Conformal Bootstrap Studies of Puzzles in Critical Phenomena

Andreas Stergiou

Theoretical Division, T-2

LA-UR-21-20104

Frustrated Antiferromagnets

Frustration can arise due to the geometry of the lattice (stacked triangular antiferromagnets) or due to competition between near-neighbor and farther-neighbor interactions (helimagnets).

Frustrated Antiferromagnets

In the Ising case (\mathbb{Z}_2 symmetry), frustration leads to nontrivial degeneracy of the ground (ordered) state.

When the spin has continuous symmetry (e.g. O(2)), then we get noncollinear (canted) spin configurations with nontrivial ground-state degeneracy:

Helimagnets

Critical Phenomena in Frustrated Antiferromagnets

Frustration leads to physics in magnetic systems that is different from the more well-known cases with no frustration. (Kawamura, 1979–1988)

Our interest is in the different universality classes that can be encountered in frustrated systems.

Order Parameter in Frustrated Antiferromagnets

$$\vec{\Sigma} \equiv \vec{S}_1' + \vec{S}_2' + \vec{S}_3' = \vec{0}$$

We need to keep two vectors for each plaquette.

Order Parameter in Frustrated Antiferromagnets

Effective interactions: $H = H(\vec{\phi}_1, \vec{\phi}_2).$

Symmetry transformations:

$$\cdot \begin{pmatrix} \vec{\phi}_1' \\ \vec{\phi}_2' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \pm \sin \theta & \pm \cos \theta \end{pmatrix} \begin{pmatrix} \vec{\phi}_1 \\ \vec{\phi}_2 \end{pmatrix}$$
$$\cdot \vec{\phi}_{1,2}' = R \vec{\phi}_{1,2}, \ R \in O(2) \text{ or } O(3)$$

Symmetry group: $O(2) \times O(2)$ or $O(2) \times O(3)$

Critical Phenomena in Frustrated Antiferromagnets

A general Lagrangian we can write down is

$$\mathscr{L} = \frac{1}{2} \sum_{a} \partial_{\mu} \vec{\phi}_{a} \cdot \partial^{\mu} \vec{\phi}_{a} + \frac{1}{24} u \left(\sum_{a} \vec{\phi}_{a}^{2} \right)^{2} + \frac{1}{24} v \sum_{a,b} \left((\vec{\phi}_{a} \cdot \vec{\phi}_{b})^{2} - \vec{\phi}_{a}^{2} \vec{\phi}_{b}^{2} \right)$$

where $\vec{\phi}_{a}$ are *m* vectors of size *n* each.

The global symmetry is $O(m) \times O(n)/\mathbb{Z}_2$.

Physical cases realized in experiments have $m = n = 2, \quad m = 2, n = 3.$

ε Expansion

$O(m) \times O(n)$ Irreps

$$\phi \times \phi \sim \underbrace{SS + ST + TS + TT + AA}_{even spin} + \underbrace{SA + AS + TA + AT}_{odd spin}$$

Enough to bootstrap:four-point function of ϕ four-point functions of ϕ and SS

In the following:

$$SS \rightarrow S$$
$$TS \rightarrow W$$
$$ST \rightarrow X$$
$$AA \rightarrow Z$$

Single Correlator Bounds

Squares: chiral fixed points Circles: antichiral fixed points

Single Correlator Bounds

Squares: chiral fixed points Circles: antichiral fixed points

Single Correlator Bounds

Mixed Correlator Islands

⁽Henriksson, Kousvos & AS, 2020)

Mixed Correlator Islands

$O(2) \times O(2)$ Theory

$$\mathscr{L} = \frac{1}{2} \sum_{a} \partial_{\mu} \vec{\phi}_{a} \cdot \partial^{\mu} \vec{\phi}_{a} + \frac{1}{24} u \left(\sum_{a} \vec{\phi}_{a}^{2} \right)^{2} + \frac{1}{24} v \sum_{a,b} \left((\vec{\phi}_{a} \cdot \vec{\phi}_{b})^{2} - \vec{\phi}_{a}^{2} \vec{\phi}_{b}^{2} \right)$$

For m = n = 2 there is a symmetry enhancement: $O(2) \times O(2) \rightarrow O(2)^2 \rtimes S_2$

Consider the symmetry group $MN_{m,n} = O(m)^n \rtimes S_n$.

