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1. Introduction

The goal of these lectures is to survey various types of disordered or random critical
points as potential targets for applications of the modern conformal bootstrap approach.



I say “potential” since am not sure that all random critical points are conformally-
invariant, so they may not be good targets for conformal bootstrap.p1q But the boot-
strap framework seems to be broader, as evidenced by its successful application to, say
random matrices, which has nothing to do with conformal symmetry.

The survey is intended to be broad at the expense of rather shallow coverage. Thus,
I will mention a lot of different topics and examples of random critical points, but will
not be able to discuss most of them in detail. Examples of random models that I will
review will basically fall into four large groups: 1) classical spin models, 2) quantum
spin models, 3) geometric critical phenomena, and 4) disordered singe-particle fermionic
problems exhibiting localization-delocalization Anderson transitions. These systems
seem to be quite different and unrelated, but as I discuss physical properties of random
critical points and relevant field-theoretic techniques, I hope to demonstrate that all
these problems have a lot in common and are closely related. In particular, I want to
explain that all these models share certain features, including multifractality of random
observables. Also, I will try to exhibit mappings between different models that provide
some common framework and intuition.

These notes are written from the condensed matter physics perspective, which means
several things. First of all, any field theory of interest will be Euclidean, and in the
conformally-invariant case the space and time will be on the same footing. Second, I
will always assume that there is a microscopic lattice scale a that provides regularization
of any field theory of interest in the ultraviolet (UV). Therefore, I do not worry about
renormalizability or UV completeness, etc. Instead, the interest and focus is in the
behavior at long distances and low energies (infrared). Finally, I will have in mind
that systems of interest are finite, and their linear size L provides an IR regularization,
as well as the basic scaling variable. In other words, I will consider the expectation
values of local operators and their products (correlators) in a finite critical system as
functions of a{L. The scaling dimension xO of an operator O characterizes the scaling
of the expectation value

xOy „
´ a

L

¯xO
. (1.1)

The notation xO (as opposed to ∆O) is borrowed from Cardy’s fantastic book [1], and
is necessary to distinguish related but different quantities in the theory of disordered
electronic systems traditionally denoted by ∆.

Whenever I use conformal field theory (CFT) results, I will stick to two dimensional
CFTs (d “ 2). I do not know much about CFTs in arbitrary d, so will have questions
for the experts.

2. Disorder: general remarks

When we talk about disorder in the context of statistical mechanics or solid state
physics, we mean that there are some imperfections in the lattice structure: vacancies,

p1qFor example, there is a certain critical point describing the so-called spin quantum Hall transition
in two dimensions (2D or d “ 2) about which we know the following. Some observables (low moments
of conductances) in a certain network model of this transition map exactly to 2D bond percolation
problem, which is almost certainly conformally-invariant at its critical point. On the other hand, there
is a strong, though indirect, numerical evidence that the spectrum of multifractal exponents for the
moments of critical wave functions is inconsistent with conformal invariance. If I can explain all the
terminology and issue stated in this footnote, my goal for these lecture wil have been achieved.
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interstitial atoms, substitutions, dislocations, disclinations, etc. Disorder is inevitable.
But is it important, interesting? Should we treat disorder as a nuisance to be suppressed
or something to study and understand? This depends on the context, and in these
lectures I will focus on the cases where disorder is important to the extent that it
qualitatively modifies the behavior of a clean system and leads to emergence of new
phases and phase transitions.

Before plunging into technical matters, let us sort out some terminology. Generally
speaking, all possible imperfections are dynamical degrees of freedom: they can move,
appear, and disappear. If they are treated in this way on par with other degrees of
freedom (spins, electrons), we talk about annealed disorder. However, more often than
not the time scales associated with the dynamics of imperfections are much longer than
time scales that characterize other degrees of freedom. If there is such separation of
time scales, we can view the imperfections as “frozen” or quenched. It is the quenched
disorder that we will be dealing with, and I will drop the qualifier “quenched” in the
following.

Disorder certainly makes life harder by breaking lattice symmetries, which makes the
use of momentum space impossible in a given disordered sample. On the other hand,
why should we care about the behavior of a single sample? Quoting John Herz [2] “it
is arguable (and a well-established part of every theoretical physicist’s prejudices) that
unless there is some kind of universality, the problem is not very interesting anyway.”
This is the point of view I will adopt in these lectures. Therefore, instead of focusing
on a single sample, we need to think about what happens if we repeat measurements of
some quantities, such as correlation functions of local operators (we will generically call
such quantities observables) in many nominally “identical” or “similar” samples, that
is, samples that are prepared in the same way to the extent that we can control. For
example, we want to make sure that all samples of a quantum Hall device come from
the same large wafer, and all have the same average concentration of impurities. The
actual placement of each impurity will be different in each sample, of course.

Once we follow this approach, we immediately need to think in terms of ensembles of
samples, since a priori we may encounter a situation when repeated measurements of
an observable in different samples produce different results. Thus, the main conceptual
tool is to imagine an ensemble of physical systems described by Hamiltonians with
random interactions which model important aspects of disorder, and are specified by
probability distributions. Notice that while each member of an ensemble breaks lattice
symmetries, the ensemble as a whole is usually chosen in a way that respects these
symmetries.

Now comes the main point: in an ensemble of disordered systems, every observable
should be characterized by its probability distribution, and the main goal of a theory is
to compute these distributions. This is rarely possible, so more often people are already
content if they can compute the average of an observable or a few of its low moments
(variance, etc.). This is OK if we can argue that the distribution of a given observ-
able is narrow. However, there are many examples of observables whose probability
distributions turn out to be broad, and then we need to distinguish, for example, the
behavior of the average and the typical values of an observable.

We will be interested in critical phenomena near continuous phase transitions. In this
case we expect scaling behavior, one manifestation of which is the power-law dependence
of correlation functions and local observables with the system size L. This is also

3



relevant since all numerical simulations of critical phenomena are done in finite systems,
and universal quantities are extracted from finite-size scaling.

In the case of disordered systems, as a matter of principle, we need to look at the
dependence of the whole probability distribution of an observable on the system size
L. Then we can encounter basically two different types of behavior. On the one
hand, there are extensive quantities such as the free energy, whose densities in the
thermodynamic limit become deterministic. This is referred to as “self-averaging”. On
the other hand, there are transport quantities such as conductances and conductivities
whose probability distributions may become broad in the thermodynamic limit, and
then these quantities will exhibit strong sample-to-sample fluctuations.

A standard tool to study critical phenomena and scaling is the renormalization group
(RG) [1]. In the case of critical points in clean systems the RG flows contain a finite
number of scaling variables or coupling constants in a field theory. For disordered
systems, if we want to address whole probability distributions of observables, we need
to use some form of a functional RG with an infinite number of parameters [3]. While
this is possible in some cases, I will not deal with this. Instead, I will focus on field-
theoretic techniques that allow to compute only moments of observables. These include
the replica and the supersymmetry (SUSY) methods that I will describe below.

Let us look at several examples of disordered systems of interest. I will use these ex-
amples to illustrate and formalize the points made above, as well as describe techniques
to deal with disorder, and some known results. The examples that I chose may seem
quite different and unrelated at first, but, in fact, there are connections and mappings
between them.

3. Classical spin models

Classical magnets with spins si on sites i (a short-hand notation for the position
vector ri) of a lattice can have disorder (randomness) in the interactions of spins Jij
(“bond disorder”) as well as in local magnetic fields hi (“field disorder”):

H “ ´
ÿ

ij

Jijsisj ´
ÿ

i

hisi. (3.1)

The spins can be, for example, unit n-components vectors, and then we have a lattice
version of an Opnq model. The interaction term has the global Opnq symmetry, while
the magnetic fields break this symmetry. The global symmetry can also be broken
by some anisotropy in the interactions between different spin components. We can
also imagine “spins” that are elements of more general coset spaces G{K, where G is
the global symmetry group broken down to its subgroup K by “magnetic fields” or
anisotropy.

To fully specify the problem of a random magnet, we need to specify the distributions
functions PJptJuq and Phpthuq for the (collections of the) random bonds and random
fields. It is most natural to treat distinct Jij and hi as independent random variables.
Also, to make sure that the disorder ensemble is lattice-symmetric, we require that all
fields hi are independent identically distributed (IID), and all interactions Jij with the
same relative distance |i´ j| are IID. Finally, while it is possible to consider long-range
interactions and disorder, I will restrict myself to models where only spins on nearest
neighbor sites interact. Pairs of nearest neighbors will be denoted as xijy. Then we
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arrive at the models of the following form:

H “ ´
ÿ

xijy

Jijsisj ´
ÿ

i

hisi, (3.2)

where all Jij are IID random variables drawn form the distribution function PJpJq, and
all hi are also IID random variables drawn from the distribution function Phphq.

When there is no disorder (the clean case), magnetic systems may exhibit symmetry-
broken phases and transitions between them, happening upon changes in the tempera-
ture and other parameters. Continuous phase transitions are accompanied by universal
critical phenomena. Universal properties are found in the behavior of the connected
correlation functions of spins

Gpi1, . . . , inq “ xsi1 . . . sinyc, (3.3)

where the angular brackets denote the statistical average

xOy ”
1

Z

ÿ

tsu

Oe´H , Z “
ÿ

tsu

e´H . (3.4)

Connected correlators are obtained as derivatives of the free energy F “ ´ lnZ:

xsi1 . . . sinyc “ p´1qn
n
ź

i“1

BhiF
ˇ

ˇ

ˇ

hi“h
. (3.5)

The simplest of these is the order parameter, or magnetization:

mphq “ xsiy “ ´
BF

Bhi

ˇ

ˇ

ˇ

ˇ

hi“h

. (3.6)

The same rules apply in a disordered system except that now the free energy is a
random variable that depends on a particular realization of random couplings (which I
will denote simply by X): F rXs “ ´ lnZrXs. Observables such as the correlators (3.3)
are also random variables. As we discussed above, their lowest moments are the primary
goal of a theory. Therefore, if I denote disorder averaging by an overline, we need to
find a way to compute the quenched free energy

F “ ´lnZ “ ´

ż

DXP rXs lnZrXs. (3.7)

As I mentioned above, the free energy density is self-averaging if the disorder is short-
range correlated. This means that it becomes non-random in the thermodynamic limit
(the volume V going to infinity):

f “ lim
VÑ8

F rXs

V
“ f. (3.8)

Indeed, we can break a large system into many smaller but still macroscopic subsystems,
and the total free energy is the sum of the free energies of the subsystems (apart from
subleading surface contributions). Each susbsystem has a different arrangement of
impurities and can be viewed as a member of an ensemble of disorder realizations. Then
in the thermodynamic limit the free energy density with probability one becomes equal
to the average free energy density. In a finite large system with N sites the fluctuations
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in the free energy density are of order N´1{2 (the usual central limit theorem) and
vanish in the thermodynamic limit. On the other hand, averages of correlators such as

xsi1 . . . sinyc “
1

ZrXs

ÿ

tsu

si1 . . . sine
´HrXs (3.9)

are not self-averaging, since they sensitively depend on the local patterns of disorder
close to the points of insertions of the spin operators.

