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Correlated percolation and phase transitions
Consider the ferromagnetic Ising model

HIsing = −J∑〈x ,y〉 s(x)s(y)− H
∑

x s(x); s(x) = ±1

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

pB

spin cluster

Fisher [1967] droplet model: how to chose pB to reproduce Ising
critical exponents via a correlated percolation problem?
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Droplets as FK clusters [Coniglio, Klein ’80s]
Consider the ferromagnetic Q-color Potts model

HPotts = −J∑〈x ,y〉 δs(x),s(y); s(x) = 1, . . .Q

By rewriting the Boltzmann weight as

e−HPotts =
∏
〈x ,y〉(1− pB) + pBδs(x),s(y); pB = 1− e−J

The partition function is expanded into FK graphs [Fortuin, Kasteleyn
’70s]

ZQ =
∑
G ×Q# clusters

p# bonds
B (1− pB)# empty bonds
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Connectivities of FK clusters

Critical exponents of Potts are reproduced by the graph expansion

•
σα(x)

α

D

For instance consider the Q − 1 dim.
vector σα(x) = δs(x),α − 1/Q

〈σα(x)〉 = Q
Q−1P(x ↔ ∂D)

However, the percolation problem
contains much more observables

Connectivities can be defined for any real Q

Pa1a2...an(x1, . . . , xn) = {Probability that xi belongs to the cluster ai}

Q: How many independent connectivities are there? Can be
calculated at criticality? Equivalent to solve the model for Q ∈ R
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Vector space of geometrical correlators [Delfino, V. ’11]
Connectivities are probability to partition a set of points into clusters

•
•
••

•
•

•
#Pn = Bell number n

n�1' en log n

There are sum rules: a basis can be formed by
partitions without isolated points. For instance

• • • • •
• •
• • •

• •
•

• •
• •

• •
• •

Paa Paaa Paabb Pabba Pabab Paaaa

They can be expressed formally in terms of SQ inequivalent spin cfs

Gαααα = Q1(Q2 − 3Q + 3)Paaaa + Q2
1 (Paabb + Pabba + Pabab),

Gααββ = (2Q − 3)Paaaa + Q2
1Paabb + Pabba + Pabab

Gαββα = (2Q − 3)Paaaa + Paabb + Q2
1Pabba + Pabab

Gαβαβ = (2Q − 3)Paaaa + Paabb + Pabba + Q2
1Pabab.
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The puzzle of the three-point connectivity [Delfino, V.

’11; Picco, Santachiara, V., Delfino ’13]

In particular, the three point connectivity is

Paaa(x1, x2, x3) = 〈σα(x1)σα(x2)σα(x3)〉
Q(Q−1)(Q−2)

In any d , analytic continuation of the OPE is required at Q = 2.
Consider d = 2 from now on and T = Tc . We postulate in the
scaling limit (up to a non-universal normalization)

Paaa(x1, x2, x3) = 〈φ∆σ(x1)φ∆σ(x2)φ∆σ(x3)〉

Correct scaling of the two point function requires

∆σ = 2h 1
2
,0, hr ,s = (r(m+1)−sm)2−1

4m(m+1) , c = 1− 6
m(m+1)

For the Q-color Potts model: Q = 4 cos2 π
m+1 .
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The puzzle of the three-point connectivity
From global conformal invariance, one has

Paaa(x1, x2, x3) = R(Q)
√
Paa(x1, x2)Paa(x2, x3)Paa(x1, x3)

By analytically continuing in the discrete indexes (r , s) the
Dotsenko Fateev structure constant (for A-series), we argued

R(Q) =
√

2CLiouville
c<1 (∆σ,∆σ,∆σ)

Remarks on Liouville theory with c < 1

I CLiouville
c<1 defined as (unique) solution of the Liouville shift equations

continued to c < 1 [Al. Zamolodchikov; Kostov, Petkova; Schomerus 06;
Harlow, Maltz, Witten ’11]

I Considered ‘misterious‘ [Al. Zamolodchikov] since C (∆1, 0,∆3) 6= 0, even
if ∆1 6= ∆3. In fact this implies that the theory is non-unitary [Harlow,
Maltz, Witten ’11] but it might exist.

