Application of the numerical conformal bootstrap

David Poland
Yale
May 5, 2021

Bootstat 2021

Conformal Bootstrap

Can we use:

1. Conformal Symmetry: $S O(D, 2)$ or $S O(D+1,1)$
2. Crossing Symmetry
3. Unitarity or Reflection Positivity
to map out and solve conformal field theories?

Crossing Symmetry

CFT 4-point functions $\left\langle\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \sigma\left(x_{3}\right) \sigma\left(x_{4}\right)\right\rangle$ can be expanded using OPE $\sigma \times \sigma \sim \sum_{\mathcal{O}} \lambda_{\sigma \sigma \mathcal{O} O}$ in different channels, giving crossing constraint:

$$
\begin{gathered}
\left.\sum_{2} \overbrace{2}^{1} \mathcal{O}\right|_{3} ^{4}=\sum_{\Delta, \ell} \lambda_{\sigma \sigma \mathcal{O}}^{2}\left[\frac{g_{\Delta, \ell}(z, \bar{z})}{(z \bar{z})^{\Delta_{\sigma}}}-\frac{g_{\Delta, \ell}(1-z, 1-\bar{z})}{[(1-z)(1-\bar{z})]^{\Delta_{\sigma}}}\right]
\end{gathered}
$$

- Conformal blocks $g_{\Delta, \ell}(z, \bar{z})$ known functions of cross ratios z, \bar{z}
- Only unknowns are set of scaling dimensions and coefficents: $\left\{\Delta, \lambda_{i j k}\right\}$

Numerical Approach

Yes

No

- Make some assumption on $\left\{\Delta, \lambda_{i j k}\right\}$, search for functional

$$
\alpha=\left(\left.\sum_{m+n \leq \Lambda} \alpha_{m n} \partial_{z}^{m} \partial_{\bar{z}}^{n}\right|_{1 / 2,1 / 2}\right) \text { implying } 0=\sum(\text { positive })
$$

Numerical Approach

Yes

No

- Make some assumption on $\left\{\Delta, \lambda_{i j k}\right\}$, search for functional

$$
\alpha=\left(\left.\sum_{m+n \leq \Lambda} \alpha_{m n} \partial_{z}^{m} \partial_{\bar{z}}^{n}\right|_{1 / 2,1 / 2}\right) \text { implying } 0=\sum(\text { positive })
$$

- Find them by solving semidefinite programs: SDPB https://github.com/davidsd/sdpb [Simmons-Duffin '15; Landry, Simmons-Duffin '19]

Recent Advances

A few advances in the numerical bootstrap in the past 1-2 years:

- First applications of SDPB 2.0 [Landry, Simmons-Duffin '19]
- New "Cutting Surface" algorithm for finding allowed λ 's in large parameter spaces [Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi '19]
- New tiptop algorithm for maximizing some Δ over multi-dimensional island [Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, '20]
- New blocks_3d software for efficient computation of spinning 3d conformal blocks [Erramilli, lliesiu, Kravchuk, Landry, DP, Simmons-Duffin '20]

http://gitlab.com/bootstrapcollaboration

3D Dimension Bounds

- Upper bound on first \mathbb{Z}_{2}-even scalar in $\sigma \times \sigma \sim \mathbb{1}+\epsilon+\ldots$ from $\langle\sigma \sigma \sigma \sigma\rangle$

3D Ising Island

- Combine 5 crossing relations from $\langle\sigma \sigma \sigma \sigma\rangle,\langle\sigma \sigma \epsilon \epsilon\rangle,\langle\epsilon \epsilon \epsilon \epsilon\rangle$ and impose that σ and ϵ are the only relevant $(\Delta<3)$ operators

Mixed Correlator Islands

Ising: 3d Allowed Region

[Kos, DP, Simmons-Duffin, Vichi '16]

- Best bounds: perform "OPE scan" over ratio $r \equiv \lambda_{\epsilon \epsilon \epsilon} / \lambda_{\sigma \sigma \epsilon} \rightarrow$ 3d island
- Excludes degenerate exchanged operators at same $\Delta_{\sigma, \epsilon}$ but different λ 's
- Each run imposes positivity in specific direction: $(1 r) \vec{\alpha} \cdot \vec{F}_{2 \times 2}(1 r)^{T}>0$

