

21cm as a cosmological probe!

Filipe B. Abdalla

Outline:

- Background of the 21cm: EoR and IM
- Current status on IM.
- One of the main problems: Foreground subtraction.
- Looking forward

The History of our Universe.

- We have a extremely well measured CMB sky.
- We are a long way measuring the LSS of the Universe near us.
- The EoR and the dark ages remain a mystery and unmeasured territory.

Gunn-Peterson Effect toward z~6 SDSS QSOs

Constraint: CMB large scale polarization WMAP

τ_e = integral measure to recombination=> allows many IGM histories Further constraints from kSZ...

21cm Radiation

$$\lambda_{obs} = (1+z)\lambda_{21cm}$$

21 cm basics

•HI hyperfine structure

Use CMB backlight to probe 21cm transition

•21 cm spin temperature

$$T_S^{-1} = \frac{T_{\gamma}^{-1} + x_{\alpha} T_{\alpha}^{-1} + x_c T_K^{-1}}{1 + x_{\alpha} + x_c}$$

 T_b

$$-2_{1}P_{3/2}$$

$$-2_{1}P_{1/2}$$

$$-2_{0}P_{1/2}$$

The global evolution of the spin temperature

- Ts is coupled to the CMB at high redsfhits.
- Collisional processes make the spin temperature decouple from the CMB temperature. At this stage we an observe a difference between both.
- At lower redfshits, the first sources produce Lyman alpha and heat the gas. This makes a temperature change and a signal in emission may be seen

Furlanetto et al. (2003)

Furlanetto et al. (2003)

Era of precision cosmology

- Cosmology is now in a golden area
 - Standard \(\Lambda \text{CDM model appears to} \)
 be the best descripton so far!
- But still major questions remain!
 - Inflation ($t<10^{-32}$ s)
 - Dark energy

CMB map from Planck collaboration et al. (2016)

Baryon Acoustic Oscillations (BAOs)

 Acoustic waves imprinted on CMB 380,000 years

after Big

Acoustic distance that time

Known power s

- D=149:

 BAO scal matter in the Universe

Use as a "standard ruler"

Alternative to optical BAO: HI Intensity mapping

Use relatively large beam on the sky

- Measure HI *fluctuations*
- Similar to CMB, using

$$\Delta T_{HI} = \Delta T_{HI}(\theta, \phi, z)$$

$$\Delta T_{CMB} = \Delta T_{CMB}(\theta, \phi, z = 1100)$$

- □ HI intensity mapping can be used as mass tracer, probing distortions in redshift space
- No competition in the radio
- Complementary to large optical surveys

- Large beam on the sky (≈1 deg) contains many galaxies.
- HI signal is measured through its overall intensity

BAOs in Intensity mapping.

- BAOs on scales few deg to ~30 arcmin at z=0.3
- Average in frequency to reduce noise (larger bandwidth)
- Averaging over ~50 MHz (equivalent to delta z ~ 0.05) is optimal
- Average more than this smoothes out the BAO wiggles

The HI signal power spectrum

Cosmological HI signal is weak! (≈100 µK rms) and on degree scales

Frequency windows and FWHM

Why BAO in radio and maybe in total intensity?

- Complementary to optical data, different systematics
- Decay time of HI hyperfine transition is ~ 10^15 seconds, but,
 75% of visible matter in the Universe is made of H...
- Efficient alternative for measuring a large number of galaxies individually (plus integrating the signal "alla" CMB allows for the reuse of a vast experiment in instrumentation and data analysis)
- Interferometers are excellent instruments for these measurements, can be... expensive and hard to operate/maintain
- Single-dish instruments have been used for a first detection of the 21m line in cross correlation, (although for interferometers one should wait for CHIME and FAST)
- Approach: single-dish, many horns X single horn per dish

Importance of confirmation! *UCL

Baryon Acoustic Oscillations in the Ly α forest of BOSS DR11 quasars.

T. Delubac et al. [BOSS Collaboration] – A&A 574, A59 (2015), arXiv: 1404.1801

From adjusting the BAO peaks and combining with the Λ CDM fiducial values from Planck+ WMAP:

$$H(z = 2.34) = (222 \pm 7 \text{ km s}^{-1} \text{ Mpc}^{-1}) \times \frac{147.4 \text{ Mpc}}{r_d}$$

 $D_A(z = 2.34) = (1662 \pm 96 \text{ Mpc}) \times \frac{r_d}{147.4 \text{ Mpc}},$
 $r_d = 147.4 \text{ Mpc}$

- Values differ: 1.8σ from Planck+WP;
- 1.6σ from WMAP9+ACT+SPT

Conclusion:

Approximately 2σ below the value of D_H

And 2σ above the value of D_A

compared to the Λ CDM prediction.