$$O(2)^2 \rtimes S_2$$
: Describes XY STAs, NbO₂, Ho, Dy, Tb
 $O(2)^3 \rtimes S_3$: Describes K₂IrCl₆, TbD₂, Nd

Bootstrap Bounds for MN CFTs

Bootstrap Bounds for MN CFTs

Dots: large *m* (leading order) Crosses: ε expansion (up to order ε^3)

Experiments in Frustrated Systems

Compound	α	β	γ	ν	Compound	α	β	γ	ν
CsMnBr ₃		$\begin{array}{c} 0.21(1) \\ 0.24(2) \\ 0.21(2) \end{array}$	1.01(8)	0.54(3)	Tb	0.20(3)	$\begin{array}{c} 0.23(4) \\ 0.21(2) \end{array}$		0.53
		$0.21(2) \\ 0.25(1) \\ 0.22(2)$	1.01(0)	0.04(0)	Но	1^{st} order 0.27(2) 0.10-0.22			
	$\begin{array}{c} 0.39(9) \\ 0.40(5) \\ 0.44(5) \end{array}$						$\begin{array}{c} 0.30(10) \\ 0.37(10) \\ 0.39(3) \\ 0.39(2) \end{array}$	1.24(15)	0.54(4)
CsNiCl ₃	$\begin{array}{c} 0.37(8) \\ 0.37(6) \end{array}$		1.10(5)	0.57(3)			$\begin{array}{c} 0.39(4) \\ 0.39(4) \\ 0.41(4) \end{array}$	1.14(10)	0.57(4)
	0.342(5)	0.243(5)			Dy		$\begin{array}{r} 0.38(1) \\ 0.335(10) \\ 0.39^{+0.04} \end{array}$		
$CsMnI_3$	0.34(6)						0.38(2)		
$CsCuCl_3$	0.35(5)	0.23-0.25(2) 1 st order				0.24(2)	0.39(1)	1.05(7)	0.57(5)

XY STAs

Helimagnets

(summarized in Delamotte et al., 2004)

There is also a structural phase transition in NbO_2 with critical exponents like those in the blue rectangle above.

Results from RG methods

Perturbative expansions (after resummations) for m = n = 2:

 $\beta \approx 0.370$, $\nu \approx 0.715$ (v < 0?)

(ε expansion, Mudrov & Varnashev, 2001)

(Pelissetto, Rossi & Vicari, 2000)

 $\beta = 0.309(33), \quad \nu = 0.571(29)$

 $\beta = 0.354(35)$, $\nu = 0.65(6)$

(Calabrese, Parruccini, Pelissetto & Vicari, 2004)

Fixed point with
$$v > 0$$

Monte Carlo for m = n = 2:

System	α	β	γ	ν	η	
STA	0.34(6)	0.253(10)	1.13(5)	0.54(2)	-0.09(8)	
	0.46(10)	0.24(2)	1.03(4)	0.50(1)	-0.06(4)	
	0.43(10)			0.48(2)		Vunitarity?
STA	1 st order					

(summarized in Delamotte et al., 2004)

 $O(2)^2 \rtimes S_2$

 $O(2)^2 \rtimes S_2$

Experiments:

NbO ₂	Ho and Dy	Tb and XY STAs
$\beta = 0.40^{+0.04}$	$\beta = 0.39(4)$	$\beta = 0.23(4)$
$p = 0.10_{-0.07}$	v = 0.57(4)	v = 0.53(4)
RG methods:		Unitarity?

methous.

co, Rossi & Vicari, 2000)
se, Parruccini, Pelissetto & Vicari, 2004)

 $\beta = 0.245(30), \quad \nu = 0.51(5)$

(Monte Carlo, averaged)

Bootstrap: $\beta = 0.293(3)$ $\beta = 0.355(5)$ v = 0.576(8)v = 0.566(6)

(AS, 2019)

Evidence for two distinct CFTs.

 $O(2)^3 \rtimes S_3$

$$\beta = 0.301(3)$$
 $\beta = 0.394(5)$
 $\nu = 0.581(6)$ $\nu = 0.590(8)$

v = 0.590(8)

Bootstrap Bounds for MN CFTs

Bootstrap Bounds for MN CFTs

What determines fate in the IR?

