Application of the numerical conformal bootstrap

David Poland

Yale

May 5, 2021

Bootstat 2021

Conformal Bootstrap

Can we use:

- 1. Conformal Symmetry: SO(D,2) or SO(D+1,1)
- 2. Crossing Symmetry
- 3. Unitarity or Reflection Positivity

to map out and solve conformal field theories?

Crossing Symmetry

CFT 4-point functions $\langle \sigma(x_1)\sigma(x_2)\sigma(x_3)\sigma(x_4)\rangle$ can be expanded using OPE $\sigma \times \sigma \sim \sum_{\mathcal{O}} \lambda_{\sigma\sigma\mathcal{O}}\mathcal{O}$ in different channels, giving crossing constraint:

$$\sum \sum_{2}^{1} \underbrace{\mathcal{O}}_{3}^{4} = \sum \underbrace{\sum_{2}^{1} \underbrace{\mathcal{O}}_{3}^{4}}_{4}$$

$$0 = \sum_{\Delta,\ell} \lambda_{\sigma\sigma\mathcal{O}}^2 \left[\frac{g_{\Delta,\ell}(z,\overline{z})}{(z\overline{z})^{\Delta_{\sigma}}} - \frac{g_{\Delta,\ell}(1-z,1-\overline{z})}{[(1-z)(1-\overline{z})]^{\Delta_{\sigma}}} \right]$$

- lacksquare Conformal blocks $g_{\Delta,\ell}(z,\overline{z})$ known functions of cross ratios z,\overline{z}
- lackbox Only unknowns are set of scaling dimensions and coefficients: $\{\Delta,\lambda_{ijk}\}$

Numerical Approach

Make some assumption on $\{\Delta, \lambda_{ijk}\}$, search for functional

$$\alpha = \left(\sum_{m+n \leq \Lambda} \alpha_{mn} \partial_z^m \partial_{\overline{z}}^n \bigg|_{1/2,1/2}\right) \text{ implying } 0 = \sum (\text{positive})$$

Numerical Approach

Make some assumption on $\{\Delta, \lambda_{ijk}\}$, search for functional

$$\alpha = \left(\sum_{m+n \leq \Lambda} \alpha_{mn} \partial_z^m \partial_{\overline{z}}^n \bigg|_{1/2,1/2}\right) \text{ implying } 0 = \sum (\text{positive})$$

► Find them by solving semidefinite programs: SDPB https://github.com/davidsd/sdpb [Simmons-Duffin '15; Landry, Simmons-Duffin '19]

Recent Advances

A few advances in the numerical bootstrap in the past 1-2 years:

- ► First applications of SDPB 2.0 [Landry, Simmons-Duffin '19]
- New "Cutting Surface" algorithm for finding allowed λ 's in large parameter spaces [Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi '19]
- New tiptop algorithm for maximizing some Δ over multi-dimensional island [Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, '20]
- New blocks_3d software for efficient computation of spinning 3d conformal blocks [Erramilli, Iliesiu, Kravchuk, Landry, DP, Simmons-Duffin '20]

http://gitlab.com/bootstrapcollaboration

bootstrapcollaboration - GitLab

5/4/21, 3:24 PM

bootstrapcollaboration @ Group ID: 1030690

Simons Collaboration on the Nonperturbative Bootstrap (http://bootstrapcollaboration.com)

			Name v
П	B blocks-mathematica Mathematica code for generating tables of der	rivat 🖈 0	1 year ago
П	B blocks_3d ⊕	* 0	10 months ago
П	C CFTs4D A Mathematica package for 4D Conformal Fiel	d T ★1	1 year ago
Д	C conformal-blocks Code for generating general conformal blocks	in 3 🛊 2	1 year ago
Д	C crossing-equations Work-in-progress code for setting up general	boo * 1	2 years ago
П	E elemental Fork of Elemental which uses GMP instead of	MPFR ★ 0	10 months ago
П	O outer-approximation Tests for outer approximation methods	★ 0	1 year ago
П	S scalar_blocks C++ re-implementation of scalar blocks code.	★ 2	10 months ago
Д	S simpleboot A mathematica framework for bootstrap calcul	latio ★ 1	10 months ago
Д	S SIPSolver A semi-infinite program solver based on a customate A semi-infinite A semi-infinite	tom * 0	2 years ago
Д	S A script for extracting the extremal spectrum f	rom * 0	2 years ago
П	T TipTop Generates successive points for searching for	the * 0	11 months ago

