Geometrical correlators in 2d CFTs: An introduction with some open problems

Jacopo Viti
IIP, Natal, Brazil \& INFN, Florence, Italy

May 12, 2021

Correlated percolation and phase transitions

- Consider the ferromagnetic Ising model

$$
H_{\text {lsing }}=-J \sum_{\langle x, y\rangle} s(x) s(y)-H \sum_{x} s(x) ; \quad s(x)= \pm 1
$$

Correlated percolation and phase transitions

- Consider the ferromagnetic Ising model

$$
H_{\text {Ising }}=-J \sum_{\langle x, y\rangle} s(x) s(y)-H \sum_{x} s(x) ; \quad s(x)= \pm 1
$$

- Fisher [1967] droplet model: how to chose p_{B} to reproduce Ising critical exponents via a correlated percolation problem?

Droplets as FK clusters［Coniglio，Klein＇80s］

－Consider the ferromagnetic Q－color Potts model

$$
H_{\text {Potts }}=-J \sum_{\langle x, y\rangle} \delta_{s(x), s(y)} ; s(x)=1, \ldots Q
$$

－By rewriting the Boltzmann weight as

$$
e^{-H_{\text {potts }}}=\prod_{\langle x, y\rangle}\left(1-p_{B}\right)+p_{B} \delta_{s(x), s(y)} ; p_{B}=1-e^{-J}
$$

Droplets as FK clusters [Coniglio, Klein '80s]

- Consider the ferromagnetic Q-color Potts model

$$
H_{\text {Potts }}=-J \sum_{\langle x, y\rangle} \delta_{s(x), s(y)} ; s(x)=1, \ldots Q
$$

- By rewriting the Boltzmann weight as

$$
e^{-H_{\text {Potts }}}=\prod_{\langle x, y\rangle}\left(1-p_{B}\right)+p_{B} \delta_{s(x), s(y)} ; p_{B}=1-e^{-J}
$$

- The partition function is expanded into FK graphs [Fortuin, Kasteleyn '70s]

$$
p_{B}^{\# \text { bonds }}\left(1-p_{B}\right)^{\# \text { empty bonds }}
$$

$$
Z_{Q}=\sum_{\mathcal{G}}: \because: 10: Q^{\#}
$$

Connectivities of FK clusters

- Critical exponents of Potts are reproduced by the graph expansion

- For instance consider the $Q-1$ dim. vector $\sigma_{\alpha}(x)=\delta_{s(x), \alpha}-1 / Q$

$$
\left\langle\sigma_{\alpha}(x)\right\rangle=\frac{Q}{Q-1} P(x \leftrightarrow \partial D)
$$

- However, the percolation problem contains much more observables

Connectivities of FK clusters

- Critical exponents of Potts are reproduced by the graph expansion

- For instance consider the $Q-1$ dim. vector $\sigma_{\alpha}(x)=\delta_{s(x), \alpha}-1 / Q$

$$
\left\langle\sigma_{\alpha}(x)\right\rangle=\frac{Q}{Q-1} P(x \leftrightarrow \partial D)
$$

- However, the percolation problem contains much more observables

Connectivities can be defined for any real Q

$P_{a_{1} a_{2} \ldots a_{n}}\left(x_{1}, \ldots, x_{n}\right)=\left\{\right.$ Probability that x_{i} belongs to the cluster $\left.a_{i}\right\}$

- Q: How many independent connectivities are there? Can be calculated at criticality? Equivalent to solve the model for $Q \in \mathbb{R}$

Vector space of geometrical correlators [Delfino, v. '11]

- Connectivities are probability to partition a set of points into clusters

$$
\# P_{n}=\text { Bell number } n \stackrel{n \gg 1}{\simeq} e^{n \log n}
$$

- There are sum rules: a basis can be formed by partitions without isolated points. For instance

Vector space of geometrical correlators [Delfino, v. '11]

- Connectivities are probability to partition a set of points into clusters

$$
\# P_{n}=\text { Bell number } n \stackrel{n \gtrsim}{\simeq} e^{n \log n}
$$

- There are sum rules: a basis can be formed by partitions without isolated points. For instance

