
Critical exponents from the Lorentzian inversion formula
Lecture at Bootstat 2021

Johan Henriksson
Dipartimento di fisica “E. Fermi”

Università di Pisa
johan.henriksson@df.unipi.it

26 May 2021

Abstract

The Lorentzian inversion formula is a powerful tool for understanding the dynamical
data of conformal field theories, specifically it can be used to extract conformal data of
spinning operators from singularities of the four-point function in Lorentzian signature.
In this lecture I aim to “demystify” the inversion formula by giving a concrete and
explicit application of it to the Wilson–Fisher fixed-point in the ε expansion of φ4 theory
(Ising CFT). I will also discuss how it can be used to study general φp theories near
their upper critical dimensions, including the non-unitary case for odd p.

1 Introduction
The Lorentzian inversion formula, introduced by Caron-Huot [1], is a dispersion relation
for conformal field theories in Lorentzian kinematics. It provides a way to reconstruct
the conformal data (OPE coefficients and scaling dimensions) from singularities of the
Lorentzian correlator, quantified by the double-discontinuity “dDisc”, in a systematic
way, very schematically

c2
φφO, ∆O

LIF←− dDisc[G(z, z̄)]. (1.1)

The discovery of the Lorentzian inversion formula played an important theoretical role
in resolving the question of analyticity in spin: it shows that the conformal data for
operators O` with spin are given by a function analytic in spin. Moreover, the inversion
formula can be used for practical applications, both in perturbation theory at weak or
strong coupling, and non-perturbatively.

Instead of giving a broad overview, the purpose of this lecture is to provide a com-
pletely explicit example of an application of the Lorentzian inversion formula, where all
computations can be worked out by pen-and-paper or short procedures in Mathematica.
The lecture is mostly based on [2] and uses the conventions of [3].
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We will consider a well-known and well-studied class of conformal field theories,
namely λφp theories, for p > 3. Consider the Lagrangian density of the form

L = 1
2(∂µφ)2 + λφp +

∑
i<p

giφ
i. (1.2)

The upper critical dimension, where φp becomes marginal, is given by

dc = 2p
p− 2 . (1.3)

For d < dc, starting from the Lagrangian density and tuning the couplings gi, we arrive
at an IR fixed-point, a CFT.1 It is this IR CFT that we refer to by λφp theory. The
most important λφp theories are

p = 4 Ising CFT dc = 4,
p = 3 Lee–Yang CFT dc = 6,
p = 6 tricritical Ising CFT dc = 3.

Note that for odd p, the theories we consider are non-unitary.
In this lecture we will further set d = dc − ε, i.e. to work at the Wilson–Fisher

fixed-point of the respective theories. We will not make direct use of the Lagrangian
description above, but instead follow a bootstrap approach and use methods inherent
to conformal field theories. Thus the conformal data will constitute the fundamental
observables. In particular, we will have scaling dimensions of local conformal primary
operators, from which critical exponents can be computed:

∆φ = d− 2
2 + γφ −→ η = 2γφ, (1.4)

∆φ2 = 2∆φ + g −→ ν = (d−∆φ2)−1. (1.5)

These equations define for us the parameters γφ and g, which will depend perturbatively
on ε and whose leading value we aim to find.

In general we will define the anomalous dimensions of composite operators with
respect to ∆φ rather than the value in the free theory. For instance we will consider
operators of the schematic form φ∂`φ with dimensions

∆` = 2∆φ + `+ γ`. (1.6)

These operators will be central to the discussion, and are called double-twist operators.
The plan for the lecture is the following:
1. Preliminaries. We will go through some preliminary definitions, familiar from

the study of conformal field theories in d > 2 spacetime dimensions.
2. Computation of γ` to leading order in λφ4 theory. We will then use con-

sistency conditions to fix γφ and g, and thus the critical exponents.
3. λφp theory p 6= 4. This section will be a bit schematic.

Note that the philosophy of the “bootstrap” using the Lorentzian inversion formula is
somewhat different from the numerical bootstrap. The goal is not to construct a crossing
symmetric correlator, but instead to use crossing and the inversion formula to extract
information about the CFT-data, and thus the critical exponents.