3D Dimension Bounds

[El-Showk, Paulos, DP, Rychkov, Simmons-Duffin, Vichi, '12; '14]

▶ Upper bound on first \mathbb{Z}_2 -even scalar in $\sigma \times \sigma \sim \mathbb{1} + \epsilon + \dots$ from $\langle \sigma \sigma \sigma \sigma \rangle$

3D Ising Island

► Combine 5 crossing relations from $\langle \sigma \sigma \sigma \sigma \rangle$, $\langle \sigma \sigma \epsilon \epsilon \rangle$, $\langle \epsilon \epsilon \epsilon \epsilon \rangle$ and impose that σ and ϵ are the only relevant $(\Delta < 3)$ operators

Mixed Correlator Islands

[Kos, DP, Simmons-Duffin, Vichi '16]

- ▶ Best bounds: perform "OPE scan" over ratio $r \equiv \lambda_{\epsilon\epsilon\epsilon}/\lambda_{\sigma\sigma\epsilon} \to 3$ d island
- lacktriangle Excludes degenerate exchanged operators at same $\Delta_{\sigma,\epsilon}$ but different λ 's
- ▶ Each run imposes positivity in specific direction: $(1 \ r)\vec{\alpha} \cdot \vec{F}_{2\times 2}(1 \ r)^T > 0$

3D Ising Island

[Kos, DP, Simmons-Duffin, Vichi '16]

lacktriangle Increase search space to 5 imes253=1265 components $(\Lambda=43)$

$$\begin{array}{rcl} \{\Delta_{\sigma}, \Delta_{\epsilon}\} & = & \{0.518149(1), 1.412625(10)\} \\ \{\lambda_{\sigma\sigma\epsilon}, \lambda_{\epsilon\epsilon\epsilon}\} & = & \{1.0518537(41), 1.532435(19)\} \end{array}$$

3D O(N) Models

Generalization to N scalars ϕ_i : $\mathcal{L}_{O(N)}^{int} \sim \lambda(\phi_i \phi^i)^2$

3D O(N) Models

Generalization to N scalars ϕ_i : $\mathcal{L}^{int}_{O(N)} \sim \lambda(\phi_i \phi^i)^2$

ightharpoonup N=2: Superfluid (λ) transition in ${}^4{\rm He}$ [Lipa et al, '96; '03]

3D O(N) Models

Generalization to N scalars ϕ_i : $\mathcal{L}^{int}_{O(N)} \sim \lambda(\phi_i \phi^i)^2$

- ightharpoonup N=2: Superfluid (λ) transition in ${}^4{\rm He}$ [Lipa et al, '96; '03]
- ▶ N = 3: Isotropic ferromagnets (Fe, Co, Ni, ...)
- ▶ Large N: Solvable in 1/N expansion

3D O(N) Bounds

- **Extension to** $\langle \phi_i \phi_j \phi_k \phi_l \rangle$, where ϕ_i is O(N) vector
- ▶ Large N: matches 1/N expansion, Small N: matches experiment!

