Learning from the Lund plane

LAL, Orsay, 10 September 2019

Frédéric Dreyer

based on arXiv:1807.04758, arXiv:1903.09644 and arXiv:1909.01359

with Stefano Carrazza, Gavin Salam & Gregory Soyez

Physics at the high energy frontier

- LHC has been colliding protons at 13 TeV center-of-mass energy.
- Particle physics entering precision phase in study of EW symmetry breaking.
- Searching for new physics at the highest energy ever attained.

Run: 279685 Event: 690925592 2015-09-18 02:47:06 CEST

JET SUBSTRUCTURE AND MACHINE LEARNING

Jets as proxies for partons

Because of color confinement, quarks and gluons shower and hadronise immediately into collimated bunches of particles.

Hadronic jets can emerge from a number of processes

- scattering of partons inside colliding protons,
- hadronic decay of heavy particles,
- radiative gluon emission from partons, ...

Jets are prevalent at hadron colliders

Jet algorithms

A jet algorithm maps final state particle momenta to jet momenta.

This requires an external parameter, the jet radius R, specifying up to which angle separate partons are recombined into a single jet.

Basic idea of jet algorithm is to invert QCD branching process, clustering pairs which are closest in metric defined by the divergence structure of the theory.

$$d_{ij} = \min(k_{t,i}^{2p}, k_{t,j}^{2p}) \frac{\Delta_{ij}^2}{R^2}$$

- At LHC energies, EW-scale particles (W/Z/t...) are often produced with p_t ≫ m, leading to collimated decays.
- Hadronic decay products are thus often reconstructed into single jets.

[Figure by G. Soyez]

- At LHC energies, EW-scale particles (W/Z/t...) are often produced with p_t ≫ m, leading to collimated decays.
- Hadronic decay products are thus often reconstructed into single jets.

- Many techniques developed to identify hard structure of a jet based on radiation patterns.
- In principle, simplest way to identify these boosted objects is by looking at the mass of the jet.

- Many techniques developed to identify hard structure of a jet based on radiation patterns.
- In principle, simplest way to identify these boosted objects is by looking at the mass of the jet.
- But jet mass distribution is highly distorted by QCD radiation and pileup.

Two main approaches to study boosted decays:

- 1. Manually constructing substructure observables that help distinguish between different origins of jets.
- 2. Apply machine learning models trained on large input images or observable basis.

Aim of this talk: new approaches bridging some of the gap between these two techniques.

Jet grooming: (Recursive) Soft Drop / mMDT

- Mass peak can be partly reconstructed by removing unassociated soft wide-angle radiation (grooming).
- Recurse through clustering tree and remove soft branch if

$$\left[\frac{\min(p_{t,1}, p_{t,2})}{p_{t,1} + p_{t,2}} < z_{\mathsf{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}\right]$$

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
[Larkoski, Marzani, Soyez, Thaler JHEP 1405 (2014) 146]
[FD, Necib, Soyez, Thaler JHEP 1806 (2018) 093]

Jet grooming: (Recursive) Soft Drop / mMDT

- Mass peak can be partly reconstructed by removing unassociated soft wide-angle radiation (grooming).
- Recurse through clustering tree and remove soft branch if

$$\left[\frac{\min(p_{t,1}, p_{t,2})}{p_{t,1} + p_{t,2}} < z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}\right]$$

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
[Larkoski, Marzani, Soyez, Thaler JHEP 1405 (2014) 146]
[FD, Necib, Soyez, Thaler JHEP 1806 (2018) 093]

Substructure observables

- Variety of observables have been constructed to probe the hard substructure of a jet (V/H/t decay lead to jets with multiple hard cores).
- Radiation patterns of colourless objects (W/Z/H) differs from quark or gluon jets.
- Efficient discriminators can be obtained e.g. from ratio of N-subjettiness or energy correlation functions.

[Thaler, Van Tilburg JHEP 1103 (2011) 015] [Larkoski, Salam, Thaler JHEP 1306 (2013) 108] [Larkoski, Moult, Neill JHEP 1412 (2014) 009]

Recent wave of results in applications of ML algorithms to jet physics.

Classification problems have been tackled through several orthogonal approaches

- Convolutional Neural Networks used on representation of jet as image
- Recurrent Neural Networks used on jet clustering tree.
- Linear combination or dense network applied to an observable basis (e.g. N-subjettiness ratios, energy flow polynomials)

Beyond classification problems

- Classification problems are one of the easiest application of ML, but by far not the only one!
- Many promising applications of ML methods for:
 - fast simulations using unsupervised generative models

[Paganini, de Oliveira, Nachman PRL 120 (2018) 042003]

- regression tasks such as pile-up subtraction [Komiske, Metodiev, Nachman, Schwartz JHEP 1712 (2017) 051]
- anomaly detection for new physics [Collins, Howe, Nachman PRL 121 (2018) 241803]
- distance metric of collider events

[Komiske, Metodiev, Thaler arXiv:1902.02346]

etc . . .