1Of course, for p even we can impose a Z2 symmetry which automatically puts to zero the couplings gi for
odd i.
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2 Lorentzian CFT in d > 2
This section reviews the necessary conventions for CFT in Lorentzian kinematics in
spacetime dimensions d > 2.2 Lorentzian kinematics admits an important limit, namely
the lightcone limit, defined by x2 → 0 while keeping at least some of the components xµ
finite. In this limit, the OPE takes the form

φ(x)× φ(0) =
∑
O
cφφO|x|−2∆φ+τxµ1 · · ·xµ`Oµ1···µ` (2.1)

where we have introduced the twist τ = ∆− ` of the operator O with dimension ∆ and
spin `.

For the four-point function, we shall consider the standard space-like configuration
in Lorentzian CFT. We use conformal invariance to fix the position of three operators:
x1 at the origin, x3 at a unit spacelike distance, and x4 to infinity. Then we let x2 move
around in a diamond determined by the lightcones of x1 and x3. The configuration is
given by figure 1. The conformal cross-ratios z and z̄ correspond to the distances along
the diagonals as indicated.

Figure 1: Kinematic setup. The point x4 is sent to infinity along the direction R.

We will study the four-point function in the double lightcone limit where x2
12 → 0,

x2
23 → 0, so that x2 goes to the top of the diamond. This limit does not exist in

Euclidean signature. On the level of cross-ratios, it will be necessary to break the
symmetry z ↔ 1− z̄ slightly, and more precisely we define the double lightcone limit as

z � 1− z̄ � 1. (2.2)

Let us look at the conformal block decomposition in the limit z → 0, keeping full z̄
dependence. We define the correlator and its conformal block decomposition by

G(z, z̄) = (x2
12x

2
34)∆φ 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 (2.3)

=
∑
O
aOG∆,`(z, z̄), (2.4)

2By limiting to d > 2, we will have, for unitary theories, a twist gap between the identity operator and the
other operators. This will be discussed later.
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where aO = c2
φφO are the squared OPE coefficients, and the G∆,`(z, z̄) are the conformal

blocks. In the limit z → 0 the conformal blocks simplify to the form

G∆,`(z, z̄) = zτ/2k∆+`
2

(z̄) +O(zτ/2+1) (2.5)

where
kh̄(z̄) = z̄h̄2F1(h̄, h̄; 2h̄; z̄). (2.6)

Note that this form is independent of d; however the corrections at subleading powers
in z do depend on d.

As an example, consider the conformal block decomposition for a specific theory,
namely the generalised free field φ (GFF). This is the theory of a non-interacting scalar
field φ, with arbitrary scaling dimension ∆φ. It is an important theory on its own, and
will also be the starting point when we consider the interacting λφp theories.3

In the GFF theory, all correlators are computed by Wick contractions. For the
four-point function we get

GGFF(z, z̄) = (2.7)

= 1 +
(

zz̄

(1− z)(1− z̄)

)∆φ

+ (zz̄)∆φ (2.8)

which has a conformal block decomposition in the z → 0 limit as

GGFF(z, z̄) = 1 +
∑

`=0,2,4,...
a`G2∆φ+`,`(z, z̄) +O(z∆φ+1). (2.9)

This can be explicitly checked order by order at small z̄ using the conformal blocks
(2.5). The squared OPE coefficients a` are known on closed form for arbitrary ∆φ,4
however we will need only the value for ∆φ = 1, corresponding to the free scalar in
d = 4 dimensions (the starting point of the expansion for λφ4 theory). In this case

a` = 2Γ(`+ 1)2

Γ(2`+ 1) , (∆φ = 1). (2.10)

The decomposition (2.9) above tells us something about the operator content in the
GFF theory. Specifically, it shows that the OPE must be of the form

φ× φ = 1 +
∑

`=0,2,4,...
φ∂`φ+ . . . , (2.11)

where we have omitted operators hidden in the higher powers of z. The symbol φ∂`φ is
schematic, and by it we mean the operators

φ∂`φ ∼ φ∂{µ1 · · · ∂µ`}φ+ total derivatives, (2.12)

which are the previously mentioned double-twist operators. They have dimensions

∆` = 2∆φ + `. (2.13)
3More precisely, since we are working in the ε expansion, we will consider a value of ∆φ close to the free

theory, so that γφ � 1 in equation (1.4).
4For generic values of ∆φ one has: aGFF