O(N) Archipelago from Mixed Correlators

lacktriangle With $\{\phi_i,s\}$ correlators, again find islands (Input: $\Delta_{\phi'}>3,\Delta_s>3)$

O(2) from $\{\phi_i, s\}$ System

- $\qquad \qquad \{\Delta_{\phi}, \Delta_{s}, \lambda_{\phi\phi s}, \lambda_{sss}\} = \{.51926(32), 1.5117(25), .68726(65), .8286(60)\}$
- ▶ 8σ discrepancy between lattice and expt (4 He)

▶ Result from $\{\phi_i, s, t_{ij}\}$ system (22 crossing equations)

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi '19]

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, '19]

▶ Best results require 6d search over $\{\Delta_{\phi}, \Delta_{s}, \Delta_{t}, \frac{\lambda_{sss}}{\lambda_{\phi\phi s}}, \frac{\lambda_{tts}}{\lambda_{\phi\phi s}}, \frac{\lambda_{\phi\phi t}}{\lambda_{\phi\phi s}}\}$

$$\{\Delta_{\phi}, \Delta_{s}, \Delta_{t}\} = \{0.519088(17), 1.51136(18), 1.23629(9)\}$$

$$\{\frac{\lambda_{sss}}{\lambda_{\phi\phi s}}, \frac{\lambda_{tts}}{\lambda_{\phi\phi s}}, \frac{\lambda_{\phi\phi t}}{\lambda_{\phi\phi s}}\} = \{1.20926(46), 1.82227(19), 1.765918(64)\}$$

To carry out this 6d search, we employed the following strategy:

- 1. Use SDPB 2.0 [Landry, Simmons-Duffin '19], take advantage of parallelization
- 2. Use hotstarting [Go, Tachikawa '19] to run SDPB for fewer iterations
- 3. Search over Δ 's carried out using "Delaunay triangulation" search
- 4. Search over λ 's carried out using "Cutting Surface" algorithm

Delaunay Triangulation Search

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi '19]

Compute Delaunay triangulation of all tested points, pick midpoint of "biggest" triangle connecting disallowed to allowed

Cutting Surface Algorithm

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi '19]

- ▶ Each computation excludes a *region* of $\vec{\lambda}$ -space: $\vec{\lambda} \cdot \alpha[F_{\vec{\Delta}}] \cdot \vec{\lambda} > 0$
- \blacktriangleright After $\sim 10-30$ tests either find allowed point or rule out entire region

Black (Bootstrap): [Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi '20] Green (Monte Carlo): [Hasenbusch, Vicari '11; Hasenbusch '20]

- New O(3) island: $\{\Delta_\phi, \Delta_s, \Delta_t\} = \{0.51894(5), 1.5949(6), 1.2095(2)\}$
- ▶ Open question: is $\phi^{\{i}\phi^j\phi^k\phi^{l\}}$ relevant or irrelevant in O(3) model?

Black (Bootstrap): [Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, '20] Green (Monte Carlo): [Hasenbusch, Vicari '11; Hasenbusch '20]

- ▶ Using tiptop search, find it is relevant: $\Delta_{\phi^{\{i_{\phi}j_{\phi}k_{\phi}l\}}} < 2.99056!$
- ▶ Proof that critical Heisenberg magnets are unstable to cubic anisotropy, should flow to fixed point with cubic symmetry C_3 rather than O(3)

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, '20]

▶ tiptop search: map out approximate island at a given gap $\Delta_{t_4} - 3$, shrink bounding box of island by factor of 2, increase gap (via binary search) until it can no longer accommodate smaller box, then iterate

Extremal Functional

$$\alpha \cdot F_{\Delta,\ell}$$

[DP, Simmons-Duffin '10; Paulos, El-Showk '12; plot from Paulos, Zan '20]

▶ By going to a boundary of the allowed region (e.g., extremizing $\lambda_{\phi\phi s}$), we can extract extremal spectra corresponding to the zeros of $\alpha \cdot F_{\Delta,\ell}$

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, '19]

 Can be done in practice using spectrum-extraction Python script (spectrum.py), which uses sdpb output

Analytical Bootstrap

Extremal spectra can be compared with analytical bootstrap predictions:

- ▶ Lightcone Bootstrap $(z \to 0)$: \exists trajectories of "double-twist" operators $\sim \sigma \partial^\ell \sigma$ with twist asymptoting to $\tau(\ell \to \infty) = 2\Delta_\sigma \frac{\#}{\ell} \frac{\#}{\ell^{\Delta\epsilon}} + \dots$ [Fitzpatrick, Kaplan, DP, Simmons-Duffin '12; Komargodski, Zhiboedov '12]
- ► Lorentzian Inversion → All-orders analytic function [Caron-Huot '17]

$$\tau(\ell) \sim \int \mathrm{dDisc}[g] \sim \sum_{\mathcal{O}} {}_4F_3(\ldots)$$
 [see Henriksson talk...]