3D Ising Island

[Kos, DP, Simmons-Duffin, Vichi '16]

- Increase search space to $5 \times 253=1265$ components $(\Lambda=43)$

$$
\begin{aligned}
\left\{\Delta_{\sigma}, \Delta_{\epsilon}\right\} & =\{0.518149(1), 1.412625(10)\} \\
\left\{\lambda_{\sigma \sigma \epsilon}, \lambda_{\epsilon \epsilon \epsilon}\right\} & =\{1.0518537(41), 1.532435(19)\}
\end{aligned}
$$

3D O(N) Models

Generalization to N scalars $\phi_{i}: \mathcal{L}_{O(N)}^{\text {int }} \sim \lambda\left(\phi_{i} \phi^{i}\right)^{2}$

3D O(N) Models

Generalization to N scalars $\phi_{i}: \mathcal{L}_{O(N)}^{\text {int }} \sim \lambda\left(\phi_{i} \phi^{i}\right)^{2}$

- $N=2$: Superfluid (λ) transition in ${ }^{4} \mathrm{He} \quad$ [Lipa et al, '96; '03]

3D O(N) Models

Generalization to N scalars $\phi_{i}: \mathcal{L}_{O(N)}^{\text {int }} \sim \lambda\left(\phi_{i} \phi^{i}\right)^{2}$

- $N=2$: Superfluid (λ) transition in ${ }^{4} \mathrm{He} \quad$ [Lipa et al, '96; '03]
- $N=3$: Isotropic ferromagnets ($\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \ldots$)
- Large N : Solvable in $1 / N$ expansion

3D $O(N)$ Bounds

- Extension to $\left\langle\phi_{i} \phi_{j} \phi_{k} \phi_{l}\right\rangle$, where ϕ_{i} is $O(N)$ vector
- Large N : matches $1 / N$ expansion, Small N : matches experiment!

$O(N)$ Archipelago from Mixed Correlators

The $O(N)$ archipelago

- With $\left\{\phi_{i}, s\right\}$ correlators, again find islands (Input: $\Delta_{\phi^{\prime}}>3, \Delta_{s}>3$)

$O(2)$ from $\left\{\phi_{i}, s\right\}$ System

O(2): Scaling Dimensions

- $\left\{\Delta_{\phi}, \Delta_{s}, \lambda_{\phi \phi s}, \lambda_{s s s}\right\}=\{.51926(32), 1.5117(25), .68726(65), .8286(60)\}$
- 8σ discrepancy between lattice and expt $\left({ }^{4} \mathrm{He}\right)$

$O(2)$ from $\left\{\phi_{i}, s, t_{i j}\right\}$ System

O(2): Scaling Dimensions

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi '19]

- Result from $\left\{\phi_{i}, s, t_{i j}\right\}$ system (22 crossing equations)

$O(2)$ from $\left\{\phi_{i}, s, t_{i j}\right\}$ System

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi '19]
Bootstrap: $\alpha=-0.01527(21)$
MC: $\alpha=-0.01507(21)$ [Hasenbusch '19]
${ }^{4} \mathrm{He}: \alpha=-0.0127(3)$ [Lipa et al, '96; '03]

$O(2)$ from $\left\{\phi_{i}, s, t_{i j}\right\}$ System

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi '19]

$O(2)$ from $\left\{\phi_{i}, s, t_{i j}\right\}$ System

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, '19]

- Best results require 6d search over $\left\{\Delta_{\phi}, \Delta_{s}, \Delta_{t}, \frac{\lambda_{s s s}}{\lambda_{\phi \phi s}}, \frac{\lambda_{t t s}}{\lambda_{\phi \phi s}}, \frac{\lambda_{\phi \phi t}}{\lambda_{\phi \phi s}}\right\}$

$$
\left\{\Delta_{\phi}, \Delta_{s}, \Delta_{t}\right\}=\{0.519088(17), 1.51136(18), 1.23629(9)\}
$$

$\left\{\frac{\lambda_{s s s}}{\lambda_{\phi \phi s}}, \frac{\lambda_{t t s}}{\lambda_{\phi \phi s}}, \frac{\lambda_{\phi \phi t}}{\lambda_{\phi \phi s}}\right\}=\{1.20926(46), 1.82227(19), 1.765918(64)\}$