Disconnected correlators averaged over disorder such as

xsiyxsjy “
´

Z´1rXs
ÿ

tsu

sie´HrXs
¯´

Z´1rXs
ÿ

tsu

sje´HrXs
¯

(3.10)

are also important, and may have nontrivial behavior and significance. For example,
spin glasses are characterized by m “ and q ą 0, where

q ” m2 “ xsiy2 (3.11)

is the so-called Edwards-Anderson order parameter.
Critical points of clean classical magnets are well described by field theories and

classified into universality classes depending on the dimensionality of space d and the
internal symmetry breaking pattern G{K.

In presence of disorder the interesting questions are

1. Stability of phases (Imry-Ma arguments).
2. New phases (spin glasses).
3. Stability of first order phase transitions and emergent criticality.
4. Stability of critical points (Harris criterion).
5. New types (universality classes) of critical points.

Answers to these questions depend on the details of disorder (distribution functions
PJpJq and Phphq). Any attempt at answering these questions needs to address the
necessity to find disorder averages such as (3.9). There are several methods that are
available, and the one that is very general is the replica method.

4. Replica method and non-unitary CFTs.

To the best of my knowledge, the replica method has been invented by Sam Edwards
when he was working on properties of rubbers. The first published paper where the
method was used is the famous paper of Edwards and Anderson on spin glasses [4].

The idea of the replica method is based on the identity ZrXs “ e´F rXs. If we raise
it to power n, assume n ! 1 and expand, we get the limit

F rXs “ ´ lnZrXs “ lim
nÑ0

1´ ZnrXs

n
“ ´

d

dn
Zn
rXs

ˇ

ˇ

ˇ

n“0
. (4.1)

For positive integer n the power ZnrXs can be computed by introducing n independent
non-interacting identical copies, or replicas, of the system, all subject to the same
disorder realization X. Let us labels the replicas by the index a “ 1, . . . , n. Then the
replicated Hamiltonian

HnrXs “ ´
ÿ

ij

Jij

n
ÿ

a“1

si,asj,a ´
ÿ

i

hi

n
ÿ

a“1

si,a (4.2)
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has the full permutation symmetry Sn among replicas. Tracing e´HnrXs over all spins
in all replicas gives ZnrXs. This object can be averaged over disorder to give

Zn “ ZnrXs. (4.3)

After the average over the disorder is performed, distinct replicas get coupled, and so
Zn is the partition function of a complicated interacting model.

Next we try to analytically continue the result to arbitrary (non-integer) values of n,
and the take the replica limit as in Eq. (4.1):

F “ lim
nÑ0

1´ Zn
n

. (4.4)

Likewise, various disorder-averaged correlation functions can be written using replicas
in the following way:

xOprqy “ lim
nÑ0
xOaprqyZn ,

xOpr1qOpr2qy “ lim
nÑ0
xOapr1qOapr2qyZn ,

xOpr1qyxOpr2qy “ lim
nÑ0
xOa1pr1qOa2pr2qyZn , a1 ‰ a2, (4.5)

where the averages on the right-hand side are over the thermal ensemble specified by
the average replicated partition function Zn, and a, a1 and a2 ‰ a1 are some specific
(but arbitrary) replica indices.

The nature of the replica limit is quite subtle, since it is not obvious that quantities
known for positive integer values of n admit analytical continuation. For this reason
the replica method is sometimes known as the “replica trick”, and people continue to
debate whether it can be justified at some level of generality, and whether it can be
used to compute non-perturbative results [5].

A famous class of models where the subtleties of the replica method are very promi-
nent are the so-called spin glasses [6, 7, 8, 9], which appear when the distribution of
random bonds PJpJq becomes broad in some sense, or when the geometry of the lattice
makes the spin system frustrated. A mean-field theory of spin glasses can be formu-
lated as the special infinite range model known as the Sherrington-Kirkpatric model
[10]. This model is exactly solvable and exhibits the fascinating phenomenon of replica
symmetry breaking (RBS). RBS means that the permutation symmetry Sn of the repli-
cas is broken below some transition temperature. The RSB pattern is very nontrivial,
and is described by the so-called Parisi solution [6]. What is remarkable is that Parisi
solution has been rigorously proven to be correct by mathematicians (Talagrand [11]
and others).

There are other cases, such as transitions on Bethe latices [12], where a replica
solution can be compared with a SUSY solution, and the integrable theory of replicas
[13], where the replica method is embedded into the theory of integrable models. In all
cases where a comparison with an alternative and in some sense better method exists,
replicas give correct non-perturbative results.

4.1. Non-unitarity: logarithmic CFTs, c “ 0, and multifractality. — Let us
now consider a random critical point described in replica method by the partition
function Zn in Eq. (4.3). For a finite value of n we can define the free energy

Fn “ ´ lnZn. (4.6)
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This is the free energy of the replicated theory averaged over disorder. Notice that

Z0 “ 1, F0 “ 0. (4.7)

This is a very general property of theories describing random systems in the replica
limit. We will see later that the same statements are valid for systems studied using
SUSY formalism.

It is known at least since the late 90s [14, 15] that random critical points with Z “ 1
generically exhibit logarithmic correlators described by logarithmic CFTs, see Refs.
[16, 17] for recent accounts. The mechanism of the appearance of the logs is well un-
derstood [18]. In a replicated model the operator dimensions, critical amplitudes, and
OPE coefficients all depend on n. When nÑ 0, dimensions of some operators “collide”
(become degenerate in the limit), and then their linear combinations form indecom-
posable representations of the symmetry group Sn, and lead to non-diagonalizability of
the dilatation operator and the appearance Jordan blocks. This is very similar to the
appearance of logs in the Frobenius method in the theory of ODEs when the indicial
equation has roots that differ by integers. The same mechanism works in the SUSY
formalism and in the interesting limits of geometric critical phenomena, see Sec. 7.

In d “ 2 the appearance of logarithms in correlation functions is closely related to the
vanishing of the central charge of the corresponding CFTs [19, 14, 20, 21]. Indeed, the
central charge c can be extracted either from the finite-size corrections to the free energy
density, or as from the expectation of the stress-energy tensor. Both these quantities
identically vanish in theories where Eqs. (4.7) hold.

Note that all logarithmic and c “ 0 CFTs are non-unitary, and if we hope to apply
conformal bootstrap methods to them, they should be extended in this direction.

One particularly intriguing feature of random critical points is that they exhibit mul-
tifractality, which means that the moments of a random observable O have independent
scaling dimensions:

xOyq „ L´xq . (4.8)

In a field theory these moments are described by some local operators Oq, and the
multifractal (MF) exponents xq are scaling dimension of these operators. However, as
was noticed by Ludwig and Duplantier [22, 23], the MF spectra xq are convex functions
of the order q, and for sufficiently large |q| become negative. We will see this in detail in
the context of Anderson transitions later. This convexity needs to be contrasted with
the concavity of scaling dimensions of composite operators (powers of a basic field) in
a unitary CFT. This is another manifestation of the necessity to use non-unitary CFTs
to describe random critical points.

Notice that negative dimensions of sufficiently high moments of local observables
are quite physical and simply reflect that fact that these observables are non self-
averaging: their distribution functions become broader and broader when the system
size L increases.

5. Harris criterion and related issues

Let me illustrate the use of replicas by answering one of the questions I posed above:
is a critical point in a clean system perturbatively stable upon addition of disorder?
There is a simple heuristic argument due to Brooks Harris that give a criterion for
stability [24], see [25] for a recent review of this criterion and related issues. Replica
method allows to derive this criterion in a nice renormalization group (RG) way.
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Let me consider the model (3.2) without magnetic fields and coarse-grain it. The
product sisj of two neighboring spins becomes the local energy density operator Eprq
coupled to the relevant thermal scaling variable (“temperature”). In the clean case the
dimension xE of the energy operator and the RG eigenvalue yt of the thermal variable
add up to the dimension of space: xE ` yt “ d. By the standard RG arguments the
localization length exponent ν is given by ν “ 1{yt, and then we have the relation

xE “ d´ 1{ν. (5.1)

The action (the Hamiltonian) for the coarse-grained model with bond disorder can
be written as

SrJs “ S˚ `

ż

ddr JprqEprq, (5.2)

where S˚ is the RG fixed-point action of the clean system. To average of the disorder
Jprq, we replicate the action:

SnrJs “
n
ÿ

a“1

S˚a `

ż

ddr Jprq
n
ÿ

a“1

Eaprq. (5.3)

Then we use the cumulant expansion to find

Zn “

ż

ź

a

Dsae´SnrJs “
ż

ź

a

Dsae´Seff , (5.4)

where the effective action is

Seff “
ÿ

a

S˚a ` κ1

ż

ddr
ÿ

a

Eaprq `
1

2

ĳ

ddrddr1κ2pr ´ r
1
q
ÿ

a,b

EaprqEbpr
1
q ` . . . (5.5)

κ1 “ Jprq, κ2pr ´ r
1
q “ JprqJpr1q ´ κ2

1. (5.6)

The first cumulant κ1 simply shifts the critical temperature, while the second cumu-
lant is short-ranged for uncorrelated disorder, and can be replaced by 2γδpr´r1q. Upon
this replacement the operators Eaprq and Ebpr