I Proven to produce to crossing symmetric 4pt fcs. [Ribault, Santachiara
’16], by taking the same spectrum as Liouville with c > 25.
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Tests and applications of Liouville 3pt function

The conjecture has been
checked by MC. For instance at
Q = 1, [Ziff ’11], for three
points on an equilateral triangle
embedded into a torus.

r1

r2

r3

A full interpretation was given in
terms of partition functions of
critical loop ensembles [Ikhlef,
Jacobsen, Saleur ’16]

CLiouville
c<1 (∆1,∆2,∆3) ∝ Zn1,n2,n3

The loop model interpretation solved the ’mistery’: C (∆1, 0,∆3) 6= 0.
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The four-point FK connectivities: this afternoon

We have seen that there are four lin. independent 4-pt
connectivities

• •
• • •

• •
•

• •
• •

• •
• •

Paabb Pabba Pabab Paaaa

They have been recently calculated by conformal bootstrap [Yifei
talk]. In particular from the bootstrap solution and geometry

limx1→x2 Paaaa(x1, x2, x3, x4) ' (
√

2CLiouville
c<1 )2

|x12|2∆σ |x34|2∆σ
|η|2∆σ + . . .

Thus allowing also to check the Liouville 3pt function with > 20
digits of accuracy [Nivesvivat, Ribault ’20]

In the following, I’ll sketch a simpler analytic solution valid for points
on the boundary [Gori, V. ’18]
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The boundary case: Ising FK connectivities
To simplify even futher, consider the Ising case. By planarity, when
the points are on the boundary there are 3 independent 4pt functions

••

• •

x2x1

x4 x3

Paabb

••

• •

x2x1

x4 x3

Pabba

••

• •

x2x1

x4 x3

Paaaa

Boundary conditions are free. By scaling arguments and the FK
mapping, they should be extracted from

〈φ∆σ(x1)φ∆σ(x2)φ∆σ(x3)φ∆σ(x4)〉|S ; ∆σ = h1,3 = 1
2 , spin(φ∆σ) = 1

2

The choice of the intermediate channels S is fixed by simmetries and
degeneracy of the Virasoro algebra representation h1,3 = 1/2 at
c = 1/2
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The boundary case: Ising FK connectivities
Indeed, the OPE is fixed by the
condition of level three null
vector decoupling

φ1,3 · φ1,3 = 1 + φ1,3 + φ1,5

In the minimal BCFT, the spin
at the boundary is by duality a
free Majorana fermion
Ψ = φ2,1

Ψ ·Ψ = 1.
1 2 3 4 5
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Q = 2 Z2 Ising

Algebraically, the two Virasoro reps. are distinguished by the
decoupling of the level two null vector of φ1,3 at c = 1/2

(L2
−1 − 3

4L−2)|φ1,3〉 =

{
0⇒ Single channel OPE
|χ〉 ⇒ three channels OPE
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The boundary case: Ising FK connectivities

The additional OPE channel φ1,3 · φ1,3 → φ1,3 is singular.

Its regularization produces, as well known, logarithmic singularities
in the corresponding conformal blocks; see also [Santachiara, V. ’14;
He, Jacobsen, Saleur ’20; Nivesvivat, Ribault 20]

For the boundary case, the regularization prescription is selected by
the logarithmic solution of a third order ODE.
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Analytic determination of all
three linearly ind. connectivities

R(η) =
Paabb

Paabb + Pabba + Paaaa

η = x12x34
x13x24

.
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Still a puzzle: Potts spin clusters

Consider the coupled Potts models (Potts dilute Potts model)

HPP = −J∑〈x ,y〉 δs(x),s(y) − K
∑
〈x ,y〉 δτ(x)τ(y)δs(x),s(y), τ(x) = 1, . . . ,P.

Its FK graph expansion, leads to a correlated percolation problem in
the P → 1 limit

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

pB = 1− e−K

spin s cluster {
K →∞ : spin clusters
K → J : FK clusters

It turns out that in d = 2, they
both percolate at J = Jc ; not
true in d = 3.



Still a puzzle: Potts spin clusters

By fixing J = Jc , we can perform an RG analysis in the coupling K
[Coniglio, Peruggi 80’s] and take the P → 1 limit

• • • •Q

K

2 3 41

FK cluster line: K = Jc

spin cluster line: K = K ∗••

•P → 1 Tricritical Potts

•Percolation

The RG picture suggests that spin cluster are obtained by analytic
continuation of FK clusters along the tricritical branch [Nienhuis et
al., 79] of the Potts model.
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Still a puzzle: Potts spin clusters
This guess produces the correct fractal dimension 2−∆σ of the
clusters [by MC]. ∆σ=dim. spin operator along the critical/tricritical
branch.

• • • • c

∆σ

1/2 4/5 10

FK cluster line (cr.)

spin cluster line (tric.)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.0

1.1

1.2

1.3

1.4

Q

√
2CLiouville

c<1 (∆σ,∆σ,∆σ)

Does the same analytic continuation hold for the three-point
connectivity of Potts spin clusters? No.

Q: What is then the CFT of critical 2d Potts spin clusters?
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