` = 2(∆φ)2
`

Γ(`+1)(2∆φ+`−1)` , where (a)k denotes the Pochhammer symbol.
This is the n = 0 case of a general formula given in [4].
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In fact, the double-twist operators will also exist in the interacting theory, where they
may aquire anomalous dimensions γ`. This means that in the following we will consider

∆` = 2∆φ + ` + γ`︸ ︷︷ ︸
=0 in GFF

. (2.14)

The computation presented so far works equally well in Euclidean signature (indeed,
the conformal block decomposition uses the limit z̄ → 0 instead of the double lightcone
limit z̄ → 1). However, during the last 10–15 years it was realised that one can get more
leverage by considering the correlator in Lorentzian kinematics [5–7]. In particular, it
was observed that for large spin, a` and γ` can be determined by considering the z̄ → 1
limit.

Moreover, the OPE coefficients a`, as well as the anomalous dimensions γ`, were in
various examples of interacting theories found to be given as closed-form functions in
spin `, or “analytic in spin”. Different methods were developed to extract these functions,
however these methods were in principle only guaranteed to apply for asymptotically
large spin. The question of extension to finite spin was put on a firm basis by the
Lorentzian inversion formula published by Caron-Huot in 2017 [1].

The Lorentzian inversion formula takes the schematic form

C(∆, `) =
∫
d2zK∆,`,d(z, z̄) dDisc[G(z, z̄)] (2.15)

where K∆,`,d is a complicated kernel. The function C(∆, `) knows about a` and γ`
through its poles C(∆, `) ∼ a`

∆−∆`
. The inversion formula holds for spin ` > 0.5 The

integrand depends on the double-discontinuity in the limit z̄ → 1, which is defined by

dDisc[f(z̄)] = f(z̄)− 1
2
(
f	(z̄) + f�(z̄)

)
. (2.16)

Here the arrows denote the analytic continuations around the branch cut which goes
along the positive real z̄ axis starting at z̄ = 1.

The Lorentzian inversion formula is very versatile, but somewhat complicated to use
in the full form. It involves a two-dimensional integral and against a kernel K∆,`,d which
takes a complicated form. Luckily, for the computation we have in mind here, there is a
simplified version involving only a one-dimensional integral with a much simpler kernel.
It holds under the following assumptions:

1. Perturbation theory; in our case we have ε� 1.
2. Extracting data of the operators with lowest twist; for us these are the double-twist

operators, with ∆` = 2∆φ + `+ γ`.
In fact these assumptions constitute an important special case that applies to various
considerations, and it was denoted the perturbative inversion formula in [3]. It
follows from the general formula under these assumptions, although we shall not give
the proof here.6

The perturbative inversion formula is a two-step algorithm:
5We will only consider a correlator of identical scalar operators, which implies that spin is even. Allowing

for odd spin the proper statement is that inversion formula holds for ` > 1.
6A proof can be found in [3], section 2.5.2.
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1. Step 1. Compute a generating function in ln z given by

T
(0)
h̄

+ 1
2T

(1)
h̄

ln z + . . . = κ

1∫
0

dz̄

z̄2 kh̄(z̄)dDisc[G(z, z̄)]
∣∣∣
z

∆φ
, (2.17)

where κ = Γ(h̄)4

π2Γ(2h̄)Γ(2h̄−1) . This formula amounts to the following. Consider the
correlator G(z, z̄). Find its double-discontinuity by the definition (2.16) above.
Then project onto the power z∆φ , which in perturbation theory will produce powers
ln z, where at each order in perturbation theory only one new power of ln z will
appear. Finally compute the one-dimensional integral, and store the result as
prescribed by the left-hand side.

2. Step 2. Extract the OPE coefficients a` and anomalous dimensions γ` by the
formula

a`(γ`)k = T
(k)
h̄

+ 1
2∂h̄T

(k+1)
h̄

+ . . .
∣∣∣
h̄=∆φ+`

. (2.18)

For instance, if we are interested in a`, we use k = 0. At each order in perturbation
theory, the sum in the right-hand side will truncate.