NOT THE ONLY TENSION IN THE MODEL!

Outline:

- Background of the 21cm: EoR and IM
- Current status on IM.
- One of the main problems: Foreground subtraction.
- Looking forward

Detection in cross correlation!

- Have ~10⁵ L_{*} galaxies/BAO volume individual galaxies not that important.
 Use aggregate signal from many galaxies with low resolution survey.
- Signal is O(0.1 mK), while galactic foreground is O(10⁵ K)
- Sample variance limits => map sensitivity of 1-2μJy necessary

First HI intensity mapping detection,
 DEEP2 density field x GBT HI
 brightness temperature cross correlation at z=0.8

T-C Chang et al. Nature 466, 463-465 (2010) doi:10.1038/nature09187

Experiments...

Interferometers

- Provide higher resolution
- Ideally minimum baseline ~ 10 m for large scales...

Dense aperture array systems

- CHIME (Canada)
- Tianlai (China)
- HIREX(SA)

Experiments

 $\Delta \ln(\Omega_b h^2)$

0.0059

0.0051

0.0059

0.0059

0.0055

0.0056

0.0059

0.0040

0.0044

0.0059

0.0029

0.00059

0.0059

Returning to reionisation: Redshift space disortions:

 $\Delta \ln(\Omega_m h^2)$

0.0081

0.0052

0.0081

0.0081

0.0074

0.0070

0.0081

0.0018

0.0040

0.0081

0.0010

0.00034

0.0081

$$P_{\Delta T}^{s,\text{qlin},3D}(\mathbf{k}) = \widehat{\delta T}_{b}^{2}(z_{\cos}) \left[P_{\delta_{\rho_{\text{HI}}}^{r},\delta_{\rho_{\text{HI}}}^{r}}(k) + 2P_{\delta_{\rho_{\text{H}}}^{r},\delta_{\rho_{\text{HI}}}^{r}}(k)\mu_{\mathbf{k}}^{2} + P_{\delta_{\rho_{\text{H}}}^{r},\delta_{\rho_{\text{H}}}^{r}}(k)\mu_{\mathbf{k}}^{4}\right]$$

$$P_{\mu^0}(k) = \widehat{\delta T}_b^2 P_{\delta_{\rho_{\text{HI}}}, \delta_{\rho_{\text{HI}}}}^r(k)$$

 $= \widehat{\delta T}_b^2 \left[P_{\delta_{x_{\text{HI}}}, \delta_{x_{\text{HI}}}}^r(k) + 2P_{\delta_{x_{\text{HI}}}, \delta_{\rho_{\text{H}}}}^r(k) \right]$

 $\Delta\Omega_{\Lambda}$

0.0070

0.0044

0.0070

0.0070

0.0063

0.0061

0.0070

0.00052

0.0036

0.0070

0.00010

0.00038

0.0070

					_	-7.5
	_			3000		-8
Vanilla Alone						-8.5
$\Delta n_{ m S}$	$\Delta \ln A_{\rm S}$	Δau	$\Delta\Omega_{\mathbf{k}}$	Δm_{ν} [eV]	$\Delta \alpha$	
0.0033	0.0088	0.0043	0.025	0.23	0.0026	9
0.0018	0.0087	0.0042	0.0022	0.023	0.00073	
0.0032	0.0088	0.0043	0.018	0.22	0.0026	-9.5
0.0033	0.0088	0.0043	0.025	0.23	0.0026	
0.0024	0.0087	0.0043	0.0056	0.017	0.00054	-10
0.0030	0.0087	0.0043	0.021	0.19	0.0026	, •
0.0033	0.0088	0.0043	0.025	0.23	0.0026	-10.5
0.00039	0.0087	0.0042	0.0011	0.010	0.00027	10.0
0.0025	0.0087	0.0043	0.0039	0.056	0.0022	-11
0.0033	0.0088	0.0043	0.025	0.23	0.0026	-11
0.000088	0.0086	0.0042	0.00020	0.0018	0.000054	-11.5
0.00033	0.0086	0.0042	0.00023	0.0066	0.00017	-11.5
0.0033	0.0088	0.0043	0.025	0.11	0.0024	(<δ δ*>)
	_		-10.	ruaria :		

$$P_{\mu^4}(k) = \widehat{\delta T}_b^2 P_{\delta_{\rho_H}, \delta_{\rho_H}}^r(k)$$
.

