline $\nu_{\mu} \rightarrow \nu_{e}$

A more quantitative sketch...

At right:

 $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ vs. $P(\nu_{\mu} \rightarrow \nu_{e})$ plotted for a single neutrino energy and baseline

Long-baseline $\nu_{\mu} \rightarrow \nu_{e}$

A more quantitative sketch...

At right:

 $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ vs. $P(\nu_{\mu} \rightarrow \nu_{e})$ plotted for a single neutrino

energy and baseline

Measure these probabilities

(an example measurement of each shown)

Also: Both probabilities $\propto \sin^2 \theta_{23}$

Non-maximal mixing scenario

- If θ₂₃ non-maximal then effect of octant is important
- Big effect, +/- 20%

Effect of Increasing Energy

T2K

University

of Sussex

NOvA

Increasing Energy

[→ bigger matter effect and hence bigger fake CP violation]

T2K v_e Appearance

T2K (NO)		-п/2	0	+π/2	π	OBS
v mode	1Re 0 d.e.	74.5	62.3	50.6	62.8	75
	1Re 1 d.e.	7.0	6.1	4.9	5.9	15
v mode	1Re 0 d.e.	17.1	19.6	21.7	19.3	15

For T2K:

- credible intervals favor $\delta_{CP} \sim -\pi/2$
- disfavor δ_{CP} = 0,π (sin δ_{CP} = 0) at >2 σ in Bayesian analysis
- Some preference for NO

NOvA Overview

- "Conventional" beam
- Two-detector experiment:
- Near detector
 - measure beam composition
 - energy spectrum
- Far detector
 - measure oscillations and search for new physics

Fermilab

[June 2019 meeting @ Sussex University, Brighton, UK]

Physics Goals

Results from 3 different oscillation analyses

- Disappearance of
- ν_{μ} CC events
 - clear suppression as a function of energy

```
\left| \Delta m_{32}^2 \right| \sin^2(2\theta_{23})
```

 v_3 v_2 v_1 v_2 v_1 v_2 v_1 v_2 v_1 v_2 v_1 v_2 v_1 v_2 v_3

suppression of NCs could be evidence

of oscillations involving a sterile

Deficit of NC events?

neutrino

Appearance of v_e CC events

 $\theta_{13}, \theta_{23}, \delta_{CP},$ and Mass Hierarchy

- 2 GeV neutrinos enhances matter effects
- ±30% effect

$$\Delta m_{41}^2, \theta_{34}, \theta_{24}$$

Physics Goals

Results from 3 different oscillation analyses

- Disappearance of
 - ν_{μ} CC events
 - clear suppression as a function of energy
 - 2016 analysis results
 PRL 118.151802

 $|\Delta m_{32}^2| \sin^2(2\theta_{23})$

- Deficit of NC events?
 - suppression of NCs could be evidence of oscillations involving a sterile neutrino
 - Fit to 3+1model

• new!
$$\Delta m^2_{41}, heta_{34}, heta_{24}$$

Appearance of $v_e CC$ events

 $\theta_{13}, \theta_{23}, \delta_{CP},$ and Mass Hierarchy

- 2 GeV neutrinos enhances matter effects
- ±30% effect
- 2016 analysis results in PRL 118.231801.

Beam Performance

- Neutrino beam: 8.9 x 10²⁰ POT
- Antineutrino beam: 12.3 x 10²⁰ POT
 - Updated from 6.9 x 10²⁰ POT (summer 2018)
- Beam operating steadily at 750 kW

NOvA detectors

A NOvA cell

To APD

Extruded PVC cells filled with 11M liters of scintillator instrumented with λ-shifting fiber and APDs

Far Detector 14 kton 896 layers

32-pixel APL

Fiber pairs from 32 cells

Г.,	ALCONT.	125 18	
			Ν.
		00 00	
	11 24	00 00	
1.1	14 44		
10		00.00	
	99 99	60 60	
s		00 00	
			1

Near Detector

Far detector:14-kton, fine-grained,low-Z, highly-activetracking calorimeter \rightarrow 344,000 channels

Near detector: 0.3-kton version of the same → 20,000 channels

15.6 m

 $4 \text{ cm} \times 6 \text{ cm}$

Event Types

Event Classification

- This analysis features an event selection technique based on ideas from computer vision and deep learning
- Calibrated hit maps are inputs to Convolutional Visual Network (CVN)
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