$O(2)$ from $\left\{\phi_{i}, s, t_{i j}\right\}$ System

To carry out this 6d search, we employed the following strategy:

1. Use SDPB 2.0 [Landry, Simmons-Duffin '19], take advantage of parallelization
2. Use hotstarting [Go, Tachikawa '19] to run SDPB for fewer iterations
3. Search over Δ 's carried out using "Delaunay triangulation" search
4. Search over λ 's carried out using "Cutting Surface" algorithm

Delaunay Triangulation Search

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi '19]

- Compute Delaunay triangulation of all tested points, pick midpoint of "biggest" triangle connecting disallowed to allowed

Cutting Surface Algorithm

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi '19]

- Each computation excludes a region of $\vec{\lambda}$-space: $\vec{\lambda} \cdot \alpha\left[F_{\vec{\Delta}}\right] \cdot \vec{\lambda}>0$
- After $\sim 10-30$ tests either find allowed point or rule out entire region

$O(3)$ from $\left\{\phi_{i}, s, t_{i j}\right\}$ System

Black (Bootstrap): [Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi '20] Green (Monte Carlo): [Hasenbusch, Vicari '11; Hasenbusch '20]

- New $O(3)$ island: $\left\{\Delta_{\phi}, \Delta_{s}, \Delta_{t}\right\}=\{0.51894(5), 1.5949(6), 1.2095(2)\}$
- Open question: is $\phi^{\{i} \phi^{j} \phi^{k} \phi^{l\}}$ relevant or irrelevant in $O(3)$ model?

$O(3)$ from $\left\{\phi_{i}, s, t_{i j}\right\}$ System

Black (Bootstrap): [Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, '20] Green (Monte Carlo): [Hasenbusch, Vicari '11; Hasenbusch '20]

- Using tiptop search, find it is relevant: $\Delta_{\phi^{\{i} \phi^{j} \phi^{k} \phi^{l\}}}<2.99056$!
- Proof that critical Heisenberg magnets are unstable to cubic anisotropy, should flow to fixed point with cubic symmetry C_{3} rather than $O(3)$

$O(3)$ from $\left\{\phi_{i}, s, t_{i j}\right\}$ System

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, '20]

- tiptop search: map out approximate island at a given gap $\Delta_{t_{4}}-3$, shrink bounding box of island by factor of 2, increase gap (via binary search) until it can no longer accommodate smaller box, then iterate

Extremal Functional

$$
\alpha \cdot F_{\Delta, \ell}
$$

[DP, Simmons-Duffin '10; Paulos, El-Showk '12; plot from Paulos, Zan '20]

- By going to a boundary of the allowed region (e.g., extremizing $\lambda_{\phi \phi s}$), we can extract extremal spectra corresponding to the zeros of $\alpha \cdot F_{\Delta, \ell}$

$O(2)$ from $\left\{\phi_{i}, s, t_{i j}\right\}$ System

operators in the VOp OPE

[Chester, Landry, Liu, DP, Simmons-Duffin, Su, Vichi, '19]

- Can be done in practice using spectrum-extraction Python script (spectrum.py), which uses sdpb output

Analytical Bootstrap

Extremal spectra can be compared with analytical bootstrap predictions:

- Lightcone Bootstrap $(z \rightarrow 0): \exists$ trajectories of "double-twist" operators $\sim \sigma \partial^{\ell} \sigma$ with twist asymptoting to $\tau(\ell \rightarrow \infty)=2 \Delta_{\sigma}-\frac{\#}{\ell}-\frac{\#}{\ell^{\Delta_{\epsilon}}}+\ldots$
[Fitzpatrick, Kaplan, DP, Simmons-Duffin '12; Komargodski, Zhiboedov '12]
- Lorentzian Inversion \rightarrow All-orders analytic function [Caron-Huot '17]

$$
\tau(\ell) \sim \int \mathrm{dDisc}[g] \sim \sum_{\mathcal{O}}{ }_{4} F_{3}(\ldots) \text { [see Henriksson talk...] }
$$

$O(2)$: Comparison with Analytics

- Excellent agreement between leading-twist extremal spectra and analytics after including exchange of $\left\{s, t, J^{\mu}, T^{\mu \nu}\right\}$