1q collide, and we need to look at their
operator product expansion (OPE). For a “ b the leading operator in the OPE is just
the energy itself, and the a “ b terms lead to further shift of the critical temperature.
However, for a ‰ b the leading operator in the OPE is new, and since the distinct
replicas are independent, we can simply write this operator as EaprqEbprq. Thus, the
interesting perturbation in the effective action becomes

δSeff “ γ

ż

ddr
ÿ

a‰b

EaprqEbprq. (5.7)

The relevance of this perturbation depends on the dimension of the perturbing operator.
This ban be found using the independence of the replicas in the unperturbed theory.
The two-point function of the perturbing operator at the fixed point is found by simply
counting possible ways to pair replicas with the same index at the two points:

@

ÿ

a‰b

EaprqEbprq
ÿ

a1‰b1

Ea1pr
1
qEb1pr

1
q

E

˚
“ 2npn´ 1qxEaprqEapr

1
qy

2
˚ „

2npn´ 1q

|r ´ r1|4xE
. (5.8)

Form this we see that the dimension of the perturbing operator is simply 2xE. The
corresponding RG eigenvalue is

yγ “ d´ 2xE “ 2{ν ´ d, (5.9)
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and we conclude that the perturbation is irrelevant (yγ ă 0) as long as

dν ą 2. (5.10)

This is the Harris criterion.
Let me make a few comments about this result and its derivation. First of all, the

original derivation by Harris was much more pedestrian and compared the nominal
distance to the clean transition with the RMS fluctuations of the “local” transition
temperature in the correlation volume. This argument uses the central limit theorem
to estimate these fluctuation, and gives the same result as replicas. We can ask what
happens if we include higher cumulants of the disorder. If the distribution of the disorder
is narrow in some precise sense (which is necessary for the central limit theorem to
apply), the higher cumulants exist and are small. In the effective action they produce
the same terms that have already been considered, or less relevant ones. However, if
the disorder distribution is broad, such as the Cauchy distribution (Lorentzian), for
which even the mean value does not exist, then the derivation is not justified, and
we cannot say much. Another comment is that the Harris criterion can be extended
and generalized in various ways: to disorder that is correlated in space with power-law
second cumulant κ2pr ´ r1q „ |r ´ r1|´α, to quantum critical points, and to arbitrary
spatio-temporal disorder correlations, see Exercises below and [1, 25].

5.1. Exercises. —

1. Generalize the analysis of the relevance of bond disorder that led to the Harris
criterion to show that random fields are always relevant at the clean critical point.

2. Generalize the Harris criterion to the case of correlated disorder when the second
cumulant decays as

κ2pr ´ r
1
q „ |r ´ r1|´α. (5.11)

3. Generalize the Harris criterion to quantum systems recalling that quenched disor-
der does not fluctuate in time.

5.2. Relevant disorder and new random critical points. — A natural question
is what happens to the clean critical point when the Harris criterion is violated and
disorder is relevant? In this situation we have two relevant RG directions with positive
RG eigenvalues yt “ 1{ν and yγ “ 2{ν ´ d, and we expect some crossover phenomenon
characterized by the crossover exponent φ “ yγ{yt “ 2 ´ dν. But where does this
crossover lead? It turns out that in many interesting cases the sharp transition survives,
but is controlled by a new random fixed point. The Ising model in d “ 3 is one such case.
As we know from conformal bootstrap, the scaling dimension of the energy operator
is xE « 1.412625, and dν “ 3{p3 ´ xEq « 1.8899 ă 2. Thus, the Harris criterion is
violated, but only weakly. At the same time in d “ 2 the Ising exponent ν “ 1 and
dν “ 2. In d “ 4, the upper critical dimension for the Ising symmetry, the mean field
theory is valid (apart from logarithmic corrections), and dν “ 4 ˆ 1{2 “ 2. Thus it
is possible to study the new random fixed point perturbatively in d “ 2 ` ε as well as
d “ 4 ´ ε, see [1, 26, 27, 28]. There is also a rigorous Chayes-Chayes-Fisher-Spencer
theorem [29] that states that at a random critical point the correlation length exponent
νrandom always satisfies the Harris criterion: dνrandom ě 2.

It is easy to extend the replica treatment of bond disorder to the field disorder.
A replica analysis of random fields shows that they are always relevant. Some clean
magnetic systems can exhibit first order phase transitions that bond disorder turns
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Figure 1. Phase diagram of the random-bond Ising model in terms of T 9 1{J
and p.

into critical points. For example, for the two-dimensional Ashkin-Teller model such
new critical point turns out to belong to the clean two-dimensional Ising universality
class with logarithmic corrections [30, 25], see the next subsection. Moreover, random
fields can even destroy ordered phases in dimensions d ď 2. A qualitative understanding
of all this is achieved by the so-called Imry-Ma argument [31] that in some cases can
be put on a rigorous ground, both in classical and in quantum models [32].

5.3. Marginal case: the Ising model in d “ 2 and disordered fermions. —
What happens when dν “ 2 as in the clean Ising model in d “ 2? In this marginal case
the Harris criterion is not sufficient to decide the fate of the clean critical point upon
adding radnom bond disorder. Perturbative treatments of weak disorder predicted that
it is marginally irrelevant, and causes a logarithmic flow to the clean Ising fixed point
with ensuing universal logarithmic corrections to scaling, see Ref. [33], Chapter 10 in
Ref. [8], and references therein. This scenario remained controversial for quite some
time, but recent high-accuracy Mote-Carlo simulations [30] provided strong support
for it.

The random-bond Ising model in d “ 2 (2D RBIM) has a special feature that its
clean critical point is described by the theory of 2D Majorana fermions (a very elegant
derivation is given in Polyakov’s book [34]). In this picture a weak bond disorder maps
to the random mass of the fermions. When we replicate the theory we can combine
Majorana fermions into Dirac fermions. This provides a connection to the disordered
fermionic problems that I will describe in Section 8 and allows to use the SUSY method
to study the 2D RBIM, see [19]. The SUSY method reproduces the results obtained
with replicas. Jumping ahead, I can mention that the fermionic representation of the
2D RBIM belongs to class D in the Altland-Zirnbauer classification to be reviewed in
Section 10.

11



The “fermionization” of the 2D RBIM turns out to be useful even in the case of
strong disorder when the random bonds are drawn from the bimodal distribution

PJpJijq “ p1´ pqδpJij ´ Jq ` pδpJij ` Jq. (5.12)

Models with such bimodal distributions exhibit spin glass phases for sufficiently large p
and sufficiently low temperatures. Importantly, the bimodal distribution (5.12) belongs
to a class of distributions for which the RBIM possesses a certain gauge symmetry
discovered by Nishimori. This symmetry allows to obtain a lot of exact result about
the model [7]. In particular, the gauge symmetry predicts the existence of a special
Nishimori line in the phase diagram, that goes through a multicritical point where the
three phases (ferromagnetic, paramagnetic, and spin glass) meet (in d ą 2).

For the 2D RIBM the spin glass phase is believed to exist only at zero temperature,
but the Nishimori line still intersects the ferro-para phase boundary at a multicriti-
cal Nishimori point, see the phase diagram shown in Fig. 1. The SUSY analysis of
the Nishimori point and critical points in related models [35] suggest that they can
be described by SUSY spin chains and non-linear sigma models similar to the ones ap-
pearing in the study of Anderson transitions in Section 9, but with different (enhanced)
supersymmetry.

6. Quantum spin models and SYK models.

These are generalization of classical spin systems where the classical spins si are
replaced by (non-commuting) generators ŝi of a Lie algebra g “ LieG in a certain
representation. In this case the Hamiltonian contains terms that do not commute, and
it is interesting to look at phases of the system at zero temperature. These phases and
transitions between them, called quantum phase transitions (QPTs) [36], are controlled
by the ratios of the couplings of non-commuting terms. Generally speaking, some terms
in the Hamiltonian can explicitly break the symmetry G down to a subgroup K which,
in turn, can be spontaneously broken further in some ordered ground states.

In quantum systems the time t plays a role of an additional dimension. However,
the scaling in time can be different from scaling in space. This difference is encoded
in the so-called dynamical critical exponent z that relates the divergence of the spatial
correlation length ξ close to a quantum critical point to the vanishing of the energy gap
Eg in the spectrum of the system: Eg „ ξ´z. If z ‰ 1, the space-time is anisotropic,
which prevents the use of CFTs to describe generic QPTs. However, there are many
interesting QPTs where z “ 1. A simple example is provided by the transverse field
Ising model (TFIM) in d dimensions

H “ ´Jg
ÿ

xijy

σ̂zi σ̂
z
j ´ J

ÿ

i

σ̂xi , (6.1)

where σ̂α are the three Pauli matrices representing generators of sup2q in the funda-
mental representation. This model is ordered for g " 1 and disordered for g ! 1. In
between it exhibits a QPT at a certain value gc. This QPT has z “ 1 and is described
by the Ising universality class in D “ d` 1 dimensions. This fact can be demonstrated
as follows.

Let us consider the quantum partition function of the TFIM at a finite temperature:

Zqu “ Tr e´βH . (6.2)
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This can be “Trotterized” (written as a discretization of a Feynman path integral in the
imaginary time). The result involves the matrix elements of the short-time evolution

operator e´H∆τ in the Hilbert space
`

C
2
˘bN

, where N in the number of sites in the
system. These matrix elements can be written in terms of Pauli matrices and turn out
to be identical with the matrix elements of the transverse matrix of the classical Ising
model in D “ d` 1 dimensions. See Sachdev’s book [36] for details.

Such classical-quantum correspondence is a central concept in the theory of QPTs
and is widely applicable, even though for some quantum models, including Heisen-
berg models, it leads to “classical” models with Hamiltonians (actions) that contain
imaginary terms coming from the Berry phases of the quantum spins.

In 2 “ 1` 1 dimensions the classical-quantum correspondence between the 2D Ising
model and 1` 1 TFIM can also be established by a direct fermionization of the TFIM
using Jordan-Wigner transformation. The result is a 1D tight-binding free fermion
Hamiltonian. The transfer matrix of the classical 2D Ising model can also be fermionized
by the same Jordan-Wigner transformation [37], and becomes the exponential of the
same 1D fermionic Hamiltonian.