To see how this works in practice, we shall consider again the generalised free field theory
(GFF), with ∆φ = 1. We shall keep ∆φ generic and use it as a regulator, taking the
limit ∆φ → 1 at the end.

Step 1 means computing dDisc[G(z, z̄)] and projecting onto z∆φ . We get

dDisc
[
1 +

(
zz̄

(1− z)(1− z̄)

)∆φ

+ (zz̄)∆φ

] ∣∣∣
z

∆φ
= dDisc

[(
z̄

1− z̄

)∆φ
]

(2.19)

= 2 sin2(π∆φ)
(

z̄

1− z̄

)∆φ

. (2.20)

Only the middle term survived, and we see that no powers of ln z emerge, meaning
T

(k)
h̄

= 0 for k > 1. The double-discontinuity was computed by moving the 1 − z̄ into
the exponent, and replacing ln(1− z̄) with ln(1− z̄)±2πi. With the double-discontinuity
of the correlator at hand we proceed to compute

T
(0)
h̄

= lim
∆φ→1

2 sin2(π∆φ)κ
1∫

0

dz̄

z̄2 kh̄(z̄)
(

z̄

1− z̄

)∆φ

(2.21)

= 2Γ(h̄)2

Γ(2h̄− 1)
, (2.22)

finishing step 1 of the algorithm. For step 2 we simply use

a` = T
(0)
h̄

∣∣∣
h̄=`+1

= 2Γ(`+ 1)2

Γ(2`+ 1) , (2.23)

which, to our delight, agrees with (2.10) above. Note that this time, the result followed
from only the middle term in the GFF correlator (2.8), contrary to the conformal block
decomposition which needed both the final two terms.
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3 Bootstrap of λφ4 theory
The listener may now ask, what makes this bootstrap? The answer is that we need to
use the crossing equation. Indeed, we shall use the crossing equation to evaluate the
double-discontinuity. We get

dDisc[G(z, z̄)] = dDisc
[(

zz̄

(1− z)(1− z̄)

)∆φ

G(1− z̄, 1− z)
]

(3.1)

= dDisc
[(

zz̄

(1− z)(1− z̄)

)∆φ∑
O′
aO′ G∆′,`′(1− z̄, 1− z)︸ ︷︷ ︸

∼(1−z̄)
∆′−`′

2

]
. (3.2)

Note here the factor from crossing, and the z̄ → 1 scaling of the crossed-channel block.
We may consider different choices of O′:

• O′ = 1. We get
(

z̄
1−z̄

)∆φ −→ aGFF
` , i.e. the identity operator in the crossed-

channel gives rise to the double-twist operators.
In fact the correlator of identical operators in any CFT contains the identity oper-
ators, so this computation show that any CFT containing a scalar operator φ also
contains the double-twist operators φ∂`φ with non-zero OPE coefficients.7 In the
interacting theory they do not have dimensions exactly equal to 2∆φ + `, but may
develop anomalous dimensions.

• O′ = φ∂`φ.
We may consider the contribution from the double-twist operators themselves.
Recall that they have dimensions ∆′ = 2∆φ + `′ + γ`′ . If we plug this definition
into (3.2) and look at the singular behaviour as z̄ → 1, we get( 1

1− z̄

)∆φ

(1− z̄)∆φ+
γ`′
2 ∼ 1 + γ`′

2 ln(1− z̄)︸ ︷︷ ︸
dDisc=0

+γ2
`′

8 ln2(1− z̄)︸ ︷︷ ︸
dDisc=4π2

+ . . . (3.3)

where we have indicated the double-discontinuity of each term.
Here we note a very important property of the Lorentzian inversion formula: The contri-
bution from φ∂`φ is delayed. Specifically the contribution from double-twist operators
is suppressed with a factor which is proportional to their anomalous dimension squared.
In perturbation theory it means that their contribution is delayed by two orders in γ`.

We can now formulate the strategy for φ4 theory: Invert O′ = 1 and O′ = φ2.
We will only work to leading non-trivial order in perturbation, where it can be shown
that it is enough to consider only these two operators. We will introduce g and γφ as
free parameters (recall that ∆φ = d−2

2 + γφ, and ∆φ2 = 2∆φ + g) and try to fix them at
a later stage.