$O(2) \times O(3)$ Chiral Fixed Point

(Henriksson, Kousvos & AS, 2020)

$O(2) \times O(3)$ Collinear Fixed Point

$O(2) \times O(3)$

Chiral:

Method	β	ν	ϕ_W		
Bootstrap	0.344(5)	0.639(7)	0.818(16)		
$\overline{\mathrm{MS}}$ (Calabrese, Pelissetto & Vicari, 2004)	0.34(4)	0.63(5)	0.76(12)		
MZM scheme (Calabrese, Pelissetto & Vicari, 2004)	0.30(4)	0.55(3)	0.58(6)		
Monte Carlo (Nagano, Uematsu & Kawamura, 2019)	0.26(3)	0.52(1)	—		
Experiments in STAs: $\beta = 0.28(3)$, $\nu = 0.62(5)$					

Collinear:

Method	β	ν	ϕ_Z
Bootstrap	0.341(19)	0.650(23)	0.89(4)
$\overline{\mathrm{MS}}$ scheme (Calabrese, Pelissetto & Vicari, 2004)	0.34(5)	0.63(8)	0.75(16)
MZM scheme (Calabrese, Pelissetto & Vicari, 2004)	0.319(23)	0.59(4)	0.74(11)

Cubic CFTs in 3D

Cubic CFTs have a discrete global symmetry, $O_h = \mathbb{Z}_2^3 \rtimes S_3 \simeq S_4 \times \mathbb{Z}_2$.

Relevant whenever we have cubic lattices, e.g. cubic magnets like Fe or Ni.

Cubic CFTs in 3D

Using the ε expansion one can find a fixed point with cubic symmetry, but the critical exponents are almost identical to those of the Heisenberg model.

Bootstrapping Cubic CFTs in 3D

 $\phi_i \times \phi_j \sim \delta_{ij} \mathbf{S} + \mathbf{X}_{(ij)} + \mathbf{Y}_{(ij)} + \mathbf{A}_{[ij]}$

Bootstrapping Cubic CFTs in 3D

The critical exponents obtained differ significantly from those of the ε expansion:

$$eta pprox 0.308 \pm 0.002, \quad
u pprox 0.594 \pm 0.004,$$

 $eta^{(arepsilon)} pprox 0.368, \quad
u^{(arepsilon)} pprox 0.709.$

This theory appears to be distinct from that of the ε expansion.

(Delamotte, Holovatch, Ivaneyko, Mouhanna, Tissier, 2006, 2008)

Structural Phase Transitions in Perovskites

SrTiO₃

 $T_c \approx 105 \text{ K}$

SrTiO₃

Experimental measurements:

 $\beta = 0.33 \pm 0.02$, $\nu = 0.63 \pm 0.07$

(Müller & Berlinger, 1971)

(von Waldkirch, Müller, Berlinger & Thomas, 1972)

Platonic CFT:

$$\beta = 0.308 \pm 0.002$$
, $\nu = 0.594 \pm 0.004$

3D Ising:

 $\beta = 0.326419 \pm 0.000003$, $\nu = 0.629971 \pm 0.000004$

Role of strain? What happens if strain is removed?

Paramagnetic-Ferromagnetic Transitions

(Ben Hassine et al., 2017)

La_{0.47}Eu_{0.2}Pb_{0.33}MnO₃: $\beta = 0.306 \pm 0.002$, $\nu = 0.599 \pm 0.005$ La_{0.47}Y_{0.2}Pb_{0.33}MnO₃: $\beta = 0.312 \pm 0.011$, $\nu = 0.600 \pm 0.009$

Platonic CFT:

```
\beta = 0.308 \pm 0.002, \nu = 0.594 \pm 0.004
```

3D Ising:

 $\beta = 0.326419 \pm 0.000003$, $\nu = 0.629971 \pm 0.000004$

Issue(?): Crystals have Pnma space group (orthorombic)

Summary

The numerical conformal bootstrap provides a widelyapplicable method for the study of CFTs.

There is a host of experimental results pertaining to various types of phase transitions for which pre-bootstrap theoretical methods have given unsatisfactory results.

The bootstrap has suggested new non-perturbative universality classes, potentially relevant for physical systems.

Is the standard Landau-Ginzburg paradigm incomplete?

New tools presented in this workshop and discussions with experts across fields will hopefully enable further progress!