O(2): Comparison with Analytics

[Albayrak, Meltzer, DP '19; J. Liu, Meltzer, DP, Simmons-Duffin '20]

Excellent agreement between leading-twist extremal spectra and analytics after including exchange of $\{s,t,J^{\mu},T^{\mu\nu}\}$

The Spinning Frontier

blocks_3d Software

General 3d conformal blocks can be expanded recursively in poles:

$$g_{\Delta,j,I}^{ab} \sim \frac{1}{\Delta - \Delta_{j,i}} (\mathcal{L}_{j,i})_{a'}^a (\mathcal{R}_{j,i})_{b'}^b g_{\Delta'_{j,i},j'_{j,i},I}^{a'b'}(z,\overline{z})$$

- blocks_3d is efficient, multithreaded, C++ implementation
 [Erramilli, Iliesiu, Kravchuk '19; Erramilli, Iliesiu, Kravchuk, Landry, DP, Simmons-Duffin '20]
- \blacktriangleright Practical for external fermions ψ , currents J, stress-tensors T, ...

block ($\Lambda=25$)	j_{12}	j_{43}	Memory (GB)	Time (hr)
$\langle \phi \phi \phi \phi \rangle$	0	0	4	0.014
$\langle \phi \psi \phi \psi \rangle$	$\frac{1}{2}$	$\frac{1}{2}$	7	0.025
$\langle T\phi\phi\phi\rangle$	2	Ō	11	0.045
$\langle \psi \psi \psi \psi \rangle$	1	1	15	0.068
$\langle T\phi T\phi \rangle$	2	2	36	0.20
$\langle T\psi T\psi \rangle$	$\frac{5}{2}$	$\frac{5}{2}$	48	0.62
$\langle TTT\phi \rangle$	4	2	62	0.94
$\langle TTTT \rangle$	4	4	106	6.9

(See CFTs4D package for spinning 4d blocks [Cuomo, Karateev, Kravchuk '17])

Mysterious jump?

[Erramilli, Iliesiu, Kravchuk, Landry, DP, Simmons-Duffin '20]

- ▶ Sharp jump in parity-odd scalar bound from $\langle \psi \psi \psi \psi \rangle$ [lliesiu, Kos, DP, Pufu, Simmons-Duffin '17]
- ▶ Seems to persist after removing "fake primary effect" ([Karateev, Kravchuk, Serone, Vichi '19]: spin-1 V^{μ} mimics $\Delta=3$ scalar) ▶ Could be evidence for new fermionic CFT w/ no relevant scalars?

3D Fermion Models (Gross-Neveu-Yukawa)

Interesting CFTs obtained from fixed points involving N fermions: $\mathcal{L}_{GNY} \sim \frac{g}{2} \sigma \overline{\psi}^i \psi_i + \lambda \sigma^4$ (and variations with multiple scalars)

3D Fermion Models (Gross-Neveu-Yukawa)

Interesting CFTs obtained from fixed points involving N fermions: $\mathcal{L}_{GNY} \sim \frac{g}{2} \sigma \overline{\psi}^i \psi_i + \lambda \sigma^4$ (and variations with multiple scalars)

- ▶ Large N: Solvable in 1/N expansion [Gracey '92, '93; ...]
- ightharpoonup N=8: Possible QCPs in D-wave superconductors or graphene [Vojta, Zhang, Sachdev '00; Herbut '06; Classen, Herbut, Scherer '17]
- ightharpoonup N=4: Spinless fermions on honeycomb lattice, gapless semiconductors [Raghu, Qi, Honerkamp, Zhang '07; Moon, Xu, Kim, Balents '12; Herbut, Janssen '14]