$P_{\text {aaaa }}$

- They can be expressed formally in terms of S_{Q} inequivalent spin cfs

$$
\begin{aligned}
& G_{\alpha \alpha \alpha \alpha}=Q_{1}\left(Q^{2}-3 Q+3\right) P_{a a a a}+Q_{1}^{2}\left(P_{a a b b}+P_{a b b a}+P_{a b a b}\right), \\
& G_{\alpha \alpha \beta \beta}=(2 Q-3) P_{a a a a}+Q_{1}^{2} P_{a a b b}+P_{a b b a}+P_{a b a b} \\
& G_{\alpha \beta \beta \alpha}=(2 Q-3) P_{a a a a}+P_{a a b b}+Q_{1}^{2} P_{a b b a}+P_{a b a b} \\
& G_{\alpha \beta \alpha \beta}=(2 Q-3) P_{a a a a}+P_{a a b b}+P_{a b b a}+Q_{1}^{2} P_{a b a b} .
\end{aligned}
$$

The puzzle of the three-point connectivity [Delfino, v.

'11; Picco, Santachiara, V., Delfino '13]

- In particular, the three point connectivity is

$$
P_{a a a}\left(x_{1}, x_{2}, x_{3}\right)=\frac{\left\langle\sigma_{\alpha}\left(x_{1}\right) \sigma_{\alpha}\left(x_{2}\right) \sigma_{\alpha}\left(x_{3}\right)\right\rangle}{Q(Q-1)(Q-2)}
$$

- In any d, analytic continuation of the OPE is required at $Q=2$. Consider $d=2$ from now on and $T=T_{c}$. We postulate in the scaling limit (up to a non-universal normalization)

The puzzle of the three-point connectivity [Delfino, v.

'11; Picco, Santachiara, V., Delfino '13]

- In particular, the three point connectivity is

$$
P_{\text {aaa }}\left(x_{1}, x_{2}, x_{3}\right)=\frac{\left\langle\sigma_{\alpha}\left(x_{1}\right) \sigma_{\alpha}\left(x_{2}\right) \sigma_{\alpha}\left(x_{3}\right)\right\rangle}{Q(Q-1)(Q-2)}
$$

- In any d, analytic continuation of the OPE is required at $Q=2$.

Consider $d=2$ from now on and $T=T_{c}$. We postulate in the scaling limit (up to a non-universal normalization)

$$
P_{\text {ааа }}\left(x_{1}, x_{2}, x_{3}\right)=\left\langle\phi_{\Delta_{\sigma}}\left(x_{1}\right) \phi_{\Delta_{\sigma}}\left(x_{2}\right) \phi_{\Delta_{\sigma}}\left(x_{3}\right)\right\rangle
$$

- Correct scaling of the two point function requires

$$
\Delta_{\sigma}=2 h_{\frac{1}{2}, 0}, \quad h_{r, s}=\frac{(r(m+1)-s m)^{2}-1}{4 m(m+1)}, \quad c=1-\frac{6}{m(m+1)}
$$

- For the Q-color Potts model: $Q=4 \cos ^{2} \frac{\pi}{m+1}$.

The puzzle of the three-point connectivity

- From global conformal invariance, one has

$$
P_{\mathrm{aaa}}\left(x_{1}, x_{2}, x_{3}\right)=R(Q) \sqrt{P_{\mathrm{aa}}\left(x_{1}, x_{2}\right) P_{\mathrm{a} a}\left(x_{2}, x_{3}\right) P_{\mathrm{aa}}\left(x_{1}, x_{3}\right)}
$$

- By analytically continuing in the discrete indexes (r, s) the Dotsenko Fateev structure constant (for A-series), we argued

$$
R(Q)=\sqrt{2} C_{c<1}^{\text {Liouville }}\left(\Delta_{\sigma}, \Delta_{\sigma}, \Delta_{\sigma}\right)
$$

The puzzle of the three-point connectivity

- From global conformal invariance, one has

$$
P_{a a a}\left(x_{1}, x_{2}, x_{3}\right)=R(Q) \sqrt{P_{a a}\left(x_{1}, x_{2}\right) P_{a a}\left(x_{2}, x_{3}\right) P_{a a}\left(x_{1}, x_{3}\right)}
$$