Now imagine that we introduce quenched disorder in a quantum spin model. Then
the corresponding classical model will also become disordered, but the disorder in the
classical model is perfectly correlated along the direction that corresponds to the time
in the quantum model. Such disorder is sometimes called “columnar”. This columnar
structure is related to the fact that the Harris criterion for quantum critical points in
d dimensions is still dν ą 2 (as opposed to a naively expected pd` zqν ą 2).

6.1. Quantum spin chains, non-linear sigma models, and WZNW CFTs. —

6.2. Strong disorder RG and infinite randomness fixed points. —

6.3. Quantum information perspective. Entanglement and measurement-
induced entanglement transitions. —

6.4. SYK models. —

7. Geometric critical phenomena.

A particular type of bond disorder in magnets leads to another very interesting
subject. Let us consider

PJpJijq “ pδpJij ´ Jq ` p1´ pqδpJijq. (7.1)

This means that with probability p we have a bond with a non-random exchange cou-
pling J , and with probability 1´ p there is no bond at all. If we now ignore the spins
and focus only on the connectivity properties of clusters of bonds, we have the problem
of bond percolation.

This is a very rich and well-developed subject. This simple model exhibits a geometric
critical phenomenon at some special value pc (dependent on the lattice, dimensionality,
etc.), which separates the phase where all bond clusters are finite from the phase where
there are infinite clusters. Many properties of clusters are described by power laws with
universal critical exponents near pc.
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The bond percolation model can be obtained as a limit of a non-random spin model
of the type (3.2) called the Q-states Potts model given by the Hamiltonian

HPotts “ ´J
ÿ

xijy

δsi,sj . (7.2)

where the spins are allowed to take Q different values, and the interaction on a bond
only cares about whether the spins at the end of the bond are the same or not. It is
easy to see that for Q “ 2 the Potts model is equivalent to the Ising model. The Potts
model can be reformulated in a geometric way directly in terms of clusters of bonds.
The result is called the random cluster model or the Fortuin-Kastelein (FK) model. In
this formulation the parameter Q can easily be continued to arbitrary complex values,
and turns out that the limit Q “ 1 gives the bond percolation. All FK models exhibit
geometric critical phenomena for certain values of d and Q.

Another related family of models are the loop models obtained by a similar geomet-
ric reformulation of the non-random Opnq models mentioned above. In this case the
geometric objects of interest are loops composed of bonds of the underling lattice, and
the parameter n can be any complex number.

Notice that both classes of models — FK models and loop models — are non-random
in the sense I considered above. Why then do I mention them? There are two reasons.
First, it turns out that geometric critical phenomena are closely related to the Anderson
transitions that I will describe later, and in particular, to certain network models.
Second, in geometric critical phenomena one can focus on very non-trivial geometric
and topological properties of extended objects, such as clusters, their boundaries and
perimeters, or loops. These properties can be studied in a given realization of the
underlying spin model. They are then the analogues of random observables in an
ensemble of disorder realizations, and can be characterized by probability distributions.
In this case the usual thermodynamic ensemble plays the role of the ensemble of disorder
realizations.

An important point is that similar to the replicated theories with a non-integer
number of replicas or in the replica limit, the Q-states Potts model and Opnq model
are not unitary for generic values of Q and n. Moreover, even for “nice” values of the
parameters when the theory is unitary, such as the Ising model at Q “ 2, the focus on
the geometric non-local observables required to extend the usual Kac table beyond its
standard range appropriate for a minimal CFT. The operators φp,q that describe those
non-local properties can have arbitrarily large Kac labels p and q.

7.1. Multifractal harmonic measure. — In all geometric critical phenomena we
also find multifractal behavior of the harmonic measure on the boundaries of clusters
or loops. Harmonic measure can be defined in any d, but for simplicity, let me restrict
the discussion to d “ 2, where it has especially nice conformal properties, and where
its moments can be found from CFT.

Consider a closed simple curve C which bounds a random cluster of size L. One can
imagine that the cluster is made of a conducting material and carries a total electric
charge one on its boundary C. The harmonic measure of any part of C is defined as
the electric charge of this part. More formally, the harmonic measure of a part of the
curve C is the probability that a Brownian motion released from infinity hits the curve
C in this part.

Let us pick a point zi on the curve and consider a disc of a small radius a ! L
centered at zi. It surrounds a small part of C and we define pi “ ppzi, aq to be the
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Figure 2. A curve covered by discs.

harmonic measure of this part that is the electric charge on it. Then we consider the
moments

Mq “

N
ÿ

i“1

pqi , (7.3)

where q is a real power and N is the number of discs needed to cover C as in Fig. 2.
For a ! L (N " 1) these moments scale as

Mq „

´ a

L

¯τpqq

,
a

L
Ñ 0. (7.4)

The function τpqq is called the multifractal spectrum of the curve C and it encodes a
lot of information about the curve C. It also has some simple properties. First of all,
since all 0 ă pi ď 1, the moments Mq are well defined for any real q and the function
τpqq is non-decreasing and concave: τ 1pqq ě 0, τ 2pqq ď 0. Secondly, if q “ 1 the sum
in (7.3) is equal to the total charge of the cluster and therefore does not scale with a,
producing the normalization condition τp1q “ 0. Thirdly, if we set q “ 0, M0 is simply
the number N of discs of radius a necessary to cover the curve C so that by definition
the fractal (Hausdorff) dimension of C is df “ ´τp0q.

If the curve C were smooth we would have a simple relation τpqq “ q´1. But cluster
boundaries at a critical point are fractal, and τpqq is a non-linear function of q. In
addition, the curve C is random, and so are its moments Mq. We can average them
over the ensemble of curves, which is the analog of the disorder average in this case.
This gives the average MF spectrum τ̄pqq. In this context the spectrum τpqq is called
the typical MF spectrum. These are easily related, and for a system with the central
charge c can be expressed in terms of

∆pqq “

?
1´ c` 24q ´

?
1´ c

?
25´ c´

?
1´ c

, (7.5)

which, remarkably, is the gravitationally dressed dimension q as given by the KPZ
formula of 2D quantum gravity [38]. These results were first obtained by means of
quantum gravity in [39, 40] and then re-derived with many generalizations in the
usual CFT formalism in [41, 42].
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7.2. 2D critical phenomena and stochastic conformal geometry: SLE, CLE,
random lattices and Liouville quantum gravity. — Finally I want to men-
tion that specifically in two dimensions the geometric critical phenomena have been
very actively studied rigorously by mathematicians in the past 20-25 years. A break-
through made by Oded Schramm in 1999 led to creation of a beautiful subject of
two-dimensional probability theory and stochastic conformal geometry, which includes
the famous Schramm-Loewner evolutions (SLE) and conformal loop ensembles (CLE),
as well as more recent rigorous studies of Liouville quantum gravity. These very excit-
ing developments are all very closely connected with CFT, and would deserve separate
lecture courses.

8. Disordered fermionic systems

One of the most intriguing problems in modern condensed matter physics is the com-
bined effect of correlations and disorder on electronic properties of solids. Interplay
of interactions and disorder results in such diverse phenomena as metal-insulator and
superconductor-insulator transitions, quantum Hall effects, mesoscopic electron trans-
port, etc. For some of these phenomena, including the integer quantum Hall (IQH)
effect, a fairly complete understanding may be achieved under the assumption that
electrons do not interact.

Neglecting the interactions but retaining disorder results in problems of a single
fermion in a random potential. These can be described by Hamiltonians in a continuum,
such as

H “ H0 ` Uprq, H0 “
1

2m

´

´ i~∇` e

c
Aprq

¯2

, (8.1)

where Uprq is a random potential, and I included the vector potential Aprq to account
for a possible magnetic field. Other type of models are tight-binding lattice models

H “
ÿ

i,j

`

tijc
:

icj ` c.c.
˘

`
ÿ

i

uic
:

ici, (8.2)

where both the hopping amplitudes tij and the on-site potentials ui can be random.
We can also generalize this by including spin, superconducting pairing correlations at
a mean-field level, and more complicated band structures, including Dirac points.

There is another class of models that describe non-interacting fermions. These are
the so-called network models. One of the most often used models in this class is the
Chalker-Coddington (CC) network [43] describing the integer quantum Hall (IQH)
transition. The CC network is shown in Fig. 3 and it consists of directed links and
nodes arranged on a square lattice. A state of the network |ψy is a vector in CNL , where
NL is the number of links. Using the natural basis vectors |ly associated with each link
l, we write

|ψy “
ÿ

l

ψl|ly. (8.3)

We refer to the amplitudes ψl as fluxes carried by the links.
States of the network evolve in discrete time, each time step described by a unitary

operator U acting on C
NL . The evolution operator U is determined by its matrix

elements Ull1 ” xl|U |l1y which are non-zero only if l1 and l are incoming and outgoing
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Figure 3. The Chalker-Coddington network model. The fluxes propagate on
the links in the directions shown by the arrows. Two ideal leads are attached
on the left and the right, and reflecting boundary conditions are imposed at
the top and bottom.

links at the same node. In this case the matrix element is Ull1 “ Sll1 , where the 2 ˆ 2
(unitary) scattering matrix S connects incoming pψi, ψı̄q and outgoing pψo, ψōq fluxes:

ˆ

ψo
ψō

˙

“ S
ˆ

ψi
ψı̄

˙

“

ˆ

α β
γ δ

˙ˆ

ψi
ψı̄

˙

. (8.4)

Network models can be generalized to higher dimensions, to include spins, etc.
Single-particle disordered problems exhibit the fascinating phenomenon of Anderson

localization, in which disorder leads to exponentially-localized eigenstates whose spatial
extent is called the localization length ξ. If the states at the Fermi level of an electronic
system are localized, the system is insulating. In d ě 3 there are continua of extended
states, separated (in energy) from the localized states by critical energies Ec (usually
called the mobility edges). Upon variation of the Fermi energy across a critical energy
Ec, a transition between metallic and insulating phases happen. In d “ 2 and a strong
magnetic field (the conditions for QH effects) extended states exist only at discrete
energies separated by the cyclotron energy. Varying the Fermi energy across the energy
of an extended state leads to the transition between plateaus in the IQH effect. The
two insulating phases separated by an IQH transition are distinguished by the value of
quantized Hall conductivity.