The Spinning Frontier

blocks_3d Software

- General 3d conformal blocks can be expanded recursively in poles:

$$
g_{\Delta, j, I}^{a b} \sim \frac{1}{\Delta-\Delta_{j, i}}\left(\mathcal{L}_{j, i}\right)_{a^{\prime}}^{a}\left(\mathcal{R}_{j, i}\right)_{b^{\prime}}^{b} g_{\Delta_{j, i}^{\prime}, j_{j, i}, I}^{a^{\prime} b^{\prime}}(z, \bar{z})
$$

- blocks_3d is efficient, multithreaded, C++ implementation
[Erramilli, Iliesiu, Kravchuk '19; Erramilli, Iliesiu, Kravchuk, Landry, DP, Simmons-Duffin '20]
- Practical for external fermions ψ, currents J, stress-tensors T, \ldots

block $(\Lambda=25)$	j_{12}	j_{43}	Memory (GB)	Time (hr)
$\langle\phi \phi \phi \phi\rangle$	0	0	4	0.014
$\langle\phi \psi \phi \psi\rangle$	$\frac{1}{2}$	$\frac{1}{2}$	7	0.025
$\langle T \phi \phi \phi\rangle$	2	0	11	0.045
$\langle\psi \psi \psi \psi\rangle$	1	1	15	0.068
$\langle T \phi T \phi\rangle$	2	2	36	0.20
$\langle T \psi T \psi\rangle$	$\frac{5}{2}$	$\frac{5}{2}$	48	0.62
$\langle T T T \phi\rangle$	4	2	62	0.94
$\langle T T T T\rangle$	4	4	106	6.9

(See CFTs4D package for spinning 4d blocks [Cuomo, Karateev, Kravchuk '17])

Mysterious jump?

[Erramilli, Iliesiu, Kravchuk, Landry, DP, Simmons-Duffin '20]

- Sharp jump in parity-odd scalar bound from $\langle\psi \psi \psi \psi\rangle$ [Iliesiu, Kos, DP, Pufu, Simmons-Duffin '17]
- Seems to persist after removing "fake primary effect" ([Karateev, Kravchuk, Serone, Vichi '19]: spin-1 V^{μ} mimics $\Delta=3$ scalar)
- Could be evidence for new fermionic CFT w/ no relevant scalars?

3D Fermion Models (Gross-Neveu-Yukawa)

Interesting CFTs obtained from fixed points involving N fermions:
$\mathcal{L}_{G N Y} \sim \frac{g}{2} \sigma \bar{\psi}^{i} \psi_{i}+\lambda \sigma^{4}$ (and variations with multiple scalars)

3D Fermion Models (Gross-Neveu-Yukawa)

Interesting CFTs obtained from fixed points involving N fermions:
$\mathcal{L}_{G N Y} \sim \frac{g}{2} \sigma \bar{\psi}^{i} \psi_{i}+\lambda \sigma^{4}$ (and variations with multiple scalars)

- Large N : Solvable in $1 / N$ expansion [Gracey '92, '93; ...]
- $N=8$: Possible QCPs in D-wave superconductors or graphene [Vojta, Zhang, Sachdev '00; Herbut '06; Classen, Herbut, Scherer '17]
- $N=4$: Spinless fermions on honeycomb lattice, gapless semiconductors [Raghu, Qi, Honerkamp, Zhang '07; Moon, Xu, Kim, Balents '12; Herbut, Janssen '14]

3D O(N) Fermion Bootstrap

- Bootstrap for fermion 4-point functions $\left\langle\psi_{i} \psi_{j} \psi_{k} \psi_{l}\right\rangle$
- Kinks in symmetric tensor bounds match GNY models at large N

3D O(N) Fermion Bootstrap

- Intricate structure in $\left\{\Delta_{\psi}, \Delta_{\sigma}\right\}$ plane assuming σ^{\prime} irrelevant
- Upper kinks plausibly related to GNY models