- By analytically continuing in the discrete indexes (r, s) the Dotsenko Fateev structure constant (for A-series), we argued

$$
R(Q)=\sqrt{2} C_{c<1}^{\text {Liouville }}\left(\Delta_{\sigma}, \Delta_{\sigma}, \Delta_{\sigma}\right)
$$

Remarks on Liouville theory with $c<1$

$C_{c<1}^{\text {Liouville }}$ defined as (unique) solution of the Liouville shift equations continued to $c<1$ [AI. Zamolodchikov; Kostov, Petkova; Schomerus 06; Harlow, Maltz, Witten '11]

Considered 'misterious' [AI. Zamolodchikov] since $C\left(\Delta_{1}, 0, \Delta_{3}\right) \neq 0$, even if $\Delta_{1} \neq \Delta_{3}$. In fact this implies that the theory is non-unitary [Harlow, Maltz, Witten '11] but it might exist.

Proven to produce to crossing symmetric 4 pt fcs. [Ribault, Santachiara '16], by taking the same spectrum as Liouville with $c>25$.

Tests and applications of Liouville 3pt function

- The conjecture has been checked by MC. For instance at $Q=1$, [Ziff '11], for three points on an equilateral triangle embedded into a torus.

Tests and applications of Liouville 3pt function

- The conjecture has been checked by MC. For instance at $Q=1$, [Ziff '11], for three points on an equilateral triangle embedded into a torus.

- A full interpretation was given in terms of partition functions of critical loop ensembles [lkhlef, Jacobsen, Saleur '16]
$C_{c<1}^{\text {Liouville }}\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right) \propto Z_{n_{1}, n_{2}, n_{3}}$
- The loop model interpretation solved the 'mistery': $C\left(\Delta_{1}, 0, \Delta_{3}\right) \neq 0$.

The four-point FK connectivities: this afternoon

- We have seen that there are four lin. independent 4-pt connectivities

- They have been recently calculated by conformal bootstrap [Yifei talk]. In particular from the bootstrap solution and geometry

The four-point FK connectivities: this afternoon

- We have seen that there are four lin. independent 4-pt connectivities

- They have been recently calculated by conformal bootstrap [Yifei talk]. In particular from the bootstrap solution and geometry
- Thus allowing also to check the Liouville 3pt function with >20 digits of accuracy [Nivesvivat, Ribault '20]
- In the following, l'll sketch a simpler analytic solution valid for points on the boundary [Gori, V. '18]

The boundary case: Ising FK connectivities

- To simplify even futher, consider the Ising case. By planarity, when the points are on the boundary there are 3 independent 4 pt functions

The boundary case: Ising FK connectivities

- To simplify even futher, consider the Ising case. By planarity, when the points are on the boundary there are 3 independent 4 pt functions

- Boundary conditions are free. By scaling arguments and the FK mapping, they should be extracted from

$$
\left.\left\langle\phi_{\Delta_{\sigma}}\left(x_{1}\right) \phi_{\Delta_{\sigma}}\left(x_{2}\right) \phi_{\Delta_{\sigma}}\left(x_{3}\right) \phi_{\Delta_{\sigma}}\left(x_{4}\right)\right\rangle\right|_{\mathcal{S} ;} \quad \Delta_{\sigma}=h_{1,3}=\frac{1}{2}, \quad \operatorname{spin}\left(\phi_{\Delta_{\sigma}}\right)=\frac{1}{2}
$$

- The choice of the intermediate channels \mathcal{S} is fixed by simmetries and degeneracy of the Virasoro algebra representation $h_{1,3}=1 / 2$ at $c=1 / 2$

The boundary case: Ising FK connectivities

- Indeed, the OPE is fixed by the condition of level three null vector decoupling

$$
\phi_{1,3} \cdot \phi_{1,3}=1+\phi_{1,3}+\phi_{1,5}
$$

- In the minimal BCFT, the spin at the boundary is by duality a free Majorana fermion

$$
\Psi=\phi_{2,1}
$$

$\psi \cdot \psi=1$.