All OPT

All MID

All PESS All OPT

All MID

All PESS

All OPT

All MID

All PESS

All OPT

All MID

All PESS

Planck

+LOFAR

+MWA

+SKA

 $+FFTT^{b}$

$$\delta_{\rho_{\text{HI}}}^r = \delta_{\rho_{\text{H}}}^r + \delta_{x_{\text{HI}}}^r + \delta_{\rho_{\text{H}}}^r \delta_{x_{\text{HI}}}^r$$

Barkana & Leob 10 Mao et al 08.11.

Outline:

- Background of the 21cm: EoR and IM
- Current status on IM.
- One of the main problems: Foreground subtraction.
- Looking forward

EoR-IM: the FG problem

 featureless power law
 variation in spectral index with position on the sky and with frequency

SIMULATIONS: 5° x 5° filed of view, ~ 0.6 arcmin resolution and freq. range: 115-180 MHz

Jelic et al., 2008, MNRAS

Foreground contamination

- Diffuse Galactic continuum radiation synchrotron and free-free radiation
- Spectrum expected to be smooth (should allow for it to be subtracted)
- Mean ~5K at 1 GHz
- Fluctuations on degree scales ~70mK
- Note: HI signal ~ 0.1 mK!

Simulations: Foregrounds, Noise, Signal

- Foregrounds: Simulations from Jelic V., Zaroubi S., Labropoulos P. et al. 2008, MNRAS, 389, 1319:
 - Galactic synchrotron radiation, galactic free-free emission
 - Extragalactic radiation from radio galaxies and clusters
- 21cmFAST (Mesinger A., Furlanetto S., Cen R., 2011, MNRAS, 411,955)
 - 10°x10° x170 slice in frequency, d \nu=0.5 Mhz. Frequency 115 to 200 MHz (z ~ 11.3 – 6.1)
 - Box size of 1.8 Gpc over 512 pixels
 ~3MPc/pixel.
- Noise: an MS of our simulation was filled with a Gaussian distribution
 - e.g. 52mK at 150MHz for 600 hours of LOFAR observing time.

Foreground map at 150MHz for a 10°x10° observing window. Temperature scale in K.

Problem Outline

- 21cm signal dominated both by foregrounds and by noise.
- Currently most foreground cleaning methods are parametric, e.g. polynomial.
- Non-parametric methods have emerged - Wp smoothing (Harker 09).
- Other, powerful techniques have been used on the CMB...

Problem Outline techniques used:

Spectral smoothness allows separation of 21cm. Options:

- 1 Fit power law to maps
- 2 Remove low order polynomials or some constraint fit
- 3 Measure components and model components
- 4 Measure modes of the foregrounds from a given FG model
- 5 Use sparse or indepenent components of the FG model.
- 6

Issues:

- Mode mixing of angular and frequency fluctuations by frequency-dependent beams (esp. interferometers.
- Robustness Biasing introduced if foreground model poorly understood (esp. non-gaussianities).
- Statistical Optimality Need to keep track of transformations on statistics, for optimal PS estimation
- Model Dependent [4] although in simulations there are excellent results.

Effects on the power spectrum

Bigot-Sazy, Dickinson, Battye, Browne et al, MNRAS 2015

Foreground separation using PCA

Investigating using Bispectrum and phase analysis to test the foreground subtraction method.

- Method of choice here was GNILC used by the Bingo collaboration.
- Maps foregrounds were subtracted as discussed and analysis tools were created to benchmark phase correlations and bispectrum of residuals.

Residual Projection

- We can project different signal elements onto the source space using the mixing matrix (A) calculated by GMCA in order to understand the amount of leakage.
- R_{fg} = fg (A (A^T A)⁻¹ A^T) fg
 Amount of foreground leakage into reconstructed nocs
- C_{nocs} = (A (A^T A)⁻¹ A^T) (no+cs)
 Amount of simulated no+cs leakage into the reconstructed foregrounds.
- N_{nocs} = (A (A^T A)⁻¹ A^T) (no) -> could try to correct for that!

Conclusions... Looking forward.

- 21cm is a very rich area of research
- Lots to be done, relating to astrophysics, cosmology, statistical methods (component separation), etc...
- We have to firm up a detection of IM in order to hopefully bring all the promises which we theoretically know exist in this area of science.
- The reconstructed maps will have a huge wealth of not only comsological but also astrophysical data.

Future Questions:

What are the future hurdles that the projects we will heard about this
week will have... Possibly calibration and foreground subtraction,
but we should hear from the different projects themselves.