Let us execute the strategy.
First, for O′ = 1 we get the same as before:

(
z̄

1−z̄

)∆φ → T
(0)
h̄
→ a`. (Note that we

have evaluated this to zeroth order in ε.)
7This argument relies on there being a twist gap between the identity and the first non-trivial operator,

otherwise the contribution from 1 could be cancelled by other operators O′ in (3.2).

7



Then for O′ = φ2, we use what we found in (3.3) above, with `′ = 0:

dDisc
[(

zz̄

1− z

)∆φ

a
g2

8 ln2(1− z̄) ln z̄ − ln z
z̄

]
, (3.4)

where a = c2
φφφ2 = 2. The last part of this expression comes from the remaining part of

the conformal block which we did not include in (3.3).
The expression (3.4) will contribute to T (1) by

T
(1)
h̄
∼ 2× coef. of z∆φ ln z, (3.5)

so we get

T
(1)
h̄

= 2κ
1∫

0

dz̄

z̄2 kh̄(z̄)ag
2

8 4π2(−1) (3.6)

= 2Γ(h̄)2

Γ(2h̄− 1)

(
− ag

2

2J2

)
. (3.7)

Here J2 is the conformal spin defined by J2 = ∆+`
2

∆+`−2
2 , which the expert will recognise

this as the eigenvalue of the Casimir operator on the lightcone.
The anomalous dimensions are extracted using (2.18),

γ` = T (1)

T (0) = − ag
2

2J2 , (3.8)

which to leading order, with a = 2, gives

∆` = 2∆φ + `− g2

`(`+ 1) . (3.9)

This is a nice result, but this still depends on our two free parameters γφ (through ∆φ)
and g. However, remarkably, we can now fix them using consistency conditions.

• ` = 2. The operator at spin two is in fact the stress-tensor, which gives the
constraint ∆2

!= d = 4− ε. Solving for γφ we get

2γφ −
g2

6 = 0 ⇒ γφ = g2

12 . (3.10)

• ` = 0. There is a second constraint, less straight-forward, coming from ` = 0.
In the work with [2], this constraint came as a surprise to us, since the inversion
formula is not guaranteed to work for ` = 0. Nevertheless, we can assume that it
does and thus demand that

∆0
!= ∆φ2 . (3.11)

Recall that from our definitions ∆φ2 = 2∆φ + g = 2 − ε + g to leading order.
Comparing with (3.9) it looks like we cannot to put ` = 0. However, we can resolve
this problem by retrospectively upgrading the factor `(`+1) to the conformal spin
J2. Inserting our definitions we get

2∆φ −
g2

2−ε+g
2

−ε+g
2

= 2∆φ + g +O(ε2) (3.12)

−g2 = g
−ε+ g

2 (3.13)

g(3g − ε) = 0 (3.14)
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The final equation has two solutions: 1) free theory, and 2) g = ε/3. The non-trivial
solution implies

∆φ2 = 2∆φ + ε

3 + . . . , (3.15)

∆φ = d− 2
2 + ε2

108 + . . . , (3.16)

which agree exactly the values in the Wilson–Fisher fixed-point [8]. For comparison, the
leading anomalous dimension of φ can be computed diagrammatically by evaluating the

sunset diagram:
Let us get back to the spinning operators – why did we not need to take them as

input? We have just found that the spinning operators have anomalous dimensions of
order ε2 by equation (3.3). This means that they will not contribute to the double-
discontinuity until order ε4. In fact, there are also some more exotic operators that
exist in the theory at higher twist, but also these operators will not appear until order
ε4.

4 λφp theory in dc − ε dimensions
We will now outline the analogous computation for λφp theories with p 6= 4. The story
will be quite similar: we will need to consider operators appearing in the OPE

φ× φ = 1+
∑

`=0,2,4,...
φ∂`φ+ φp−2 + . . . . (4.1)

We can understand why the operator φp−2 appears in the OPE by considering the
diagram in figure 2.

φp−2

λ λ

Figure 2: A diagram contributing to the φ four-point function in λφp theory.