3D O(N) Fermion Bootstrap

- ▶ Bootstrap for fermion 4-point functions $\langle \psi_i \psi_i \psi_k \psi_l \rangle$
- lacktriangle Kinks in symmetric tensor bounds match GNY models at large N

3D O(N) Fermion Bootstrap

- ▶ Intricate structure in $\{\Delta_{\psi}, \Delta_{\sigma}\}$ plane assuming σ' irrelevant
- Upper kinks plausibly related to GNY models

Preliminary Island for N=2 Gross-Neveu-Yukawa Model

[Erramilli, Iliesiu, Kravchuk, A. Liu, DP, Simmons-Duffin, in progress]

- ▶ Preliminary island from system containing $\{\sigma, \psi_i, \epsilon\}$ at $\Lambda = 11, 15$
- lacktriangle Gaps motivated by large N estimates and E.O.M. $\partial \psi \sim \sigma \psi$

Preliminary Island for N=2 Gross-Neveu-Yukawa Model

[Erramilli, Iliesiu, Kravchuk, A. Liu, DP, Simmons-Duffin, in progress]

$$\{\Delta_{\psi}, \Delta_{\sigma}, \Delta_{\epsilon}\} = \{1.066(4), 0.666(18), 1.77(7)\}$$

ightharpoonup Now preparing to run at high derivative order and at other N...

Minimal 3D SCFT (N = 1 Gross-Neveu-Yukawa)

lacktriangle The minimal SUSY extension of 3D Ising has $\mathcal{N}=1$ supersymmetry:

$$V = \frac{g}{2}\sigma\overline{\psi}\psi + \frac{g}{8}\sigma^4 \qquad \leftrightarrow \qquad W = \frac{g}{3}\Sigma^3, \quad \Sigma = \sigma + \theta\psi + \theta^2\epsilon$$

Minimal 3D SCFT (N = 1 Gross-Neveu-Yukawa)

▶ The minimal SUSY extension of 3D Ising has $\mathcal{N} = 1$ supersymmetry:

$$V = \frac{g}{2}\sigma\overline{\psi}\psi + \frac{g}{8}\sigma^4 \qquad \leftrightarrow \qquad W = \frac{g}{3}\Sigma^3, \quad \Sigma = \sigma + \theta\psi + \theta^2\epsilon$$

► May be realizable in (3+1)D topological superconductors, with (2+1)D boundary supporting Majorana fermions [Grover, Sheng, Vishwanath '13]

Supersymmetric Island

[Rong, Su '18; Atanasov, Hillman, DP, Rong, Su, in progress]

 $\begin{array}{l} \blacktriangleright \ \, \{\sigma,\epsilon\} \; {\sf SUSY} \; {\sf system} \quad \to \Delta_\sigma = .584443(8), \; \Delta_{\sigma'} = 2.8869(25) \\ {\sf Compare} \; {\sf to} \; \epsilon \text{-expansion:} \; \Delta_\sigma = .5837(14) \; [{\sf lhrig}, \; {\sf Mihaila}, \; {\sf Scherer} \; {}'{\sf 18}] \\ & \left({\sf Assumption:} \; \mathcal{N} = 1 \; {\sf SUSY}, \; \Delta_{\epsilon'} \geq 3 \right) \\ \end{array}$

Map of Allowed Scalar Gaps from $\langle T^{\mu\nu}T^{\rho\sigma}T^{\alpha\beta}T^{\gamma\delta}\rangle$

► Allowed {scalar, pseudoscalar} gaps from stress tensor 4-point functions

Map of Allowed Scalar Gaps from $\langle J^\mu J^\nu J^\rho J^\sigma \rangle$

► Allowed {scalar, pseudoscalar} gaps from current 4-point functions

Map of Allowed Couplings from $\{J^{\mu}, \phi\}$ System

- Allowed couplings $\langle JJT \rangle \propto \gamma$ in O(2) model after imposing $T'_{\mu\nu}$ gap

Bootstrap Future

Where do we go from here?