Preliminary Island for $N=2$ Gross-Neveu-Yukawa Model

$$
\begin{array}{ccc}
\Delta_{\psi^{\prime}}>2, \Delta_{\sigma^{\prime}}>2.5, \Delta_{\epsilon^{\prime}}>3, \Delta_{\sigma_{T}}>2, \Delta_{\chi}>3.5 \\
\Delta_{\sigma} 0.70 .72 \\
0.68 \\
2.0 \\
0.64 \\
\Delta_{\epsilon} \\
1.9 \\
1.8 \\
1.060 \\
1.065 \\
\Delta_{\psi} & 1.070
\end{array}
$$

[Erramilli, Iliesiu, Kravchuk, A. Liu, DP, Simmons-Duffin, in progress]

- Preliminary island from system containing $\left\{\sigma, \psi_{i}, \epsilon\right\}$ at $\Lambda=11,15$
- Gaps motivated by large N estimates and E.O.M. $\partial \psi \sim \sigma \psi$

Preliminary Island for $N=2$ Gross-Neveu-Yukawa Model

$$
\begin{gathered}
\Delta_{\psi^{\prime}}>2, \Delta_{\sigma^{\prime}}>2.5, \Delta_{\epsilon^{\prime}}>3, \Delta_{\sigma_{T}}>2, \Delta_{\chi}>3.5 \\
\Delta_{\sigma} 0.70 \\
0.68 \\
0.64 \\
2.0 \\
\Delta_{\epsilon} \\
1.9 \\
1.8 \\
1.060 \\
1.065 \\
\Delta_{\psi} \\
1.070
\end{gathered}
$$

[Erramilli, Iliesiu, Kravchuk, A. Liu, DP, Simmons-Duffin, in progress]

$$
\left\{\Delta_{\psi}, \Delta_{\sigma}, \Delta_{\epsilon}\right\}=\{1.066(4), 0.666(18), 1.77(7)\}
$$

- Now preparing to run at high derivative order and at other $N \ldots$

Minimal 3D SCFT ($N=1$ Gross-Neveu-Yukawa)

- The minimal SUSY extension of 3D Ising has $\mathcal{N}=1$ supersymmetry:

$$
V=\frac{g}{2} \sigma \bar{\psi} \psi+\frac{g}{8} \sigma^{4} \quad \leftrightarrow \quad W=\frac{g}{3} \Sigma^{3}, \quad \Sigma=\sigma+\theta \psi+\theta^{2} \epsilon
$$

Minimal 3D SCFT ($N=1$ Gross-Neveu-Yukawa)

- The minimal SUSY extension of 3D Ising has $\mathcal{N}=1$ supersymmetry:

$$
V=\frac{g}{2} \sigma \bar{\psi} \psi+\frac{g}{8} \sigma^{4} \quad \leftrightarrow \quad W=\frac{g}{3} \Sigma^{3}, \quad \Sigma=\sigma+\theta \psi+\theta^{2} \epsilon
$$

- May be realizable in $(3+1) \mathrm{D}$ topological superconductors, with $(2+1) \mathrm{D}$ boundary supporting Majorana fermions [Grover, Sheng, Vishwanath '13]

Supersymmetric Island

$$
\Lambda=19,27,35,43,51,59
$$

[Rong, Su '18; Atanasov, Hillman, DP, Rong, Su, in progress]

- $\{\sigma, \epsilon\}$ SUSY system $\rightarrow \Delta_{\sigma}=.584443(8), \Delta_{\sigma^{\prime}}=2.8869(25)$

Compare to ϵ-expansion: $\Delta_{\sigma}=.5837(14)$ [Ihrig, Mihaila, Scherer '18]
(Assumption: $\mathcal{N}=1$ SUSY, $\Delta_{\epsilon^{\prime}} \geq 3$)

Map of Allowed Scalar Gaps from $\left\langle T^{\mu \nu} T^{\rho \sigma} T^{\alpha \beta} T^{\gamma \delta}\right\rangle$

- Allowed \{scalar, pseudoscalar\} gaps from stress tensor 4-point functions

Map of Allowed Scalar Gaps from $\left\langle J^{\mu} \cdot J^{\nu} J^{\rho} J^{\sigma}\right\rangle$

Allowed region in the parity even/odd scalar sector ($\Lambda=23$)

- Allowed \{scalar, pseudoscalar\} gaps from current 4-point functions

Map of Allowed Couplings from $\left\{J^{\mu}, \phi\right\}$ System

[Reehorst, Trevisani, Vichi '19]

- Allowed couplings $\langle J J T\rangle \propto \gamma$ in $O(2)$ model after imposing $T_{\mu \nu}^{\prime}$ gap

Bootstrap Future

Where do we go from here?