The strategy will then the following: Invert O′ = 1 and O′ = φp−2. Again we
note that the contribution from double-twist operators is delayed. The free parameters
will be γφ and c2

φφφp−2 =: λ2α.
Skipping the details and proceeding to the results, we get [3, section 6.3]

∆` = 2∆φ + `− (dc − 4)2λ2α

2J2 , (4.2)

where, to leading order, J2 =
(
d−2

2 + `
) (

d−4
2 + `

)
.

Again we get a consistency condition at spin two:
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• ` = 2: Assuming the stress-tensor, we put ∆2
!= d = dc − ε to get

λ2α = dc(dc + 2)
(dc − 4)2 γφ (4.3)

With dc = 6 this reduces to λ2a = 12γφ.
In general, unfortunately, there will still be one undetermined free parameter, γφ, after
using this equation. However, we can evaluate the resulting function at spin zero to get

∆φ2 = 2∆φ + 2dc(dc + 2)
(dc − 2)(4− dc)

γφ, (4.4)

which does agree with the a general result for multicritical theories [9]. We have then
parametrised the anomalous dimensions of all bilinear operators in terms of one param-
eter, γφ.

In the most interesting case of λφ3 theory, with dc = 6, we get

∆φ = 2− ε

2 + γφ, (4.5)

∆0 = 4− ε+ 2γφ − 12γφ. (4.6)

In this case (p = 3) it was observed by Gonçalves [10] that there is an additional relation,
a shadow relation

∆φ + ∆0
!= d (4.7)

6− 3ε
2 − 9γφ = 6− ε (4.8)

γφ = − ε

18 . (4.9)

This agrees precisely with the known anomalous dimension in the Lee–Yang CFT [11].

5 Summary and outlook
The general philosophy of our application of the Lorentzian inversion formula can be
summarised as

a`, γ` ←− dDisc
[(

zz̄

(1− z)(1− z̄)

)∆φ∑
O′
aO′G∆O′ ,`O′ (1− z̄, 1− z)

]
(5.1)

∼
∑
O′
aO′ sin2 π

2 (τ ′ − 2∆φ). (5.2)

We will now comment on various further aspects.

5.1 Perturbative inversion formula
• The computation for λφ4 theory can be extended to order ε4, see [2], and to theories

with global symmetry [12].
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• We may also use the Lorentzian inversion formula in the 1/N expansion [13],
see for instance the new 1/m expansion for theories with MN = O(m)n o Sn
symmetry [14], mentioned in the talk by A. Stergiou.

• Note that the inversion formula can also be used to compute corrections to the OPE
coefficients, and from them the corrections to the central charges. See exercise 4
below.

5.2 Numerical application
There is another approach that was mentioned in the lecture by D. Poland and the
discussion session by S. Rychkov, namely the numerical application of the inversion
formula. This can be done at finite ε, and has been evaluated for 3d Ising [15] and
O(2) [16] CFTs.8 One needs to consider the inversion of two types of contributions.
• Individual operators. O′ = 1, φ2, tij , T

µν , Jµ, etc. Operators at low spin can
be inverted one-by-one, and it is possible to compute the result of numerical inver-
sion integral in a complicated but precise form.9 The problem of considering the
inversion of individual operators is referred to in the literature as crossing kernels,
see e.g. [19, 20].

• O′ = φ∂`φ and other twist families. Families of operators with spin require
more work. To deal with them one first has to compute the sum over crossed-
channel operators, before extracting the double-discontinuity and computing the
inversion.

In general, the numerical application of the inversion integral requires as input quite de-
tailed knowledge of the spectrum. It would be interesting to see if this can be performed
for the Lee–Yang CFT.

5.3 Theoretical considerations
There are some theoretical issues with the computations outlined in this lecture.
• Why was it possible we extend to ` = 0 when the inversion formula is only guar-

anteed to work for ` > 0? This is not completely understood. Perhaps we can
attempt to answer the question by considering what the alternative would look
like? Solutions to crossing truncated in spin were found in the important pa-
per [21], and generalised to arbitrary d in [22]. Using the result from [22] we note
that if the external operator is close to the unitarity bound, a solution with finite
support in spin is only allowed for d = 4. See also the discussion in [23].