All such transitions, called Anderson transitions (ATs), are disorder-dominated con-
tinuous quantum phase transitions. In the vicinity of an AT the localization length ξ
diverges (usually) in a power-law fashion as a function of energy:

ξ „ |E ´ Ec|
´νξ . (8.5)

The localization length exponent νξ is one of the universal scaling properties whose
calculation is an important goal of a theory of ATs.

Another fascinating object are the eigenstates (wave functions) directly at an AT,
that is, at the critical energy Ec. They turn out to be multufractals. I will describe
this in much more details later. For now I just want to mention that different moments
of the critical wave functions exhibit different scaling behavior, and that requires us to
consider a whole continuum of critical exponents called the multifractal (MF) spectrum.

The interesting questions are

1. The nature of the spectrum and correlations of eigen-energies.
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2. The nature and correlations of eigenstates (wave functions).
3. Transport properties.
4. Critical properties at ATs, including MF spectra of critical wave functions.

Similar to magnetic systems, answers to these questions depend on specific detials
such as the dimensionality of space d and the symmetries of the Hamiltonian. Before
discussing symmetry classification of disordered systems, let me discuss an alternative
to the replica method that is available in this case, the supersymmetry (SUSY) method.

9. Supersymmetry method and non-linear sigma models

The SUSY method is in available for systems where the basic functional integral is
Gaussian. This is the case for disordered electronic systems [44]. Indeed, all necessary
information about them is in principle contained in Green functions (GFs)

Gα
pEq “

1

E ` iα0` ´H
, (9.1)

where α “ ˘1 for retarded (advanced) GF. In the coordinate representation

Gα
pr, r1;Eq “ xr|

1

E ` iα0` ´H
|r1y “

ÿ

n

ψnprqψ
˚
npr

1q

E ` iα0` ´ En
, (9.2)

where ψn and En are the normalized eigenfunctions and eigenenergies of the Hamil-
tonian H. Various observables can be expressed in terms of GFs, including the local
density of states

νpr;Eq “
ÿ

n

δpEn ´ Eq|ψnprq|
2
“ ´

α

π
ImGα

pr, r;Eq. (9.3)

GFs can be written as ratios of two Gaussian functional integrals over (complex)
Grassman variables χ and χ˚

Gα
pr, r1;Eq “ ´iα

1

Z

ż

Dχχprqχ˚pr1q exp
´

iα

ż

ddr χ˚
`

E ` iα0` ´H
˘

χ
¯

, (9.4)

where the partition function Z is

Z “

ż

Dχ exp
´

iα

ż

ddr χ˚
`

E ` iα0` ´H
˘

χ
¯

. (9.5)

The SUSY method uses the fact that for every disorder realization Uprq the partition
function is a fermionic determinant, and its inverse can be written as a Gaussian integral
over a complex bosonic field φprq:

1

Z
“

ż

Dφ exp
´

iα

ż

ddr φ˚
`

E ` iα0` ´H
˘

φ
¯

. (9.6)

This leads to the represntation of a GF as a SUSY functional integral

Gα
pr, r1;Eq “ ´iα

ż

DφDχχprqχ˚pr1qe´SU (9.7)

with the action

SrU s “ ´iα

ż

ddr
´

φ˚
`

E ` iα0` ´H
˘

φ` χ˚
`

E ` iα0` ´H
˘

χ
¯

. (9.8)
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Figure 4. The up1|1q supermultiplets. Left: the generators of up1|1q, middle:
the action and its partners, right: the stress tensor and its partners.

In the SUSY form, the GFs and their products are easy to average over disorder. It
is traditional to model the disorder potential Uprq by a white noise with a Gaussian
distribution

P rUprqs9 exp
´

´
1

2u

ż

ddr U2
prq

¯

. (9.9)

Averaging over the disorder gives

exp
´

´ iα

ż

ddr Upφ˚φ` χ˚χq
¯

“ exp
´

´
u

2

ż

ddr pφ˚φ` χ˚χq2
¯

, (9.10)

and the disorder-averaged GFs becomes

Gαpr, r1;Eq “ ´iα

ż

DφDχχprqχ˚pr1qe´Seff (9.11)

where the action is

Seff “

ż

ddr
´

´ iα
“

φ˚pE ` iα0` ´Hqφ` χ˚pE ` iα0` ´Hqχ
‰

`
u

2
pφ˚φ` χ˚χq2

¯

.

(9.12)

The SUSY method is easily extended to disorder averages of products of multiple
GFs: for each GF we need to introduce its own “replica” of the pair pφ, χq. Notice,
however, that no replica limit is necessary. The SUSY method can also be applied to
network models.

9.1. Non-unitarity and logarithms. — Notice that in the SUSY form of a GF
there is no denominator. The total partition function is unity:

ZSUSY “ 1, (9.13)

since the fermionic and bosonic contributions to it cancel out. This is true before and
after the disorder average. Thus, we see that if the SUSY method is used to study a
critical point, the central charge of the resulting CFT is zero.

But there is a deeper structure in the SUSY method explained in Refs. [14]. The
point is that both actions (9.8) and (9.12) are invariant under the action of the Lie
superalgebra up1|1q, whose to bosonic generators J and j and two fermionic generators
η and η̄ form an indecomposable supermultiplet (the generator J commutes with all
other generators). The members of the multiplet are connected by the adjoint action
as shown in the left in Fig. 4. It turns out that any supersymmetric action S and the
corresponding stress tensor T are members of similar multiplets, also shown in Fig. 4.
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Symmetry NLσM Compact (fermionic) Non-compact (bosonic)
Class (n-c|c) space space

A (UE) AIII|AIII Up2Nq{UpNq ˆ UpNq UpN,Nq{UpNq ˆ UpNq

AI (OE) BDI|CII Spp4Nq{Spp2Nq ˆ Spp2Nq SOpN,Nq{SOpNq ˆ SOpNq

AII (SE) CII|BDI SOp2Nq{SOpNq ˆ SOpNq Spp2N, 2Nq{Spp2Nq ˆ Spp2Nq

AIII (chUE) A|A UpNq GLpN,Cq{UpNq

BDI (chOE) AI|AII Up2Nq{Spp2Nq GLpN,Rq{OpNq

CII (chSE) AII|AI UpNq{OpNq
GLpN,Hq{Spp2Nq
” U˚p2Nq{Spp2Nq

C (SC) DIII|CI Spp2Nq{UpNq SO˚
p2Nq{UpNq

CI (SC) D|C Spp2Nq SOpN,Cq{SOpNq

BD (SC) CI|DIII Op2Nq{UpNq Spp2N,Rq{UpNq

DIII (SC) C|D OpNq Spp2N,Cq{Spp2Nq

Table 1. Sigma model spaces. Sigma model target spaces form large families
of Riemannian symmetric superspaces. The last two columns list the compact
and non-compact components of their ‘base’.

In particular, the stess tensor T and the “top” field t form a logarithmic pair such that
the dilatation operator D acts on them as a Jordan block:

D

ˆ

T
t

˙

“

ˆ

d 0
1 d

˙ˆ

T
t

˙

. (9.14)

Then the global conformal symmetry determines the form of the two-point functions

xT prqT p0qy “ 0, xT prqtp0qy “
b

r2d
, xtprqtp0qy “ ´

2brln r `Op1qs

r2d
. (9.15)

This structure is the analog of the “collision” of operators in the replica limit. See Refs.
[20, 21, 18] for more details.

9.2. Non-linear sigma models. —

10. Altland-Zirnbauer symmetry classification

11. Multifractality of wave functions at ATs

11.1. Multifractal spectra. — We consider exponents that characterize multifrac-
tal (MF) wave functions at Anderson localization-delocalization (LD) transitions in the
bulk of a finite disordered electronic system of size L in d dimensions. To avoid the

20



issue of boundaries, let the system be defined on a torus. The main object of interest
are the single-particle wave functions ψnprq, normalized on the torus:

ż

ddr |ψnprq|
2
“ 1. (11.1)

Our presentation here will be heuristic and will avoid all mathematical subtleties.
For details and rigorous approaches see the book by Falconer [?]. A generic description
of MF measures involves [?] breaking the system into little boxes Bi with linear size a,
labeled by i. The number of these boxes N scales as N “ pL{aqd. One then calculates
the probability pi for an electron to be in the i-th box (the measure in this box) as

pi “

ż

Bi

|ψprq|2ddr, (11.2)

and forms the so-called average generalized inverse participation ratios (IPRs)

Pq “
N
ÿ

i“1

pqi “ Npqi . (11.3)

(We have assumed that the system is homogeneous after disorder average.) At criticality
the IPRs scale as

Pq „
´L

a

¯´τq
, (11.4)

where the set of exponents τq is usually referred to as the (average) multifractal spectrum.
The definition of the MF spectrum immediately implies several general properties of

τq. First of all, P0 “ N simply counts the number of boxes, while P1 “ 1 due to the
normalization condition (11.1). Therefore,

τ0 “ ´d, τ1 “ 0. (11.5)

Next, the probabilities pi whose moments enter the definition of Pq are bounded by
0 ă pi ď 1. Consequently, Pq must be a monotonously non-increasing function of q,
since pq1i ě pq2i for q1 ă q2. Then the multifractal spectrum τq in Eq. (11.4) must be a
monotonously non-decreasing functions of q. Generally speaking, there may be a value
of q “ qt where τq has a horizontal tangent. Then it follows that τq “ τqt “ const for
q ě qt. Such change in the behavior of τq from an increasing function to a constant
is often referred to as ‘freezing’ or ‘termination’ (see Ref. [?] for more details). In all
known cases the value qt where such termination occurs satisfies qt ą 0.