- Find islands for other interesting CFTs
- 3d Gross-Neveu-Yukawa Models: $\mathcal{L} \sim \lambda \sigma \psi_{i} \psi^{i}+$ variations
- Conformal windows of gauge theories (3d QED, 4d QCD, ...)
- Superconformal zoo
- Other interesting theories described in this workshop!
- Study larger systems of bootstrap equations
- Mixed correlators with spinning operators ($\psi, J^{\mu}, T^{\mu \nu}$)
- Improve algorithms and software tools
- Improve analytical understanding of bootstrap equations
- Match to Lorentzian Inversion formula, conformal dispersion relations
- Incorporate analytical insights into numerical algorithms

Backup Slides

Lorentzian Inversion Review

- The basic idea is to decompose CFT 4-pt functions $\langle\sigma \sigma \sigma \sigma\rangle \propto g(z, \bar{z})$ in a basis of "principal series" $(\Delta=d / 2+i \alpha)$ partial waves

$$
g(z, \bar{z})=\sum_{\ell=0}^{\infty} \int_{d / 2-i \infty}^{d / 2+i \infty} \frac{d \Delta}{2 \pi i} c(\Delta, \ell) g_{\Delta, \ell}(z, \bar{z})+\text { (non-norm.) }
$$

where the physical spectrum is encoded in the poles of $c(\Delta, \ell)$.

Lorentzian Inversion Review

- Using orthogonality and Lorentzian continuation one "inverts" the formula to obtain $c(\Delta, \ell)=c^{t}(\Delta, \ell)+(-1)^{\ell} c^{u}(\Delta, \ell)$:

$$
c^{t}(\Delta, \ell)=\frac{\kappa_{\Delta+\ell}}{4} \int_{0}^{1} d z d \bar{z} \mu(z, \bar{z}) g_{\ell+d-1, \Delta+1-d}(z, \bar{z}) \mathrm{dDisc}[g(z, \bar{z})]
$$

with

$$
\begin{aligned}
\mu(z, \bar{z}) & =\left|\frac{z-\bar{z}}{z \bar{z}}\right|^{d-2} \frac{1}{(z \bar{z})^{2}} \\
\operatorname{dDisc}[g(z, \bar{z})] & =g(z, \bar{z})-\frac{1}{2} g\left(z, \bar{z} e^{2 \pi i}\right)-\frac{1}{2} g\left(z, \bar{z} e^{-2 \pi i}\right)
\end{aligned}
$$

See [Caron-Huot '17; Simmons-Duffin, Stanford, Witten '17; Kravchuk, Simmons-Duffin '18]

Lorentzian Inversion Review

- Expanding $g(z, \bar{z})=\left(\frac{z \bar{z}}{(1-z)(1-\bar{z})}\right)^{\Delta_{\sigma}} \sum \lambda_{\sigma \sigma \mathcal{O}}^{2} g_{\Delta, \ell}(1-z, 1-\bar{z})$ in a finite number of known contributions, we can compute the integrals
- Matching identity operator reveals poles $\frac{1}{\Delta-\left(2 \Delta_{\sigma}+\ell\right)}$ corresponding to "double-twist" operators: $\sigma \partial_{\mu_{1}} \ldots \partial_{\mu_{\ell}} \sigma$
- Other exchanged operators give anomalous dimensions ($\log (z)$ terms) and correct their OPE coefficients (regular terms)

Approach developed in various works: [Sleight, Taronna '18; Kravchuk, Simmons-Duffin '18; Cardona, Sen '18; Karateev, Kravchuk, Simmons-Duffin '18; Cardona, Guha, Kanumilli, Sen '18; Albayrak, Meltzer, DP '19, '20; Caron-Huot, Gobeil, Zahraee '20]