• The extension to non-unitary theories. The original derivation of the Lorentzian
inversion formula in [1] is limited to unitary conformal field theories. However,
the important properties required are not unitarity per se, but properties that

8See also [17] for a similar computation for the Ising CFT predating the inversion formula, and [18] for a
comparison and discussion.

9The result is of the form
∑∞
p=0

∑p
q=−p c(z)Ap,qΩ, where all three factors depend on the involved conformal

data. The Ap,q describe the coefficients of the subcollinear conformal blocks, which are not known on closed
form but can be computed systematically. Ω is given as a sum of two terms, which each is a ratio of Gamma
functions times a hypergeometric 4F3 at unit argument. See e.g. [16] for details.
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follow from unitarity, specifically 1) boundedness in the Regge limit, 2) twist gap.
The twist gap is not necessary for all applications of the inversion formula, but
necessary to prove the existence of double-twist operators. The first condition may
hold in a wider range of theories, which may include some non-unitary theories.
Indeed, at least for small ε the the λφp theories considered here do seem to satisfy
these conditions also for odd p. In addition, it has been noted that all λφp theories,
including the Ising CFT on fact are non-unitarity away from integer dimension [24],
however this does not affect any of our conclusions.

• For studying the non-unitary theories, it would be interesting if one can use a
combination of Gliozzi’s method [25] and the Lorentzian inversion formula to track
the λφp theories from their ε expansion into the finite ε region.

5.4 Some general remarks on λφp theories
• The λφp theories are quite well-studied for even p = 2θ, which is the unitary case.

Some early references are [26, 27], and some results for the O(N) symmetric case
may be found in [28]. One observable that is known for general p = 2θ is the
leading anomalou dimension of φ:

γφ = 2(θ − 1)2Γ(θ + 1)6

Γ(2θ + 1)3 ε2 = ε2

108 ,
ε2

1000 ,
9ε2

171500 , . . . , θ = 2, 3, 4, . . . . (5.3)

The anomalous dimensions (4.2) of the spinning operators in the multicritical
theories, which we now have rederived, were computed in [29] using multiplet
recombination methods.

• The theories for even p = 2θ connect in d = 2 to the unitary minimal models
Mθ+2,θ+1, with central charges c = 1 − 6

(θ+1)(θ+2) , see for instance [30], section
7.4.7.

• The case p = 3, the Lee–Yang CFT, is well-studied [11, 31]. Some numerical
results in intermediate dimensions 2 < d < 6 were computed in [32]. In d = 2 the
Lee–Yang CFT is the minimal modelM2,5 with central charge c = −22
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• The theories for higher odd p = 2t + 1 are less studied. The case p = 5 is
interesting, see [9]. Moreover, see [35] for a φ5 theory with global symmetry that
may be unitary, denoted Pentagon. The anomalous dimension γφ for odd p = 2t+1
is not known on an explicit closed form, but can be computed case by case [9]:

γφ = − ε

18 , −
ε

1530 , t = 1, 2. (5.4)

10An important observable in this model is the edge exponent σ, defined by σ = ∆φ

d−∆φ
and known to order

ε5 [33]. Another observable is a = C2
φφφ. The exact values for these observables in the 2d minimal model

M2,5 are ∆φ = − 2
5 , σ = − 1

6 and a = −Γ( 6
5 )2Γ( 1

5 )Γ( 2
5 )

Γ( 4
5 )3Γ( 3

5 ) = −3.65312 . . . [31, 34].
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6 Exercises
Exercise 1. Confirm the double-discontinuities used in the lecture,

a) dDisc
[
ln2(1− z̄)

]
= 4π2,

b) dDisc
[(

z̄
1−z̄

)α]
= 2 sin2(πα)

(
z̄

1−z̄

)α
.

Hint: Use that the circles 	,� amount to replacing ln(1− z̄) by ln(1− z̄)± 2πi.

Exercise 2. Use Mathematica to confirm the integral
1∫

0

dz̄

z̄2 kh̄(z̄)
(

z̄

1− z̄

)α
= Γ(2h̄)Γ(1− α)2Γ(h̄− 1 + α)

Γ(h̄)2Γ(h̄+ 1− α)
, α < 0, h̄ > 1− α. (6.1)

Then take α = ∆φ and perform the limit ∆φ → 1 to confirm equation (2.21) used in
the main text. Note that some analytic continuations are needed. Hint: you may need
the identity 2F1(a, b; c; 1) = Γ(c)Γ(c−b−a)

Γ(c−b)Γ(c−a) valid when a+ b < c.