It is instructive to present the two limiting cases of wave functions. First, an ex-
tended wave function’s caricature is given by the uniform |ψ|2 “ L´d. In this case it is
elementary to see that Pq “ pL{aq

´dpq´1q, giving the linear MF spectrum of extended
states:

τext “ dpq ´ 1q. (11.6)

The other extreme case is that of a state localized within a localization volume with the
linear size ξ (the localization length), which contains Nξ “ pξ{aq

d boxes. Only these
boxes contribute to the IPRs, and we get Pq “ pξ{aq

´dpq´1q. There is no scaling with
the system size L in this case, which is encoded in

τloc “ 0. (11.7)

We also comment that numerical studies of critical wave functions are often done
in lattice models, where the wave functions are defined on lattice sites i, and they are
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normalized in such a way that |ψi|
2 is the probability for the electron to be on site

i. In this case we can identify the lattice spacing with a, and pL{aqd “ N with the
total number of sites in the lattice. Then one looks at the scaling of the IPRs with the
number of lattice sites:

Pq “
N
ÿ

i“1

|ψi|2q „ N´τpqq{d. (11.8)

11.2. Multifractal analysis: geometry and probability. — MF measures can be
characterized in an alternative way, focusing on their local geometry (scaling behavior)
and interpreting it in terms of probability distribution of pi or |ψi|

2. This is the point
of view adopted in the so-called multifractal analysis, which we review here.

The basic idea is that even for a given sample we can bin the values of probabilities
pi and form a histogram for them. This approach makes even more sense in the case
of an ensemble of samples, a natural setting for disordered systems. The histogram of
pi depends on the ratio a{L. To extract an object meaningful in the thermodynamic
limit, we need to consider the local singularity exponents defined by pi “ pa{Lq

αi . The
bounds 0 ă pi ď 1 imply that the singularity exponents are bounded by α ě 0. Now,
we consider the histogram of the singularity exponents and view it as the probability
distribution of α.

11.3. Multifracal exponents and field theory. — Relations between general MF
spectra and field theory were considered by Duplantier and Ludwig in Ref. [?]. For
Anderson transitions such relations exist between moments of the local density of states
(DOS) and the expectation values of certain operators in a sigma model, see Ref. [?],
where it is rigorously derived using Green’s function. Here we will present a heuristic
argument leading to a somewhat schematic relation between wave function moments
and local operators in afield theory.

Roughly speaking, identification is achieved by considering the (smeared) local den-
sity of states (DOS)

νηpr, Eq “
ÿ

n

|ψnprq|
2 η

pE ´ Enq2 ` η2
, (11.9)

where n labels the normalized energy eigenstates ψnprq at energy En. The energy levels
are assumed to have a finite width η that serves as a regulator in the infinite volume
limit. The global DOS νηpEq is the integral of the local DOS over the whole sample:

νηpEq “

ż

ddr νηpr, Eq “
ÿ

n

η

pE ´ Enq2 ` η2
. (11.10)

In a sufficiently large system, where the mean level spacing δ “ L´dνηpEq
´1 ! η,

many levels with close energies contribute to the local DOS. If we assume that all these
wave functions with energies close to a given energy E show statistically identical scaling
behavior, we can pull them out of the sum over the energies, and write schematically

νηpr, Eq „ |ψEprq|
2νηpEq, (11.11)

where ψEprq is a generic random wave function with energy sufficiently close to E.
Moments of the local DOS νηpr, Eq are represented by expectation values of operators

in the corresponding field theory [?]. We write this schematically as
“

Ldνηpr, Eq
‰q
„ Oqprq. (11.12)
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This relation is understood in such a way that products of these operators can be
considered, and then correlation functions of these operators in a field theory give the
disorder averages of products of powers of the LDOS at different points. In view of Eq.
(11.11), the same operator represents moments of the wave function ψEprq:

“

LdνηpEq
‰q
|ψEprq|

2q
„ Oqprq. (11.13)

Notice that the global DOS νpEq is self-averaging and can be replaced by its disorder
average xνpEqy.

Now we concentrate on the wave functions and the DOS at the critical energy, E “ Ec,
and drop the subscript E. The global DOS ν may vanish at criticality in the infinite
system. In a finite system it has a power-law behavior

ν „ L´xν , (11.14)

where the exponent xν vanishes in Wigner-Dyson classes but is known to be non-zero in
other symmetry classes. For example, at the spin quantum Hall transition in symmetry
class C [?, ?, ?], the exponent xν is known to be exactly xν “ 1{4 [?].

Oq is a scaling operator with the (bulk) scaling dimension xq at the LD transition.
Its one-point function (the expectation value) in a finite system of size L scales as

@

Oqprq
D

„ L´xq . (11.15)

Combining this with Eqs. (11.13, 11.14), we obtain the scaling of the moments of the
critical wave functions:

|ψprq|2q „ L´dq´xq`qxν . (11.16)

Comparison of Eqs. (11.16) and (11.4) implies the relations

τq “ dpq ´ 1q ` xq ´ qxν , xq “ τq ´ dpq ´ 1q ` qxν . (11.17)

The values x0 and x1 follow from (11.5):

x0 “ 0, x1 “ xν . (11.18)

Often the so-called anomalous exponents ∆q are introduces through τq “ dpq´1q`∆q.
These are related to xq by

∆q “ xq ´ qxν , (11.19)

and for both q “ 0 and q “ 1 they vanish: ∆0 “ ∆1 “ 0.
It is important for our discussion that for sufficiently large |q| the dimensions xq or ∆q

are negative (it will be demonstrated below). Thus, the one-point function (11.15) may
grow with the system size. While this is a very unusual property from a (unitary) field
theory point of view, it is natural when viewed from the perspective of the probability
distribution of the wave function intensity.

The slope of xq at q “ 0 is (remember that, by definition, αq “ dτq{dq)

dxq
dq

ˇ

ˇ

ˇ

q“0
“ α0 ´ d` xν . (11.20)

The sign of the slope will play an important role in the following. From general proper-
ties of MF spectra (see Ref. [?]) it follows that α0 ą d. Therefore, the sign of α0´d`xν
depends on whether xν ą d ´ α0 or the other way round. In the first case the slope
α0 ´ d ` xν ą 0, and it is in this case that our general arguments apply. We will
assume that this is the case. For example, at the spin quantum Hall transition in class
C xν “ 1{4, and (numerically) 2´ α0 « ´0.137.

23



Actually, generalizing arguments from Ref. [?] based on conformal invariance (in that
paper we specifically focused on the case of d “ 2) we can show that the combination
in the right-hand side of the last equation is related to the typical localization length
of a quasi-1D system on Sd´1 ˆ R. This shows that

α0 ´ d` xν ą 0. (11.21)

Independently of the slope of xq at q “ 0, in the presence of termination of the τq
spectrum at qt, the value of xq becomes negative for sufficiently large q. Therefore,
there exists a special value of q, which we denote as q˚ such that xq˚ “ 0.

The operator Oq˚ plays the role of the identity operator 1 in the field theory of the
LD transition. We also have the Abelian OPE (which follows immediately from the
definition (11.13) of the operators Oq)

Oq1pr1qOq2pr2q9r
xq1`q2´xq1´xq2
12 Oq1`q2

`

r1`r2
2

˘

` . . . , r12 “ |r1 ´ r2|. (11.22)

Now choose q1 “ q, and q2 “ q˚ ´ q. This will give

Oqpr1qO2˚´qpr2q „ Oq˚

`

r1`r2
2

˘

„ 1. (11.23)

12. Symmetries of MF spectra and generalized multifractal correlators

Now we assume the symmetry of the critical point with respect to global confor-
mal transformations. Global conformal invariance dictates that a two-point correlator
xO1O2y vanish unless the dimensions of the operators involved are equal. Then we see
that the non-vanishing correlator xOqpr1qOq˚´qpr2qy implies that the dimensions of the
operators involved are equal:

xq “ xq˚´q. (12.1)

Alternatively, we can say that the spectrum of dimensions xq is symmetric across the
symmetry point q “ q˚{2. This general symmetry relation is the main result.

For the Wigner-Dyson classes xν “ 0, and the symmetry relation (12.4) leads tot he
symmetry of the anomalous exponents:

∆q “ ∆q˚´q. (12.2)

Mirlin et al. [?] have shown that in this case q˚ “ 1.
For Wigner-Dyson classes ∆q “ xq, and these dimensions have been shown by Mirlin

et al. [?] to satisfy an exact symmetry relation

∆q “ ∆1´q. (12.3)

This relation was generalized to all symmetry classes in Ref. [?]. There it was shown
that the scaling dimensions xq satisfy the symmetry relation

xq “ xq˚´q. (12.4)

Alternatively, we can say that the spectrum of dimensions xq is symmetric across the
symmetry point q “ q˚{2. The symmetry point q˚ depends on the symmetry class,
as well as on the actual fixed point. The symmetry relation (12.4) implies that the
operator Oq˚ has vanishing dimension:

xq˚ “ 0. (12.5)

More general observables Oλ constructed of many wave functions have been con-
sidered in Ref. [?], where exact scaling operators have been identified. They turned
out to be labeled by arbitrary Young tableaux or, equivalently, by integer partitions
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λ “ pq1, q2, . . . , qnq. The vector λ also has the meaning of a highest weight under the
action of a Lie algebra. There is a discrete group W , called the Weyl group, acting in
the weight space, and the scaling dimensions xλ of the composite operators are invariant
under the action of this group:

xwλ “ xλ, @w P W. (12.6)

The important generators of the Weyl group are reflections in certain hyperplanes in the
weight space. Their action on the weight λ “ pq1, q2, . . . , qnq in terms of its components
qj is as follows:

(i) sign inversion of q̃j ” qj `
cj
2

for any j P t1, 2, . . . , nu:

qj Ñ ´cj ´ qj, (12.7)

(ii) permutation of q̃i “ qi `
ci
2

and q̃j “ qj `
cj
2

for some pair i, j P t1, 2, . . . , nu:

qi Ñ qj `
cj ´ ci

2
; qj Ñ qi `

ci ´ cj
2

. (12.8)

The parameters ci are the coefficients of the expansion of the bosonic part

ρb “
n
ÿ

j“1

cjej (12.9)

of the half-sum of the positive roots ρ in a standard basis ej. These coefficients are
known for all families of symmetric superspaces. For class A they are cj “ 1´ 2j.

The previous case of the usual MF dimension corresponds to λ “ p1, 0, 0, . . . , 0q, and
c1 “ ´q˚.

13. Multifractal multipoint functions and RG

Equation (11.15) can be understood from an RG point of view. We need to run RG
from the microscopic scale a up to the scale L, and the one-point functions at this scale
becomes a number of order one. The result of the RG is the appearance of the scale
factor L{a raised to the power ´xq.