The boundary case: Ising FK connectivities

- Indeed, the OPE is fixed by the condition of level three null vector decoupling

$$
\phi_{1,3} \cdot \phi_{1,3}=1+\phi_{1,3}+\phi_{1,5}
$$

- In the minimal BCFT, the spin at the boundary is by duality a free Majorana fermion

$$
\Psi=\phi_{2,1}
$$

$$
\Psi \cdot \Psi=1
$$

- Algebraically, the two Virasoro reps. are distinguished by the decoupling of the level two null vector of $\phi_{1,3}$ at $c=1 / 2$

$$
\left(L_{-1}^{2}-\frac{3}{4} L_{-2}\right)\left|\phi_{1,3}\right\rangle=\left\{\begin{array}{l}
0 \Rightarrow \text { Single channel OPE } \\
|\chi\rangle \Rightarrow \text { three channels OPE }
\end{array}\right.
$$

The boundary case: Ising FK connectivities

- The additional OPE channel $\phi_{1,3} \cdot \phi_{1,3} \rightarrow \phi_{1,3}$ is singular.
- Its regularization produces, as well known, logarithmic singularities in the corresponding conformal blocks; see also [Santachiara, V. '14; He, Jacobsen, Saleur '20; Nivesvivat, Ribault 20]
- For the boundary case, the regularization prescription is selected by the logarithmic solution of a third order ODE.

The boundary case: Ising FK connectivities

- The additional OPE channel $\phi_{1,3} \cdot \phi_{1,3} \rightarrow \phi_{1,3}$ is singular.
- Its regularization produces, as well known, logarithmic singularities in the corresponding conformal blocks; see also [Santachiara, V. '14; He, Jacobsen, Saleur '20; Nivesvivat, Ribault 20]
- For the boundary case, the regularization prescription is selected by the logarithmic solution of a third order ODE.

- Analytic determination of all three linearly ind. connectivities

$$
R(\eta)=\frac{P_{\text {aabb }}}{P_{\text {aabb }}+P_{a b b a}+P_{\text {aaaa }}}
$$

- $\eta=\frac{x_{12} x_{34}}{x_{13} x_{24}}$.

Still a puzzle: Potts spin clusters

- Consider the coupled Potts models (Potts dilute Potts model)

$$
H_{P P}=-J \sum_{\langle x, y\rangle} \delta_{s(x), s(y)}-K \sum_{\langle x, y\rangle} \delta_{\tau(x) \tau(y)} \delta_{s(x), s(y)}, \tau(x)=1, \ldots, P
$$

- Its FK graph expansion, leads to a correlated percolation problem in the $P \rightarrow 1$ limit

$$
\left\{\begin{array}{c}
K \rightarrow \infty: \text { spin clusters } \\
K \rightarrow J: \text { FK clusters }
\end{array}\right.
$$

- It turns out that in $d=2$, they both percolate at $J=J_{c}$; not true in $d=3$.

Still a puzzle: Potts spin clusters

- By fixing $J=J_{c}$, we can perform an RG analysis in the coupling K [Coniglio, Peruggi 80's] and take the $P \rightarrow 1$ limit

Still a puzzle: Potts spin clusters

- By fixing $J=J_{c}$, we can perform an RG analysis in the coupling K [Coniglio, Peruggi 80's] and take the $P \rightarrow 1$ limit

- The RG picture suggests that spin cluster are obtained by analytic continuation of FK clusters along the tricritical branch [Nienhuis et al., 79] of the Potts model.

Still a puzzle: Potts spin clusters

- This guess produces the correct fractal dimension $2-\Delta_{\sigma}$ of the clusters [by MC]. $\Delta_{\sigma}=\operatorname{dim}$. spin operator along the critical/tricritical branch.

Still a puzzle: Potts spin clusters

- This guess produces the correct fractal dimension $2-\Delta_{\sigma}$ of the clusters [by MC]. $\Delta_{\sigma}=\operatorname{dim}$. spin operator along the critical/tricritical branch.

- Does the same analytic continuation hold for the three-point connectivity of Potts spin clusters? No.
- Q: What is then the CFT of critical 2d Potts spin clusters?