- Find islands for other interesting CFTs
 - lacktriangle 3d Gross-Neveu-Yukawa Models: $\mathcal{L} \sim \lambda \sigma \psi_i \psi^i + ext{variations}$
 - ► Conformal windows of gauge theories (3d QED, 4d QCD, ...)
 - Superconformal zoo
 - Other interesting theories described in this workshop!
- Study larger systems of bootstrap equations
 - Mixed correlators with spinning operators $(\psi, J^{\mu}, T^{\mu\nu})$
 - ► Improve algorithms and software tools
- Improve analytical understanding of bootstrap equations
 - Match to Lorentzian Inversion formula, conformal dispersion relations
 - Incorporate analytical insights into numerical algorithms

Backup Slides

Lorentzian Inversion Review

▶ The basic idea is to decompose CFT 4-pt functions $\langle \sigma\sigma\sigma\sigma\rangle \propto g(z,\overline{z})$ in a basis of "principal series" $(\Delta=d/2+i\alpha)$ partial waves

$$g(z,\overline{z}) = \sum_{\ell=0}^{\infty} \int_{d/2-i\infty}^{d/2+i\infty} \frac{d\Delta}{2\pi i} c(\Delta,\ell) g_{\Delta,\ell}(z,\overline{z}) + (\text{non-norm.})$$

where the physical spectrum is encoded in the poles of $c(\Delta, \ell)$.

Lorentzian Inversion Review

Vsing orthogonality and Lorentzian continuation one "inverts" the formula to obtain $c(\Delta,\ell)=c^t(\Delta,\ell)+(-1)^\ell c^u(\Delta,\ell)$:

$$c^t(\Delta,\ell) \ = \ \frac{\kappa_{\Delta+\ell}}{4} \int_0^1 dz d\overline{z} \mu(z,\overline{z}) g_{\ell+d-1,\Delta+1-d}(z,\overline{z}) \mathrm{dDisc} \left[g(z,\overline{z})\right]$$

with

$$\begin{array}{rcl} \mu(z,\overline{z}) & = & \left|\frac{z-\overline{z}}{z\overline{z}}\right|^{d-2}\frac{1}{(z\overline{z})^2} \\ \mathrm{dDisc}\left[g(z,\overline{z})\right] & = & g(z,\overline{z})-\frac{1}{2}g(z,\overline{z}e^{2\pi i})-\frac{1}{2}g(z,\overline{z}e^{-2\pi i}) \end{array}$$

See [Caron-Huot '17; Simmons-Duffin, Stanford, Witten '17; Kravchuk, Simmons-Duffin '18]

Lorentzian Inversion Review

- Expanding $g(z,\overline{z}) = \left(\frac{z\overline{z}}{(1-z)(1-\overline{z})}\right)^{\Delta_{\sigma}} \sum \lambda_{\sigma\sigma\mathcal{O}}^2 g_{\Delta,\ell} (1-z,1-\overline{z})$ in a finite number of known contributions, we can compute the integrals
- ▶ Matching identity operator reveals poles $\frac{1}{\Delta (2\Delta_{\sigma} + \ell)}$ corresponding to "double-twist" operators: $\sigma \partial_{\mu_1} \dots \partial_{\mu_\ell} \sigma$
- lacktriangle Other exchanged operators give anomalous dimensions ($\log(z)$ terms) and correct their OPE coefficients (regular terms)

Approach developed in various works: [Sleight, Taronna '18; Kravchuk, Simmons-Duffin '18; Cardona, Sen '18; Karateev, Kravchuk, Simmons-Duffin '18; Cardona, Guha, Kanumilli, Sen '18; Albayrak, Meltzer, DP '19, '20; Caron-Huot, Gobeil, Zahraee '20]