Similar arguments can be used to determine the behavior of multi-point functions.
For this we need to note that the definition (11.13) of the operators Oq suggests the
following Abelian fusion rule:

Oq1pr1qOq2pr2q „ Oq1`q2

`

r1`r2
2

˘

. (13.1)

Notice that while this fusion rule seems natural, it may be incorrect, and requires an
actual justification in any given model. We will assume this fusion rule from now on.

Let us consider the two-point function xOq1pr1qOq2pr2qy. Now we run the RG up to

the scale r12 “ |r1 ´ r2|, which results in the renormalization factor r
´xq1´xq2
12 . At this

scale the two operators fuse to Oq1`q2 . Then we renormalize further up to scale L,
which results in the additional factor pL{r12q

´xq1`q2 . Finally, at this scale the correlator
is of order 1, and we get

xOq1pr1qOq2pr2qy „ r
´xq1´xq2
12

´ L

r12

¯´xq1`q2
“ r

xq1`q2´xq1´xq2
12 L´xq1`q2 . (13.2)
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The same result is obtained from the Abelian OPE (a more detailed version of the
fusion rule (13.1)):

Oq1pr1qOq2pr2q9 r
xq1`q2´xq1´xq2
12 Oq1`q2

`

r1`r2
2

˘

` . . . (13.3)

combined with Eq. (11.15) applied to the expectation value of Oq1`q2 .
Next consider the three-point function xOq1pr1qOq2pr2qOq3pr3qy. To apply the RG

argument, we need to know the hierarchy of distances between the three points. For
example, let us assume that

r12 ! r13 „ r23 ! L. (13.4)

Then there will be three stages of RG and two fusions resulting in

xOq1pr1qOq2pr2qOq3pr3qy „ r
´xq1´xq2´xq3
12 xOq1`q2pr1{r12qOq3pr3{r12qy

„ r
´xq1´xq2´xq3
12

´r13

r12

¯´xq1`q2´xq3
´ L

r13

¯´xq1`q2`q3

“ r
xq1`q2´xq1´xq2
12 r

xq1`q2`q3´xq1`q2´xq3
13 L´xq1`q2`q3 . (13.5)

Similar expressions are obtained in other cases when the distances between the points
satisfy different inequalities.

Is also easy to generalize these expressions to higher multipoint functions. It should
be clear from the discussion above that a generic n-point MF function x

śn
i“1 Oqipriqy,

where the pairwise distances rij are all much smaller than the system size L will scale
with the system size as

xOq1pr1q . . .Oqnprnqy „ L´xq1`¨¨¨`qn . (13.6)

14. A summary of CFT results

Here I use the relevant information from Section 4.3.1 in [?].
A basic notion in conformal field theory (CFT) is that of a quasiprimary operator

φprq. Such operators transform in a very specific way under global conformal transfor-
mations, and the results summarized in this section are derived assuming the quasipri-
mary nature of all operators involved.

In a CFT the expectation value of any nontrivial quasiprimary field in the infinite
plane is zero:

xφprqyCFT “ 0. (14.1)

Only the identity operator has the obvious property

x1yCFT “ 1. (14.2)

If we assume translation, rotation, and scale invariance, then the two-point function
of fields with dimensions x1 and x2 is (see Eq. (4.51) in [?])

xφ1pr1qφ2pr2qyCFT “ C12 r
´x1´x2
12 , r12 “ |r1 ´ r2|. (14.3)

If one additionally assumes invariance under special conformal transformations, the
two-point function is restricted further to be (see Eq. (4.55) in [?])

xφ1pr1qφ2pr2qyCFT “

#

C12 r
´2x1
12 , if x1 “ x2,

0, if x1 ‰ x2.
(14.4)
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Similar arguments based on the (finite) conformal symmetry in any dimensionality
lead to the following expressions for three- and four-point functions:

xφ1pr1qφ2pr2qφ3pr3qyCFT “ C123 r
x3´x1´x2
12 rx2´x1´x3

13 rx1´x2´x3
23 , (14.5)

xφ1pr1q . . . φ4pr4qyCFT “

4
ź

iăj

r
x{3´xi´xj
ij F pX1, X2q, x “

4
ÿ

i“1

xi. (14.6)

In the last formula for the four-point function the undetermined function F depends
on the two cross-ratios

X1 “
r12r34

r13r24

, X2 “
r12r34

r14r23

. (14.7)

In two dimensions (2D), where the points are specified by complex coordinates z,
correlation the two- and three-point functions factorize into holomorphc and antiholo-
morphic factors (with possibly different holomorphic and antiholomorphic dimensions
h and h̄):

xφ1pz1, z̄1qφ2pz2, z̄2qyCFT “ C12 z
´2h
12 z̄´2h̄

12 , if h1 “ h2 “ h and h̄1 “ h̄2 “ h̄,
(14.8)

xφ1pz1, z̄1qφ2pz2, z̄2qφ3pz3, z̄3qyCFT “ C123z
h3´h1´h2
12 zh2´h1´h3

13 zh1´h2´h3
23

ˆ z̄h̄3´h̄1´h̄2
12 z̄h̄2´h̄1´h̄3

13 z̄h̄1´h̄2´h̄3
23 . (14.9)

For four points in two dimensions the two cross-ratios are not independent, since the
four points involved are in the same plane. Denoting zij “ zi ´ zj, we have

η “
z12z34

z13z24

, 1´ η “
z14z23

z13z24

,
η

1´ η
“
z12z34

z14z23

. (14.10)

Then the four-point function can be written as

xφ1pz1, z̄1q . . . φ4pz4, z̄4qyCFT “

4
ź

iăj

z
h{3´hi´hj
ij z̄

h̄{3´h̄i´h̄j
ij F pη, η̄q, h “

4
ÿ

i“1

hi, h̄ “
4
ÿ

i“1

h̄i.

(14.11)

15. Relation of MF multipoint functions and CFT correlators

The previous discussion immediately implies that not all MF multipoint functions
have representation as CFT correlators. For example, even the one-point function
(11.15) is consistent with Eq. (14.1) only if xq ą 0. But as we have mentioned already,
for a whole infinite range of q the dimensions xq ă 0. In addition, as we have seen, there
is a non-trivial operator Oq˚ , distinct from the identity operator, whose dimension is
zero, and whose expectation value in the infinite system is one:

xOq˚y “ 1. (15.1)

This indicates that we cannot expect all aspects of MF multipoint functions to be
describable by a CFT.

Let us look at the two-point function (13.2). We notice the following: we can choose
q2 “ ´q1, and then the dimension xq1`q2 “ x0 “ 0. This implies that with this choice
the two-point function stops depending on the system size:

xOq1pr1qO´q1pr2qy „ r
´xq1´x´q1
12

´ L

r12

¯´x0

“ r
´xq1´x´q1
12 . (15.2)
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Then the system size can be taken to infinity, and the two-point function can be com-
pared with a two-point function in a critical field theory. We see that the above form
is consistent with requirements of rotational, translational and scale invariance, Eq.
(14.3), but not with conformal invariance, Eq. (14.4), since the dimensions xq1 ‰ x´q1 .

However, the presence of the special operator Oq˚ allows us to make another choice.
Indeed, if we choose the special value q2 “ q˚ ´ q1, the dimension xq1`q2 “ xq˚ “ 0. In
this case we have

xOq1pr1qOq˚´q1pr2qy „ r
´xq1´xq˚´q1
12

´ L

r12

¯´xq˚
“ r

´2xq1
12 . (15.3)

This two-point is independent of the system size and is also consistent with the CFT
form (14.4), since, due to the symmetry relation (12.4) the two operators involved have
the same dimensions.

This discussion and the scaling (13.6) suggest that CFT may apply only to such
multipoint MF functions xOq1 . . .Oqny where the sum of the indices qi is equal to q˚ (a
sort of “neutrality” condition):

n
ÿ

i“1

qi “ q˚. (15.4)

An alternative choice
ř

i qi “ 0 leads to MF multipoint functions that are well defined
in the infinite system, but are inconsistent with CFT.

For example, if we make the choice (15.4) in the three-point function (13.5), we get

xOq1pr1qOq2pr2qOq˚´q1´q2pr3qy „ r
xq1`q2´xq1´xq2
12 r

´2xq1`q2
13 . (15.5)

If we specify the general CFT expression (14.5) to our case and use the symmetry
relation (12.4) we get

xOq1pr1qOq2pr2qOq˚´q1´q2pr3qyCFT9 r
xq1`q2´xq1´xq2
12 r

xq2´xq1´xq1`q2
13 r

xq1´xq2´xq1`q2
23 . (15.6)

If we now assume that the arrangement of points satisfies the first inequality in (13.4),
we can replace r23 « r13, and the three-point function simplifies to

xOq1pr1qOq2pr2qOq˚´q1´q2pr3qyCFT „ r
xq1`q2´xq1´xq2
12 r

´2xq1`q2
13 , (15.7)

which is the same as Eq. (15.5).
On the other hand, the choice

ř

i qi “ 0 leads to inconsistent expressions. The MF
three-point function (13.5) in this case becomes

xOq1pr1qOq2pr2qO´q1´q2pr3qy „ r
xq1`q2´xq1´xq2
12 r

´xq1`q2´x´q1´q2
13 , (15.8)

while the CFT expression (14.5) reduces to a different form

xOq1pr1qOq2pr2qO´q1´q2pr3qyCFT „ r
x´q1´q2´xq1´xq2
12 r

´2x´q1´q2
13 . (15.9)

In the above discussion we used an implicit assumption that the operators Oq are
quasiprimary.

Before proceeding, let me point out another type of relations between CFT correlators
and MF multipoint functions. Let us consider the two-point function (15.3) again. Let
us now place the operator Oq˚´q1 at a large distance L (which is not the system size)
from the point r1 “ 0. Then I can rewrite the two-point function as

Lxq1 xOq1p0qOq˚´q1pLqyCFT „ L´xq1 . (15.10)
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This should be compared with Eq. (11.15). Similarly, if we place the operator Oq˚´q1´q2

in the three-point function (15.6) at a distance L " r12 from the points r1 and r2, we
can replace r13 « r23 « L, and the we get

xOq1pr1qOq2pr2qOq˚´q1´q2pLqyCFT „ r
xq1`q2´xq1´xq2
12 L´2xq1`q2 . (15.11)

This can be rewritten also as

Lxq1`q2 xOq1pr1qOq2pr2qOq˚´q1´q2pLqyCFT „ r
xq1`q2´xq1´xq2
12 L´xq1`q2 , (15.12)

which is exactly the same as Eq. (13.2). Thus, a three-point CFT function can be
related both to a three-point MF function in an infinite system and a two-point MF
function in a finite system.

