# The neutral hydrogen distribution in the post-reionization era

Marta Spinelli in collaboration with A. Zoldan, G. De Lucia and M. Viel

> 21-cm workshop Orsay, 21-22 Oct 2019



- At present HI observations are limited in redshift and resolution but large amount of data will be available
- important implications for cosmology: large scales, evolution of structures, BAO
- $ightarrow 21~{
  m cm}$  intensity mapping
  - need realistic simulations involving galaxy evolution
- $\rightarrow\,$  e.g. semi-analytic models

# $21~{\rm cm}$ Intensity Mapping

- Look at the total intensity of the 21 cm emission line in a large 3d pixel (angle and frequency)
- Pixel will have joint emission from multiple galaxies
- Cheap for large volume



# Mock 21 cm maps for IM $\,$

(non exhaustive) list of methods:

hydro-dynamical simulations
 + HI in post processing
 e.g. Villaescusa-Navarro et al. 2014,2018



• Gaussian realization of  $P_m(k)$ at z = 0 (need to assume  $x_{\rm HI}$ and bias)

e.g. Alonso et al. 2014

- HOD techniques on mock halo catalogues:
  - simplistic assumption on HI in halos
  - HI models from hydro-dynamical simulations or Semi-analytic models e.g. Baugh et al. 2019, this work

Villaescusa-Navarro et al 2018

# SAMs: from N-body to merger trees



credit: A.Zoldan

# From dark matter to baryons



credit: A. Zoldan

# The GAlaxy Evolution and Assembly (GAEA)

- both on Millennium I and II more "cosmological" vs. better resolution  $(500 \ h^{-1} \ Mpc, 100 \ h^{-1} \ Mpc)$
- Tested and upgraded during the years: e.g. De Lucia &. Blaizot 2007, De Lucia et al. 2014, Hirschmann et al. 2016, Xie et al. 2017, Zoldan et al. 2017
- explicit treatment of cold gas partition in atomic (HI) and molecular (H2) (Xie et al. 2017)

SF efficiency tuned to match the HI mass function at z = 0



#### Redshift evolution

How does the HI content evolve with redshift?

- hierarchical growth of structures, switch between
   z = 0 and z = 1 due to AGN feedback
- tuned to match  $\Omega_{\rm HI}$  in the local universe
- SAMs often predict decrease with redshift



## HI mass function and halos

In which halos do HI galaxies live?

- at z = 0: high mass end dominated by galaxies in big halos, at low masses small halos important
- at z = 4: similar behaviour
- smallest halos mass function do not evolve much with redshift



## Role of centrals and satellites

Centrals dominate from intermediate to high HI masses

Satellites dominate for low HI masses







## HI halo mass function

Total HI content  $M_{\rm HI}$  of a halo of mass  $M_h$ :  $M_{\rm HI}(M_h)$ 

- a fundamental ingredient of the halo model and to build mock 21 cm maps
- z = 0: fit a functional form with: low mass cut-off + power law with an inflection point

(due to AGN feedback: Baugh et al. 2019)



## HI halo mass function

SAMs allows to investigate further:

- role of centrals and satellites also as function of redshift
- role of assembly history dividing in bins wrt redhift at which halo acquired 50% of its mass



#### 21cm Power Spectrum

$$P_{21\text{cm}}(z,k) = \bar{T}_b^2 x_{\text{HI}}^2 \left[ \frac{b_{\text{HI}}^2}{b_{\text{HI}}^2} \left( 1 + \beta^2 \mu^2 \right)^2 P_m(z,k) + P_{\text{SN}} \right]$$
  
e.g. Kaiser (1987), Bacon et al (2019)



 $x_{\rm HI}$ : abundance of neutral hydrogen

 $b_{\rm HI}$ : HI bias

 $\beta^2 \mu^2$ , with  $\beta \equiv f/b_{\rm HI}$ Redshift Space Distortions

Shot Noise from small scales

- intrinsic discrete nature of the measurement
- SN computed from the value of PS at small scales
- in the halo model: associated to 1-halo term e.g. Villaescusa-Navarro et al. 2018
- low values: good for BAO studies





| Bias                                                                   |                                    |
|------------------------------------------------------------------------|------------------------------------|
| How do HI sources trace<br>dark matter?<br>(cosmology is in $P_m(k)$ ) |                                    |
| $\sqrt{(P_{\rm HI}(k) - P_{\rm SN})}$                                  | - MI $-$ MII                       |
| $b_{\rm HI}(k) = \sqrt{\frac{(-\Pi(k)) - 5N}{P_m(k)}}$                 | - z = 0 - z = 3 $ - z = 1 - z = 4$ |
| • constant at large                                                    | $10^{1}$ — $z = 2$ — $z = 5$       |

scales, then scale dependence

Motivations

- dip around  $k \sim 1h \text{Mpc}^{-1}$  at  $\mathbf{z} = \mathbf{0}$ (also in observations Anderson et al. 2018)
- bias grows with redshift (good news for IM!)



Clustering

### **Redshift Space Distortion**





# The role of satellites

Satellites and centrals different HI power spectrum

- satellites in big halos
- centrals in low and intermediate mass halos
- satellites: Type I (normal) and Type II (orphans) different role in HI profiles of halos
- can see this difference in the  $P_{\rm HI}$



### Clustering and halo mass



- progressively selecting bigger halos: P<sub>k</sub> rises for halo bias
- highest halo masss cut: enough satellites to appreciate the 1-halo term



- at higher redshift not enough big halos: shot noise
- the smallest halos drive the difference between MI and MII

## The role of low HI galaxies





- HI masses quite evenly distributed in halos
- SN rises only for highest HI mass cut

looking only at satellites: lowest HI masses fundamental for the 1-halo term

## Red and Blue clustering

- Red vs Blue with a cut in sSFR
- Red in massive haloes with high halo bias: most satellites in massive haloes are red galaxies
- Blue star forming dominates HI content of medium mass haloes driving the clustering properties of all HI
- agreement with Anderson et al. (2018)



# HI Probe-POPulator (HIP-POP)

- extract from SAM analytic prescriptions for  $M_{\rm HI}(M_h)$
- use fast halo catalogues from LPT e.g. *Pinocchio* Monaco et al. (2002)





• full sky maps maps to be used for testing foreground cleaning in both auto and cross correlation

WORK IN PROGRESS

#### Conclusions

- Semi-analytic models are a powerful (predictive!) tool to investigate the connection between the signal and the details of galaxy evolution:
  - HI halo mass function  $M_{\rm HI}(M_h)$
  - investigate HI bias, Shot Noise and the effect of RSD
  - investigate HI clustering and its dependence on a variety of parameters (satellites and centrals but also halo mass, HI minimal mass, color)
- 21 cm Intensity Mapping analysis will need to control instrumental systematics and foreground emissions, but also to understand/simulate properly the signal
- generate fast, realistic, mock 21 cm maps (for example in combination with LPT halo catalogues)

an important bridge between cosmology and galaxy evolution