THE LUND PLANE

- Lund diagrams in the (ln zθ, ln θ) plane are a very useful way of representing emissions.
- Different kinematic regimes are clearly separated, used to illustrate branching phase space in parton shower Monte Carlo simulations and in perturbative QCD resummations.
- Soft-collinear emissions are emitted uniformly in the Lund plane

$$dw^2 \propto \alpha_s \frac{dz}{z} \frac{d\theta}{\theta}$$

Features such as mass, angle and momentum can easily be read from a Lund diagram.

Lund diagrams for substructure

Substructure algorithms can often also be interpreted as cuts in the Lund plane.

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]

Lund diagrams can provide a useful approach to study a range of jet-related questions

- First-principle calculations of Lund-plane variables.
- Constrain MC generators, in the perturbative and non-perturbative regions.
- Brings many soft-drop related observables into a single framework.
- Impact of medium interactions in heavy-ion collisions.
- Boosted object tagging using Machine Learning methods.

We will use this representation as a novel way to characterise radiation patterns in a jet, and study the application of recent ML tools to this picture.

To create a Lund plane representation of a jet, recluster a jet j with the Cambridge/Aachen algorithm then decluster the jet following the hardest branch.

- 1. Undo the last clustering step, defining two subjets j_1, j_2 ordered in p_t .
- 2. Save the kinematics of the current declustering $\Delta \equiv (y_1 - y_2)^2 + (\phi_1 - \phi_2)^2, \quad k_t \equiv p_{t2}\Delta,$ $m^2 \equiv (p_1 + p_2)^2, \quad z \equiv \frac{p_{t2}}{p_{t1} + p_{t2}}, \quad \psi \equiv \tan^{-1}\frac{y_2 - y_1}{\phi_2 - \phi_1}.$

3. Define $j = j_1$ and iterate until *j* is a single particle.

Lund plane representation

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.

Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.

Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.

Analytic study of the Lund plane

To leading order in perturbative QCD and for $\Delta \ll 1,$ one expects for a quark initiated jet

$$\rho \simeq \frac{\alpha_s(k_t)C_F}{\pi} \bar{z} \left(p_{gq}(\bar{z}) + p_{gq}(1-\bar{z}) \right), \quad \bar{z} = \frac{k_t}{p_{t,\text{jet}}\Delta}$$

- Lund plane can be calculated analytically.
- Calculation is systematically improvable.

Analytic study of the Lund plane

To leading order in perturbative QCD and for $\Delta \ll 1,$ one expects for a quark initiated jet

$$\rho \simeq \frac{\alpha_s(k_t)C_F}{\pi} \bar{z} \left(p_{gq}(\bar{z}) + p_{gq}(1-\bar{z}) \right), \quad \bar{z} = \frac{k_t}{p_{t,\text{iet}}\Delta}$$

- Lund plane can be calculated analytically.
- Calculation is systematically improvable.

Declustering other jet-algorithm sequences

- Choice of C/A algorithm to create clustering sequence related to physical properties and associated to higher-order perturbative structures
- anti- k_t or k_t algorithms result in double logarithmic enhancements

$$\bar{\rho}_2^{(\text{anti-}k_t)}(\Delta,\kappa) \simeq +8C_F C_A \ln^2 \frac{\Delta}{\kappa} \qquad \qquad \bar{\rho}_2^{(k_t)}(\Delta,\kappa) \simeq -4C_F^2 \ln^2 \frac{\Delta}{\kappa}$$

Declustering other jet-algorithm sequences

- Choice of C/A algorithm to create clustering sequence related to physical properties and associated to higher-order perturbative structures
- anti- k_t or k_t algorithms result in double logarithmic enhancements

Lund images for QCD and W jets

Hard splittings clearly visible, along the diagonal line with jet mass $m = m_W$.

APPLICATION TO BOOSTED W TAGGING

We will now investigate the potential of the Lund plane for boosted-object identification.

Two different approaches:

- A log-likelihood function constructed from a leading emission and non-leading emissions in the primary plane.
- Use the Lund plane as input for a variety of Machine Learning methods.

As a concrete example, we will take dijet and WW events, looking at CA jets with $p_t > 2$ TeV.