Anomalous Dimensions from Scalar Exchange

$$\begin{split} \delta\tau_{[\sigma\sigma]_0}(\overline{h})_{\mathrm{pert}} &= -\frac{\lambda_{\sigma\sigma\epsilon}^2}{1 + \delta P_{[\sigma\sigma]_0}(\overline{h})} \frac{2\Gamma(\Delta_\sigma)^2\Gamma\left(1 + \frac{\Delta_\epsilon - 2\Delta_\sigma}{2}\right)^2\Gamma(\Delta_\epsilon)}{\Gamma\left(1 - \frac{\Delta_\epsilon - 2\Delta_\sigma}{2}\right)^2\Gamma\left(\frac{\Delta_\epsilon}{2}\right)^2} \\ &\times \frac{\Gamma(\overline{h} - \Delta_\sigma + 1)\Gamma\left(\overline{h} - \frac{\Delta_\epsilon - 2\Delta_\sigma}{2} - 1\right)}{\Gamma(\overline{h} + \Delta_\sigma - 1)\Gamma\left(\overline{h} + \frac{\Delta_\epsilon - 2\Delta_\sigma}{2} + 1\right)} \\ &\times {}_4F_3\left(\frac{\frac{\Delta_\epsilon - d + 2}{2}}{\frac{\Delta_\epsilon - 2\Delta_\sigma}{2} - \overline{h} + 2}, \frac{\Delta_\epsilon - 2\Delta_\sigma}{2} + 1, \frac{\Delta_\epsilon}{2} + 1, \frac{\Delta_\epsilon}{2}}{\frac{\Delta_\epsilon}{2} - \overline{h} + 2}, \frac{\Delta_\epsilon - 2\Delta_\sigma}{2} + \overline{h} + 1, \Delta_\epsilon - \frac{d - 2}{2}; 1\right) \\ &\delta\tau_{[\sigma\sigma]_0}(\overline{h})_{\mathrm{np}} = -\frac{\lambda_{\sigma\sigma\epsilon}^2}{1 + \delta P_{[\phi\phi]_0}(\overline{h})} \frac{2\Gamma(\Delta_\sigma)^2\Gamma\left(\Delta_\epsilon - \frac{d - 2}{2}\right)\Gamma(\Delta_\epsilon)}{\Gamma\left(1 - \frac{\Delta_\epsilon - 2\Delta_\sigma}{2}\right)^2\Gamma\left(\frac{\Delta_\epsilon}{2}\right)^3\Gamma\left(\frac{\Delta_\epsilon}{2}\right)^3\Gamma\left(\frac{\Delta_\epsilon - d - 2}{2}\right)} \\ &\times \frac{\Gamma(\overline{h})^2\Gamma(\overline{h} - \Delta_\sigma + 1)\Gamma\left(\overline{h} + \Delta_\sigma - \frac{d}{2}\right)\Gamma\left(\frac{\Delta_\epsilon - 2\Delta_\sigma}{2} - \overline{h} + 1\right)}{\Gamma(2\overline{h})\Gamma\left(\overline{h} + \Delta_\sigma + \frac{\Delta_\epsilon}{2} - \frac{d}{2}\right)} \\ &\times {}_4F_3\left(\frac{\overline{h}, \overline{h}, \overline{h} + \Delta_\sigma - 1, \overline{h} + \Delta_\sigma - \frac{d}{2}}{2}, \overline{h} + \Delta_\sigma + \frac{\Delta_\epsilon}{2} - \frac{d}{2}; 1\right) \end{split}$$

► E.g., for exchange of a scalar ϵ , integral yields two pieces: $\delta \tau_{[\sigma\sigma]_0}(\overline{h}) = \delta \tau_{[\sigma\sigma]_0}(\overline{h})_{\text{pert}} + \delta \tau_{[\sigma\sigma]_0}(\overline{h})_{\text{np}}$ (here $\overline{h} \equiv \frac{\Delta + \ell}{2}$)