Event Classification

- This analysis features an event selection technique based on ideas from computer vision and deep learning
- Calibrated hit maps are inputs to Convolutional Visual Network (CVN)
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

Event Classification

- This analysis features an event selection technique based on ideas from computer vision and deep learning
- Calibrated hit maps are inputs to Convolutional Visual Network (CVN)
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

Improvement in sensitivity from CVN equivalent to 30% more exposure

ν_{μ} disappearance

- Identify contained ν_{μ} CC events in each detector
- Measure their energies
- Extract oscillation information from differences between the Far and Near energy spectra

ν_e appearance

- Identify contained ν_e CC candidates in each detector
- Use Near Det. candidates to **predict beam backgrounds** in the Far Detector
- Interpret any **Far Det. excess** over predicted backgrounds as v_e appearance

v_{μ} Event Selection

- Goal: Isolate a pure sample of v_{μ} CC events less than 5 GeV
- Use CVN in 2 ways:
 - muon event PID, also cosmic event PID used in BDT to reject cosmics

ND Data - v_{μ}

Resolution Bins

Four bins of equal populations in FD, split in hadronic energy fraction as a function of reconstructed neutrino energy.

ND Data - v_{μ}

ND Data - v_e

ND **v** candidates are all background (no oscillations yet):

correct & extrapolate each category separately; use corrected ND $\nu_{\rm u}$ prediction for $\nu_{\rm e}$ appearance signal correction

UN University of Sussex

Data neutrino candidates	113
Best fit total prediction	124
total bkgd.:	4.2
└→ cosmic bkgd.	2.1
↓ beam bkgd.	2.1

3-flavor oscillations describe data well (goodness-of-fit p = 0.91)

Data antineutrino candidates	102
Best fit total prediction	96
total bkgd.:	2.2
└→ cosmic bkgd.	0.8
↓ beam bkgd.	1.4

FD Data - v_e

arXiv:1906.04907

FD Data - v_{μ} + v_{e}

arXiv:1906.04907

Systematics

Uncertainties dominated by statistics, Neutron Uncertainty **Detector Calibration** but Neutrino Cross Sections detector calibration Muon Energy Scale and neutrino interactions Normalization growing in importance **Detector Response** Near-Far Differences Beam Flux **NOvA Preliminary** Systematic Uncertainty Near-Far Differences Statistical Uncertainty Uncertainty in $\sin^2\theta_{23}$ (×10⁻³) **Detector Calibration** Neutrino Cross Sections L **Detector Calibration Detector Response** Neutrino Cross Sections Normalization Muon Energy Scale Muon Energy Scale Neutron Uncertainty Beam Flux **Detector Response** Neutron Uncertainty Normalization Near-Far Differences Systematic Uncertainty Beam Flux Statistical Uncertainty Systematic Uncertainty -0.5 0.5 Uncertainty in δ_{CP}/π Statistical Uncertainty Uncertainty in Δm_{32}^2 (×10⁻³ eV²)

UNIVERSITY OF SUSSEX

NOvA Preliminary

Oscillation results

Oscillation Results

Precision measurement of atmospheric parameters

Hierarchy / Octant

Neutral Current Events

Neutral Current FD Data

Future

- Currently running in neutrino mode
 - Run plan: 50:50 ν:ν
 - NOvA is expected to run until 2025
 - Beam improvements an important part of story!
- With current analysis, expect:
 - Potential 3-5 sensitivity to hierarchy with favorable parameters
 - ⁻ Possible >2 σ sensitivity to CP violation
- Anticipating improvements in simulations that should improve analysis robustness
 - Test Beam / improved det. response model
 - GENIE 3.0 / improved cross section models

Conclusions

- With 8.85x10²⁰ POT neutrino + 12.33x10²⁰ POT antineutrino beam exposure, NOvA finds:
 - $^-$ 4.4 σ evidence for electron antineutrino appearance in a muon antineutrino beam
 - ⁻ 1.9 σ preference for the Normal neutrino mass hierarchy
 - 1.6σ preference for θ₂₃ residing in the Upper Octant (maximal mixing disfavored at 1.2σ)
- With continued running through 2025, NOvA anticipates:
 - ⁻ Possible 3-5 σ sensitivity to the mass hierarchy
 - ⁻ Potential sensitivity to CP violation > 2σ
 - Input from NOvA Test Beam program, neutrino interactions community to further improve robustness to systematics

Paper reference arXiv:1906.04907