Log-likelihood use of Lund Plane

Log-likelihood approach takes two inputs:

First one obtained from the "leading" emission, defined as first emision satisfying z > 0.025 (~ mMDT tagger).

$$\mathcal{L}_{\ell}(m,z) = \ln\left(\frac{1}{N_S}\frac{dN_S}{dmdz} \middle| \frac{1}{N_B}\frac{dN_B}{dmdz} \right)$$

The second one which brings sensitivity to non-leading emissions.

$$\mathcal{L}_{n\ell}(\Delta, k_t; \Delta^{(\ell)}) = \ln \left(\rho_S^{(n\ell)} / \rho_B^{(n\ell)} \right)$$

Overall log-likelihood signal-background discriminator for a given jet is then given by

$$\mathcal{L}_{\text{tot}} = \mathcal{L}_{\ell}(m^{(\ell)}, z^{(\ell)}) + \sum_{i \neq \ell} \mathcal{L}_{n\ell}(\Delta^{(i)}, k_t^{(i)}; \Delta^{(\ell)}) + \mathcal{N}(\Delta^{(\ell)})$$

- Compare the LL approach in specific mass-bin with equivalent results from the Les Houches 2017 report (arXiv:1803.07977).
- Substantial improvement over best-performing substructure observable.

A variety of ML methods can be applied to the Lund plane in order to construct efficient taggers.

We will investigate three approaches:

- Convolutional Neural Networks (CNN) applied on 2D Lund images.
- Deep Neural Networks (DNN) applied on the sequence of declusterings.
- Long Short-Term Memory (LSTM) networks applied on the sequence of declusterings.

Recurrent networks with a Lund plane

- Jets generally associated with a clustering trees, where each node contains similar type of information.
- Particularly well-adapted for recurrent networks, which loop over inputs and use the same weights.
- LSTMs are a widely used variant designed to have memory over longer separations.
- For each declustering node, we consider the inputs

 $\left\{ \ln(R/\Delta R_{12}), \ln(k_t/\text{GeV}) \right\}$

Inputs are IRC safe as long as there is a cutoff in transverse momentum.

Figure from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs for jet tagging

- LSTM network substantially improves on results obtained with other methods.
- Large gain in performance, particularly at higher efficiencies.

Sensitivity to non-perturbative effects

- Performance compared to resilience to MPI and hadronisation corrections.
- Vary cut on k_t, which reduces sensitivity to the non-perturbative region. performance v. resilience [full mass information]

- Lund-likelihood performs well even at high resilience.
- ML approach reaches very good performance but is not particularly resilient to NP effects.

LUND IMAGES USING GANS

Learning to generate Lund images

- Images are combined in small batches of 32, each pixel value interpreted as the probability of being switched on.
- Preprocess images with rescaling and ZCA whitening.

- Images are combined in small batches of 32, each pixel value interpreted as the probability of being switched on.
- Preprocess images with rescaling and ZCA whitening.

We consider three generative models

Two Generative Adversarial Network architectures (LSGAN and WGANGP), constructed from generator G and discriminator D which compete against each other through a value function V(G, D)

 $\min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim p_{\text{data}}}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))],$

► and a latent variable VAE model, which uses a probabilistic encoder q_φ(z|x), and decoder p_θ(x|z) to map from prior p_θ(z). The algorithm learns the marginal lilelihood of the data in this generative process

$$\mathcal{L}(\theta, \phi) = \mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - \beta D_{\mathsf{KL}}(q_{\phi}(z|x)||p(z)),$$

To avoid posterior collapse of VAE, we use KL annealing.

Frédéric Dreyer

Lund images from GANs

- The LSGAN provides the most stable results.
- Differences between models can be studied using slices of the Lund plane or derived observables.

30/41

Cycle-consistent adversarial networks

- CycleGAN learns unpaired image-to-image mapping functions $G: X \rightarrow Y$ and $F: Y \rightarrow X$ between two domains X and Y.
- Forward cycle consistency x ∈ X → G(x) → F(G(x)) ≈ x and backward cycle consistency y ∈ Y → F(y) → G(F(y)) ≈ y, achieved through cycle consistency loss.
- Full objective includes also adversarial losses to both mapping functions.

 $\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{\mathsf{GAN}}(G, D_Y, X, Y) + \mathcal{L}_{\mathsf{GAN}}(F, D_X, Y, X) + \lambda \mathcal{L}_{\mathsf{cyc}}(G, F) \,.$

Reinterpreting events with CycleGANs

- Use CycleGAN to transform between two different domains of Lund images, e.g.
 - W jet ↔ QCD jet
 - ▶ parton-level simulation \leftrightarrow detector-level simulation
- Apply trained network to transform Lund images event-by-event by cycling through domains.
- Transformed events in good agreement with true sample.

Reinterpreting events with CycleGANs

- Use CycleGAN to transform between two different domains of Lund images, e.g.
 - W jet ↔ QCD jet
 - ▶ parton-level simulation \leftrightarrow detector-level simulation
- Apply trained network to transform Lund images event-by-event by cycling through domains.
- Transformed events in good agreement with true sample.

