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o Fisher [1967] droplet model: how to chose pg to reproduce Ising

critical exponents via a correlated percolation problem?
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Droplets as FK clusters [Coniglio, Klein '80s]
@ Consider the ferromagnetic Q-color Potts model
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@ By rewriting the Boltzmann weight as
J

e Mo = T\, 3 (1= PB) + PBIs(x)s(y)i PB=1—¢€"

@ The partition function is expanded into FK graphs [Fortuin, Kasteleyn
'70s]
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Connectivities of FK clusters

@ Critical exponents of Potts are reproduced by the graph expansion
@ For instance consider the @ — 1 dim.

vector o,(x) = ds(x),0 — 1/Q

@ (0a(x)) = g% P(x ¢ OD)

@ However, the percolation problem
contains much more observables
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Connectivities can be defined for any real Q

Paay...a,(X1, - .., Xn) = {Probability that x; belongs to the cluster a;}

@ Q: How many independent connectivities are there? Can be
calculated at criticality? Equivalent to solve the model for @ € R



Vector space of geometrical correlators [Delfino, V. '11]
@ Connectivities are probability to partition a set of points into clusters
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% #P,, = Bell number n "X gnlogn J
% @ There are sum rules: a basis can be formed by
partitions without isolated points. For instance
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@ They can be expressed formally in terms of S inequivalent spin cfs

Gaaaa = Qu(Q% = 3Q + 3)Pasas + Q5 (Pasbb + Pabba + Pabab),
Goaps = (2Q — 3)Paaza + Q2 Paab + Pabba + Pabab
Gappo = (2Q — 3)Paaza + Paabb + QFPabba + Pabab
Gapas = (2Q — 3)Pasas + Paabb + Pabba + Q@ Pabab-



The puzzle of the three-point connectivity [Delfino, V.

’11; Picco, Santachiara, V., Delfino '13]
@ In particular, the three point connectivity is

(Fa(x1)0a(x2)oa(x3))

Paaa(X17X27X3) = Q(R-1)(QR-2)

@ In any d, analytic continuation of the OPE is required at Q = 2.
Consider d = 2 from now on and T = T.. We postulate in the
scaling limit (up to a non-universal normalization)
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Paaa(x1, %2, x3) = (¢a, (x1)dn, (x2)Pa, (x3))
@ Correct scaling of the two point function requires
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@ For the Q-color Potts model: @ = 4 cos? mL+1



The puzzle of the three-point connectivity
@ From global conformal invariance, one has

Paaa(X17X2>X3) = R(Q)\/Paa(xlaX2)Paa(x2yx3)Paa(X17X3)

@ By analytically continuing in the discrete indexes (r,s) the
Dotsenko Fateev structure constant (for A-series), we argued

R(Q) = v2Ctowile(A, A, Ay)
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Remarks on Liouville theory with ¢ < 1

Cliewville defined as (unique) solution of the Liouville shift equations
continued to ¢ < 1 [Al. Zamolodchikov; Kostov, Petkova; Schomerus 06;
Harlow, Maltz, Witten '11]

Considered ‘misterious’ [Al. Zamolodchikov] since C(A4,0, As) # 0, even
if Ay # As. In fact this implies that the theory is non-unitary [Harlow,
Maltz, Witten '11] but it might exist.

Proven to produce to crossing symmetric 4pt fcs. [Ribault, Santachiara
'16], by taking the same spectrum as Liouville with ¢ > 25.
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Tests and applications of Liouville 3pt function
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@ A full interpretation was given in
terms of partition functions of
critical loop ensembles [Ikhlef,
Jacobsen, Saleur '16]

Liouvill
Cc?luw e(Ala As, A3) X an,nz,n3 )

@ The loop model interpretation solved the 'mistery’: C(Aj,0,A3) # 0.



The four-point FK connectivities: this afternoon

@ We have seen that there are four lin. independent 4-pt
connectivities
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@ They have been recently calculated by conformal bootstrap [Yifei
talk]. In particular from the bootstrap solution and geometry
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@ Thus allowing also to check the Liouville 3pt function with > 20
digits of accuracy [Nivesvivat, Ribault '20]

@ In the following, I'll sketch a simpler analytic solution valid for points
on the boundary [Gori, V. '18]



The boundary case: Ising FK connectivities

o To simplify even futher, consider the Ising case. By planarity, when
the points are on the boundary there are 3 independent 4pt functions
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@ Boundary conditions are free. By scaling arguments and the FK
mapping, they should be extracted from

(da, (x1)da, (x2)da, (3)da, (a))lsi Do = h13 =3, spin(da,) =3

@ The choice of the intermediate channels § is fixed by simmetries and
degeneracy of the Virasoro algebra representation h; 3 = 1/2 at
c=1/2



The boundary case: Ising FK connectivities
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@ Algebraically, the two Virasoro reps. are distinguished by the
decoupling of the level two null vector of ¢;3 at c =1/2

0 = Single channel OPE

2 3 _
(L2; = 3L-2)l¢ns) { |x) = three channels OPE



The boundary case: Ising FK connectivities

@ The additional OPE channel ¢13 - ¢13 — ¢13 is singular.

@ lts regularization produces, as well known, logarithmic singularities
in the corresponding conformal blocks; see also [Santachiara, V. '14;
He, Jacobsen, Saleur '20; Nivesvivat, Ribault 20]

@ For the boundary case, the regularization prescription is selected by
the logarithmic solution of a third order ODE.
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Still a puzzle: Potts spin clusters

@ Consider the coupled Potts models (Potts dilute Potts model)

Hpp = —J3 i) 9s0.50) = K Xxy) Or)r()9s(sty)s TOX) =1, P

@ Its FK graph expansion, leads to a correlated percolation problem in

the P — 1 limit
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K — 00 : spin clusters
K — J: FK clusters

@ |t turns out that in d = 2, they
both percolate at J = J.; not
true in d = 3.



Still a puzzle: Potts spin clusters

@ By fixing J = J., we can perform an RG analysis in the coupling K
[Coniglio, Peruggi 80's] and take the P — 1 limit

(s:i}clusteriline: K = K*
|

P — 1 Tricritica

Percolation
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FK clusteriline: K = J.

Percolation i
1 2 3 4

@ The RG picture suggests that spin cluster are obtained by analytic
continuation of FK clusters along the tricritical branch [Nienhuis et
al., 79] of the Potts model.



Still a puzzle: Potts spin clusters
@ This guess produces the correct fractal dimension 2 — A, of the
clusters [by MC]. A,=dim. spin operator along the critical/tricritical
branch.
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@ Does the same analytic continuation hold for the three-point
connectivity of Potts spin clusters? No.
@ Q: What is then the CFT of critical 2d Potts spin clusters?