Anomalous Dimensions from Scalar Exchange

$$
\begin{aligned}
\delta \tau_{[\sigma \sigma]_{0}}(\bar{h})_{\text {pert }} & =-\frac{\lambda_{\sigma \sigma \epsilon}^{2}}{1+\delta P_{[\sigma \sigma]_{0}}(\bar{h})} \frac{2 \Gamma\left(\Delta_{\sigma}\right)^{2} \Gamma\left(1+\frac{\Delta_{\epsilon}-2 \Delta_{\sigma}}{2}\right)^{2} \Gamma\left(\Delta_{\epsilon}\right)}{\Gamma\left(1-\frac{\Delta_{\epsilon}-2 \Delta_{\sigma}}{2}\right)^{2} \Gamma\left(\frac{\Delta_{\epsilon}-2 \Delta_{\sigma}}{2}\right)^{2} \Gamma\left(\frac{\Delta_{\epsilon}}{2}\right)^{2}} \\
& \times \frac{\Gamma\left(\bar{h}-\Delta_{\sigma}+1\right) \Gamma\left(\bar{h}-\frac{\Delta_{\epsilon}-2 \Delta_{\sigma}}{2}-1\right)}{\Gamma\left(\bar{h}+\Delta_{\sigma}-1\right) \Gamma\left(\bar{h}+\frac{\Delta_{\epsilon}-2 \Delta_{\sigma}}{2}+1\right)} \\
& \times{ }_{4} F_{3}\left(\begin{array}{c}
\frac{\Delta_{\epsilon}-d+2}{2}, \frac{\Delta_{\epsilon}-2 \Delta_{\sigma}}{2}+1, \frac{\Delta_{\epsilon}-2 \Delta_{\sigma}}{2}+1, \frac{\Delta_{\epsilon}}{2} \\
\frac{\Delta_{\epsilon}-2 \Delta_{\sigma}}{2}-\bar{h}+2, \frac{\Delta_{\epsilon}-2 \Delta_{\sigma}}{2}+\bar{h}+1, \Delta_{\epsilon}-\frac{d-2}{2} \\
2
\end{array}\right) \\
\delta \tau_{[\sigma \sigma]_{0}}(\bar{h})_{\mathrm{np}} & =-\frac{\lambda_{\sigma \sigma \epsilon}^{2}}{1+\delta P_{[\phi \phi]_{0}}(\bar{h})} \frac{2 \Gamma\left(\Delta_{\sigma}\right)^{2} \Gamma\left(\Delta_{\epsilon}-\frac{d-2}{2}\right) \Gamma\left(\Delta_{\epsilon}\right)}{\Gamma\left(1-\frac{\Delta_{\epsilon}-2 \Delta_{\sigma}}{2}\right)^{2} \Gamma\left(\frac{\Delta_{\epsilon}-2 \Delta_{\sigma}}{2}\right)^{2} \Gamma\left(\frac{\Delta_{\epsilon}}{2}\right)^{3} \Gamma\left(\frac{\Delta_{\epsilon}-d-2}{2}\right)} \\
& \times \frac{\Gamma(\bar{h})^{2} \Gamma\left(\bar{h}-\Delta_{\sigma}+1\right) \Gamma\left(\bar{h}+\Delta_{\sigma}-\frac{d}{2}\right) \Gamma\left(\frac{\Delta_{\epsilon}-2 \Delta_{\sigma}}{2}-\bar{h}+1\right)}{\Gamma(2 \bar{h}) \Gamma\left(\bar{h}+\Delta_{\sigma}+\frac{\Delta_{\epsilon}}{2}-\frac{d}{2}\right)} \\
& \times{ }_{4} F_{3}\binom{\bar{h}, \bar{h}, \bar{h}+\Delta_{\sigma}-1, \bar{h}+\Delta_{\sigma}-\frac{d}{2}}{2 \bar{h}, \bar{h}-\frac{\Delta_{\epsilon}-2 \Delta_{\sigma}}{2}, \bar{h}+\Delta_{\sigma}+\frac{\Delta_{\epsilon}}{2}-\frac{d}{2}}
\end{aligned}
$$

- E.g., for exchange of a scalar ϵ, integral yields two pieces:

$$
\delta \tau_{[\sigma \sigma]_{0}}(\bar{h})=\delta \tau_{[\sigma \sigma]_{0}}(\bar{h})_{\text {pert }}+\delta \tau_{[\sigma \sigma]_{0}}(\bar{h})_{\mathrm{np}}\left(\text { here } \bar{h} \equiv \frac{\Delta+\ell}{2}\right)
$$