32/41

REINFORCED JET GROOMING

Grooming a jet tree

Cast jet as clustering tree where state of each node T⁽ⁱ⁾ is a tuple with kinematic information on splitting

$$s_t = \left\{ z, \Delta_{ab}, \psi, m, k_t \right\}$$

Grooming algorithm defined as a function π_g observing a state and returning an action {0, 1} on the removal of the softer branch, e.g.

$$\pi_{\text{RSD}}(s_t) = \begin{cases} 0 & \text{if } z > z_{\text{cut}} \left(\frac{\Delta_{ab}}{R_0}\right)^{\beta} \\ 1 & \text{else} \end{cases}$$

Reinforcement learning with Deep-Q-Networks

Reinforcement learning are usually built from two elements:

- an agent deciding which actions to take in order to maximize reward
- an environment, observed by the agent and affected by the action

Deep Q-Network is a RL algorithm which uses a table of Q-values Q(s, a), determining the next action as the one that maximizes Q.

A neural network is used to approximate the optimal action-value function

$$Q^*(s,a) = \max_{\pi} \mathbb{E}[r_t + \gamma r_{t+1} + \dots | s_t = s, a_t = a, \pi]$$

[Mnih et al, Nature 2015]

Frédéric Dreyer

Defining a grooming environment

To find optimal grooming policy π_g , define an environment and a reward function so that problem can be solved with RL.

- 1 Initialize list of all trees for training.
- **2** Each episode starts by randomly selecting a tree and adding its root to a priority queue (ordered in Δ_{ab}).
- Seach step removes first node from priority queue, then takes action on removal of soft branch based on s_t.
- After action, update kinematics of parent nodes, add current children to priority queue, and evaluate reward.
- Episode terminates once priority queue is empty.

- Key ingredient for optimization of grooming policy is reward function used at each training step.
- We construct a reward with two components
 - First piece R_M evaluated on the full jet tree, comparing the jet mass to a target value.
 - Second component R_{SD} looks at kinematics of current node.
- Total reward is then given by

$$R(m, a_t, \Delta, z) = R_M(m) + \frac{1}{N_{\text{SD}}} R_{\text{SD}}(a_t, \Delta, z)$$

where mass reward is defined using a Cauchy distribution

$$R_M(m) = \frac{\Gamma^2}{\pi(|m - m_{\text{target}}|^2 + \Gamma^2)}$$

Defining the reward function

- To provide baseline behaviour for the groomer, we include a "Soft-Drop" reward R_{SD} evaluated on the current node
- Calculated on the current node state, gives positive reward for removal of wide-angle soft radiation and for keeping hard-collinear emissions.

 $R_{SD}(a_t, \Delta, z) = a_t \min(1, e^{-\alpha_1 \ln(1/\Delta) + \beta_1 \ln(z_1/z)})$ $+ (1 - a_t) \max(0, 1 - e^{-\alpha_2 \ln(1/\Delta) + \beta_2 \ln(z_2/z)})$

Implementation and multi-level training

- Train RL agent with multi-level approach using both signal and bkg into account. Sample consists of 500k W/QCD or Top/QCD Pythia 8 jets.
- At the beginning of each episode, randomly select a signal or background jet with probability 1 - p_{bkg}.
- In the background case, mass reward function is changed to

Groomed jet mass spectrum

- To test the grooming algorithm derived from the DQN agent, we apply our groomer to three test samples: QCD, W and Top jets.
- Improvement in jet mass resolution compared to RSD.
- Algorithm performs well on data beyond its training range.

code available at github.com/JetsGame/GroomRL

Groomed jet mass spectrum

- To test the grooming algorithm derived from the DQN agent, we apply our groomer to three test samples: QCD, W and Top jets.
- Improvement in jet mass resolution compared to RSD.
- Algorithm performs well on data beyond its training range.

Frédéric Dreyer

Robustness to non-perturbative effects

- Resilience to hadronisation and underlying event corrections is a key feature of modern grooming algorithms
- Strategy derived from reinforcement learning shows similar behaviour to heuristic method
- No parton or hadron-level data was used in the training!

Frédéric Dreyer

CONCLUSIONS

- Discussed a new way to study and exploit radiation patterns in a jet using the Lund plane.
- Lund kinematics can be used as inputs for W tagging with a range of methods:
 - Log-likelihood function.
 - Convolutional neural networks.
 - Recurrent and dense neural networks.

Simple LL approach can match performance obtained with recent ML methods.

- Provides a framework for promising application of generative models and reinforcement learning.
- While ML can achieve high performance, one needs to mindful of resilience to poorly modeled contributions and systematic uncertainties.