Such relations continue for higher correlators. In particular, we can consider the four-
point function xOq1pr1qOq2pr2qOq3pr3qOq˚´q1´q2´q3pLqyCFT, which in a certain limit can
be related to the three-point function (13.5).

16. CFT and exact parabolicity of MF spectra

In a recent work [?] Bondesan and Zirnbauer considered scaling operators Oqpz, z̄q in
the context of the integer quantum Hall transition in 2D. This critical point belongs to
class A, so q˚ “ 1 and xq “ ∆q. In this case the operators Oq are not expected to have
conformal spin, so hq “ h̄q “ ∆q{2.

The main results of Bondesan and Zirnbauer is the exact parabolic form of the
dimensions ∆q:

∆q “ bqp1´ qq, (16.1)

with constant b left undetermined. They have also found an explicit form of a certain
four-point function that is, essentially, the correlator

xOq1pz1, z̄1q . . .O1´q1´q2´q3pz4, z̄4qyCFT “

4
ź

iăj

ˇ

ˇzij
ˇ

ˇ

∆{3´∆qi´∆qjF pη, η̄q, (16.2)

∆ “ ∆q1 `∆q2 `∆q3 `∆q1`q2`q3 . (16.3)

More precisely, in Ref. [?] the “neutrality” condition (15.4) is achieved by considering
n ´ 1 insertions of the operators Oq plus one operator πc describing a point contact.
This operator, having the character of an integral over the continuum of q values, always
allows for a fusion channel with the correct total “charge” q˚ “ 1.

Let me briefly summarize the argument of Ref. [?]. The authors make two essential
assumptions: 1) the operators Oq are not only quasiprimary, but actually primary, hav-
ing simple transformation law for any conformal transformation in 2D; 2) the operators
Oq satisfy (the 2D variant of) the Abelian OPE (13.3):

Oq1pz1, z̄1qOq2pz2, z̄2q9
ˇ

ˇz12

ˇ

ˇ

∆q1`q2´∆q1´∆q2Oq1`q2pz2, z̄2q ` . . . (16.4)

The Abelian fusion immediately implies that there is only one conformal block in the
correlator (16.2), that is F pη, η̄q “ |fpηq|2. The holomorphic function fpηq is present
in the holomorphic factor of the correlator (16.2):

Gpz1, . . . , z4q “ xOq1pz1q . . .O1´q1´q2´q3pz4qyCFT “

4
ź

iăj

z
h{3´hqi´hqj
ij fpηq, (16.5)

h “ hq1 ` hq2 ` hq3 ` hq1`q2`q3 . (16.6)
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There are three possible fusion channels in this correlator, where each of the charges
q1, q2, and q3 fuses with the neutralizing charge 1´ q1 ´ q2 ´ q3. These three channels
lead to the simple power-law singularities of the functions fpηq at the points η “ 1, 0
and 8. For example, fusing q1 with q2, and q3 with 1 ´ q1 ´ q2 ´ q3 (so that |η| ! 1)
gives

Gpz1, . . . , z4q „ z
hq1`q2´hq1´hq2
12 z

hq1`q2´hq3´hq1`q2`q3
34 z

´2hq1`q2
13 . (16.7)

On the other hand, the right-hand side of Eq. (16.5) where the distances between points
are chosen appropriately (|z12|, |z34| ! |z13| « |z14| « |z23| « |z24|) becomes

Gpz1, . . . , z4q „ fpηq z
h{3´hq1´hq2
12 z

h{3´hq3´hq1`q2`q3
34 z

´2h{3
13 . (16.8)

Comparison of the two expressions gives that near η “ 0

fpηq “ ηhq1`q2´h{3ra0 `Opηqs. (16.9)

The other two fusion channels give the forms of the singularities near the other two
singular points:

fpηq “ p1´ ηqhq2`q3´h{3rb0 `Op1´ ηqs, (16.10)

fpηq “ p1{ηqhq1`q3´h{3rc0 `Op1{ηqs. (16.11)

Explain the branch points, branch cuts, and monodromy.
The three found singularities of a single holomorphic function are only consistent if

fpηq “ ηhq1`q2´h{3p1´ ηqhq2`q3´h{3ra0 ` a1η ` ¨ ¨ ¨ ` aMη
M
s, (16.12)

where M must be a non-negative integer which is actually fixed by the singularity at
η “ 8:

M “ h´ hq1`q2 ´ hq1`q3 ´ hq2`q3 ě 0. (16.13)

In fact, choosing q1 “ q2 “ q3 “ 0 we see that M “ 0. This fixes the conformal block

fpηq “ a0η
hq1`q2´h{3p1´ ηqhq2`q3´h{3. (16.14)

Moreover, the condition M “ 0 gives the following functional equation for the di-
mensions hq:

hq1`q2`q3 ´ hq1`q2 ´ hq1`q3 ´ hq2`q3 ` hq1 ` hq2 ` hq3 “ 0, (16.15)

or, for the full dimensions ∆q,

∆q1`q2`q3 ´∆q1`q2 ´∆q1`q3 ´∆q2`q3 `∆q1 `∆q2 `∆q3 “ 0. (16.16)

This equation immediately implies ∆0 “ 0, as it should be. Setting q1 “ q, q2 “ q3 “ ε
gives

∆q`2ε ´ 2∆q`ε ´∆2ε `∆q ` 2∆ε “ 0. (16.17)

Now we expand up to second order in ε:

∆q ` 2∆1
qε` 2∆2

qε
2
´ 2∆q ´ 2∆1

qε´∆2
qε

2
´ 2∆1

0ε´ 2∆2
0ε

2
`∆q ` 2∆1

0ε`∆2
0ε

2

“ p∆2
q ´∆2

0qε
2
“ 0. (16.18)

Thus ∆2
q “ ∆2

0 “ const, which implies that the function ∆q is a quadratic polynomial.
A general quadratic polynomial that vanishes at q “ 0 and satisfies the symmetry
property (12.4) is exactly of the form given in Eq. (16.1).
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16.1. Generalizations. — Now we can generalize the arguments by Bondesan and
Zirnbauer in two directions.

First, the arguments seem not to be specific to the IQH critical point. Indeed, the
Abelian fusion is obvious from the definition of the scaling operators Oq (especially when
viewed as “plane waves” on the target space of a sigma model). Conformal invariance
and the primary nature of the operators must be assumed in any case, but this seems
to be equally natural for the IQH transition as well as for other 2D critical points of
disordered electrons. Then we conclude that whenever we have the symmetry relation
(12.4), that is, in the five classes identified in Refs. [?, ?], we also should have the exact
relation

xq “ bqpq˚ ´ qq (16.19)

for the simple MF spectra.
Secondly, we can obtain a generalization of this parabolic form for all general scaling

operators Oλ that we have considered in [?]. Indeed, there is still a general operator
that is analogous to Oq˚ with vanishing dimension. In this case this operator is O´ρb “
Op´c1,´c2,...q. Presumably, a point contact can play the role of this operator in the setting
of a network model.

The operators Oλ still satisfy the Abelian fusion:

Oλpr1qOλ1pr2q9 r
xλ`λ1´xλ´xλ1
12 Oλ`λ1

`

r1`r2
2

˘

` . . . (16.20)

Again, this is obvious from the form of these operators as exponential functions on the
target space of a sigma model.

We also assume conformal invariance. Then the arguments of Bondesan and Zirn-
bauer can immediately be generalized to give the following equation for the dimensions:

xλ`λ1`λ2 ´ xλ`λ1 ´ xλ`λ2 ´ xλ1`λ2 ` xλ ` xλ1 ` xλ2 “ 0. (16.21)

Let me denote by ei “ p0, . . . , 1, . . . , 0q (unit in the i-th place) the standard basis in
the weight space, and choose λ1 “ ε1ei, λ

2 “ ε2ej:

xλ`ε1ei`ε2ej ´ xλ`ε1ei ´ xλ`ε2ej ´ xε1ei`ε2ej ` xλ ` xε1ei ` xε2ej “ 0. (16.22)

Then I expand this to second order in ε1 and ε2, denoting Bi “ B{Bqi:

xλ`ε1ei “ xλ ` Bixλε
1
`

1

2
B

2
i xλε

12, xλ`ε2ej “ xλ ` Bjxλε
2
`

1

2
B

2
jxλε

22,

xλ`ε1ei`ε2ej “ xλ ` Bixλε
1
` Bjxλε

2
`

1

2
B

2
i xλε

12
`

1

2
B

2
jxλε

22
` BiBjxλε

1ε2. (16.23)

The zeroth and the first orders are satisfied identically. In the second order we have

1

2
B

2
i xλε

12
`

1

2
B

2
jxλε

22
` BiBjxλε

1ε2 ´
1

2
B

2
i xλε

12
´

1

2
B

2
jxλε

22
´ pλØ 0q

“ pBiBjxλ ´ BiBjx0qε
1ε2 “ 0. (16.24)

This gives

BiBjxλ “ BiBjx0 “ const, (16.25)

which implies that xλ is a quadratic function of qi. Thus, it is also a quadratic function
of q̃i. But in these variable it must be even due to the first type of the Weyl reflections
(sign inversions of q̃i), which restricts it to

xλ “
ÿ

i

biq̃
2
i `B. (16.26)
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The other type of Weyl reflections (permutations of different q̃i’s) forces all coefficients
bi to be equal: bi “ ´b. Finally, the constant B is found from the requirement x0 “ 0,
which gives B “ b

ř

i c
2
i {4, and

xλ “ ´b
ÿ

i

qipqi ` ciq “ ´bpλ, λ` ρbq. (16.27)

Thus, the generalized dimensions are proportional to the value of the quadratic Casimir
operator in the representation labeled by the highest weight λ. Now choosing λ “ qe1,
we see that the constant b is the same as in the simple MF spectrum (16.19).

17. Network models

17.1. SUSY method for networks. —

17.2. Mappings to classical stat mech and geometric randomness problems.
—
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