Exercise 3. Assume that g = O(ε) and work to order ε2. Then show the form (3.4),
i.e. that of the double-discontinuity from the φ2 operator takes the form(

zz̄

(1− z)(1− z̄)

)∆φ

G2∆φ+g,0(1− z̄, 1− z)
∣∣∣
z

∆φ

= z̄∆φ
g2

8 ln2(1− z̄) ln z̄ − ln z
z̄

+O(ε3) + terms with dDisc=0. (6.2)

Hint: At order ε2, all ε dependence must be contained in g2, so you may use the 4d
conformal block G∆,`(z, z̄) = zz̄

z−z̄

(
k∆+`

2
(z)k∆−`−2

2
(z̄)− k∆+`

2
(z̄)k∆−`−2

2
(z)
)
.

Exercise 4 (Hard). In this exercise you will compute the order ε2 ∼ g2 correction α`
to the OPE coefficients,

c2
φ,φ,φ∂`φ = aGFF

` + α` +O(ε3), (6.3)

where aGFF
` is given in footnote 4 above with ∆φ = 1− ε

2 + γφ. The result will then be
used to find the leading correction to the central charge CT .

To find the OPE coefficients, compute first both T (0)
h̄

and T (1)
h̄

to order g2. Then use
(2.18) to find the OPE coefficients:

c2
φ,φ,φ∂`φ = T

(0)
h̄

+ 1
2∂h̄T

(1)
h̄

∣∣∣
h̄=∆φ+`

. (6.4)

Hint: For the order g2 correction to T (0)
h̄

you need the integral (see exercise 5)

1∫
0

dz̄

z̄2 kh̄(z̄) ln z̄ = −Γ(2h̄)
Γ(h̄)2

1
h̄2(h̄− 1)2 . (6.5)

Answer: α` = Γ(`+1)2

Γ(2`+1)
ag2

`(`+1)

(
1
`+1 + S1(2`)− S1(`)

)
, where S1 denotes the harmonic

numbers.11

11This result only holds working at order ε2.
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Next, use the conformal Ward identity c2
φφTµν = d2∆2

φ

4(d−1)2CT
, and the values a = 2,

g = ε
3 and γφ = ε2

108 , to find the correction to the central charge. Answer: CT
CT,free

=
1− 5

324ε
2 +O(ε3).12

Exercise 5. Compute the integrals (6.1) and (6.5) in Mathematica using the integral

representation kh̄(z̄) = Γ(2h̄)
Γ(h̄)2 z̄

h̄
∫ 1

0
dt

t(1−t)

(
t(1−t)
1−tz̄

)h̄
.

Exercise 6. This exercise will show the following important result from the papers [6,7]:
Proposition. In any unitary CFT in d > 2 dimensions, the anomalous dimensions

γ` of the double-twist operators φ∂`φ have a leading scaling for large ` that takes the
form

γ` ∼ −
aminC0
Jτmin

(6.6)

for some positive constant C0, where amin = c2
φφOmin

and τmin are the (squared) OPE
coefficient and twist of the operator Omin 6= 1 with smallest twist in the φ× φ OPE.13

a) Deduce first the scaling J−τmin . Hint: The scaling at large J2 = h̄(h̄ − 1) is
determined by the negative exponent α of powers (1− z̄)−α, or equivalently (why?)
by the negative exponent α of powers (1−z̄

z̄ )−α. You can therefore use (6.1) to invert
such a power.

b) Argue why it is necessary to have twist gap between 1 and Omin for the proposition
to be satisfied.

c) Determine the constant C0. Answer: C0 = 2Γ(∆φ)2Γ(τmin+2`min)
Γ(∆φ−

τmin
2 )2Γ( τmin

2 +`min)2 . Hint: For the
purpose of this exercise, it is enough to consider the form (2.5) (with z ↔ 1 − z̄)
for the conformal block of Omin.14
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