

INSU

l'Observatoire CNTS

Technological developments for **NenuFAR***

Cedric Viou on behalf of the **NenuFAR-France team**

**: LESIA-OP, LPC2E-Orléans, USN-OP, CEA-Saclay, GEPI, LERMA, ONERA, ENS/IAP, OCA, ...

Station de

de Nancay

* A CAV * îledeFrance Radio astronomie

AGENCE NATIONALE DE LA RECHERCH

*New Extension in Nançay Upgrading LOFAR

-NenuFAR

LSS

La-Rere

NenuFAR Radio-Imageur

Bourdaloue

D29E

2

© 2016 Google Image © 2016 DigitalGlobe

3

Les Varennes

Grandchan

illes

Allée de l

la Ferme

4

a folie

6

On-site computing facilities

Possible beam configurations

« Your » beam distribution

A.L.S.E the FPGA Experts

LANewBa

- Digitization
 - (96x2) x 200 MS/s 14-bit ADCs (~400 MB/s/chan)
 - 48 GB/s today, 77 GB/s for full deployment, 24/7
 - Time synchronisation better than 0.1 ns
- Signal processing implemented within FPGAs (Stratix V Altera/Intel)
 - Hardware interfaces provided by ALSE (JESD for ADCs, DDR3, 1G, 10G, 40G,...).
 - Signal processing based on VHDL code from LOFAR RSPs
 - Multiple instanciations to increase processing capabilities.
 - 1300 GMAC/s distributed over 24 compute boards
- Channelization :
 - 512 x 0.195 kHz subbands
 - 16-taps PFB + 1k-FFT (614+192 GMAC/s)

LANewBa

- Beamforming
 - Sub-band selection (768 from 512)
 - Delays implemented by phase rotation (Narrow band assumption)
 - Sommation within a ring connecting all FPGAs (14 Gb/s, 58 GAcc/s)
 - Export streams over 10GbE (2x 300-600 MB/s)
- Array calibration
 - Correlation observations of CasA, CygA (16 ssb/s -> 512 ssb/30s)
 - Sample distribution over the ring (18 Gb/s)
 - MAC within all compute boards (90 MB/s x 2.2 GB/s)
 - 461 GMAC/s
- Health monitoring et diagnosis
 - Statistic Products computation (SST, BST)
 - Physical parameters of the compute units (T°C, U, I, flags)
- 1 cabinet, 1500 W

UnDySPuTeD

- 2x Servers :
 - 2x Intel Xeon E5-2620v4 8cores
 - 32 GB DDR4
 - 2x GPU Nvidia GTX 1080
 - 13 TB HDD storage

UnDySPuTeD dynamic spectra

- Dynamic Spectra
 - Processes 1 to 4 streams of 2.4 Gb/s each, B=195 kHz, dt = 5.12 μs
 - FFT + $\langle |x_i, x_j|^2 \rangle$ to provide continuous Full Stokes in real time
 - $B_{min} = 762 \text{ Hz}, \text{ dt}_{min} = 1 \text{ ms}$
 - $B_{max} = 195 \text{ kHz}, \text{ dt}_{max} = 1 \text{ s}$
 - Input stream : 300-600 MB/s (int8-int16) \rightarrow 1.2 GB/s (float32)
 - FFT : ~ 2 GFLOPS

UnDySPuTeD pulsar : LUPPI

- Narrow time domain pulse scattered over frequency (dispersed) by interstellar medium (e-)
- Correction required before t-f integration
 => Dedispertion

$$H(\mathbf{v}+\mathbf{v}_0) = \exp(i2\pi D \frac{\mathbf{v}^2}{\mathbf{v}_0^2(\mathbf{v}+\mathbf{v}_0)})$$

 Chromatic time delay (linear filter) cheaper to implement in the frequency domain. But we want time domain to study pulsars => TF, filter, TF⁻¹

$$x[n]$$

$$X[k] = TF(x[n])$$

$$X_{dedis}[k] = X[k] \cdot H[k]^{-1}$$

$$x_{dedis}[n] = TF^{-1}(X_{dedis}[k])$$

From the Handbook of Pulsar Astronomy, by Lorimer & Kramer

UnDySPuTeD pulsar : LUPPI

- Input stream (300-600 MB/s) for several hours
- At low frequency, dispertion can be large (sometimes > T_{pulsar})
 => large chunck of data to process (few seconds)
 - FFT size: 2M à 16M samples
 - Need to store 256 H[k] pre-computed over 10⁶ samples
 - Memory-bounded problem
 - ~25 % GPU usage => not compute-bounded
- Production-oriented HPC
 - High availability
 - Configuration tightly coupled to VCR system
 - 2-pulsar-simultaneous observations (2x75 MHz)
 - Up to 4 pulsars reobserved simultaneously (2x37.5 MHz)

NenuFAR-Radio-Imageur ANR «NRI» 2017-2019

Radio-interferometric imaging

NenuFAR-Radio-Imageur

- Remote Digitization
 - WhiteRabbit network (WRS + WR-LEN)
 - Sub-ns fiber-based timing distribution (next IEEE 1588)
 - PPS and 10 MHz refclock regenerated on-site
 - 10GbE streams of beamlets towards the correlator
 - On-field constraints (cooling, RFI shielding,...)
 - One unit deployed, ready for correlation

Master PPS

Slave0 PPS

Slave1 PPS

P3:skew(C1,C3)

-12 015 ns

-12 138 ns

-11 940 ns

595.372e+3

24

22.32 ps

-12.03680 ns

P4:range(E1)

Mean < 0.150 ns

80

⁶⁰ (gp)

20

< X_iX_i >

Sdev < 25 ps

P5:hsdev(E1)

av(C1 C2

P2:skew(C1 C2)

-12 170 ns

-12 286 ns

12 094 ns

12.18457 ns

- Time-frequency distribution testing
 - Time domain with high speed scope
 - RadioAstronomy method
 - Correlation of a single noise diode distributed in-phase by a power splitter.

Phase of active inputs referenced with chan 0 for observation 20180212 055224 XST.fits

- NICKEL (NenuFAR Imaging Compute Kluster Elaborated from LOFAR's)
 - LOFAR COBALT2.0 based (with ASTRON support)
 - Local work to adapt correlator for NenuFAR :
 - 96 antenna fields
 - 384 subbands (75 MHz), 8 bits.
 - System configuration to be adapted for our instrument.

Questions ?