The Upper Critical Dimension of the 3-state Potts Model

Shai M. Chester
Weizmann Institute of Science

Based on WIP with Ning Su and Zhehan Qin

Why study the 3-state Potts model?

- The critical 3-state Potts model describes phase transitions in nature in $2 d$, e.g. ${ }^{4} \mathrm{He}$ atoms on graphite at $\frac{1}{3}$ coverage show second order phase transition with critical exponents that match theory [Alexander '75; Bretz '77; Tejwani et al '80].
- In 3d, the Potts lattice model describes cubic ferromagnets with 3 easy axes, e.g. DyAl_{2}, but shows a first order phase transition (so NOT critical).
- Simplest QFT after the Ising model, i.e. few relevant operators, global symmetry just S_{3}.
- The critical and tricritical q-state Potts models are believed to demonstrate merger and annihilation scenario for critical points, as function of either q or d near $q=3$.

Why study the 3-state Potts model?

- The critical 3-state Potts model describes phase transitions in nature in $2 d$, e.g. ${ }^{4} \mathrm{He}$ atoms on graphite at $\frac{1}{3}$ coverage show second order phase transition with critical exponents that match theory [Alexander '75; Bretz '77; Tejwani et al '80].
- In 3d, the Potts lattice model describes cubic ferromagnets with 3 easy axes, e.g. DyAl_{2}, but shows a first order phase transition [Mukamel et al '76; Barbara et al '78] (so NOT critical).
- Simplest QFT after the Ising model, i.e. few relevant operators, global symmetry just S_{3}.
- The critical and tricritical q-state Potts models are believed to demonstrate merger and annihilation scenario for critical points, as function of either q or d near $q=3$.

Why study the 3-state Potts model?

- The critical 3-state Potts model describes phase transitions in nature in $2 d$, e.g. ${ }^{4} \mathrm{He}$ atoms on graphite at $\frac{1}{3}$ coverage show second order phase transition with critical exponents that match theory [Alexander '75; Bretz '77; Tejwani et al '80].
- In 3d, the Potts lattice model describes cubic ferromagnets with 3 easy axes, e.g. DyAl_{2}, but shows a first order phase transition [Mukamel et al '76; Barbara et al '78] (so NOT critical).
- Simplest QFT after the Ising model, i.e. few relevant operators, global symmetry just S_{3}.
- The critical and tricritical q-state Potts models are believed to demonstrate merger and annihilation scenario for critical points, as function of either q or d near $q=3$.

Why study the 3-state Potts model?

- The critical 3-state Potts model describes phase transitions in nature in $2 d$, e.g. ${ }^{4} \mathrm{He}$ atoms on graphite at $\frac{1}{3}$ coverage show second order phase transition with critical exponents that match theory [Alexander '75; Bretz '77; Tejwani et al '80].
- In 3d, the Potts lattice model describes cubic ferromagnets with 3 easy axes, e.g. DyAl_{2}, but shows a first order phase transition [Mukamel et al '76; Barbara et al '78] (so NOT critical).
- Simplest QFT after the Ising model, i.e. few relevant operators, global symmetry just S_{3}.
- The critical and tricritical q-state Potts models are believed to demonstrate merger and annihilation scenario for critical points, as function of either q or d near $q=3$.

Merger and annihiliation scenario

- Consider two families of unitary CFTs parameterized by s with same global symmetry and number of relevant operators, except one CFT has extra relevant singlet.

- The "extra" relevant singlet operator becomes marginal at $S_{\text {crit }}$.
- Critical and tricritical q-state Potts have same S_{q} global symmetry, but tricritical has extra relevant singlet operator for $q=3$.

into complex plane

Merger and annihiliation scenario

- Consider two families of unitary CFTs parameterized by s with same global symmetry and number of relevant operators, except one CFT has extra relevant singlet.
- As s changes, the CFT data of these two CFTs gets closer until a $s_{\text {crit }}$, where the two CFTs become identical and go off into the complex plane (no longer unitary) [Kaplan, Lee, Son 09'].
- The "extra" relevant singlet operator becomes marginal at $S_{\text {crit }}$.
- Critical and tricritical q-state Potts have same S_{q} global symmetry, but tricritical has extra relevant singlet operator for $q=3$.
the theories merge
and then go off
into complex plane

Merger and annihiliation scenario

- Consider two families of unitary CFTs parameterized by s with same global symmetry and number of relevant operators, except one CFT has extra relevant singlet.
- As s changes, the CFT data of these two CFTs gets closer until a $s_{\text {crit }}$, where the two CFTs become identical and go off into the complex plane (no longer unitary) [Kaplan, Lee, Son 09'].
- The "extra" relevant singlet operator becomes marginal at $s_{\text {crit }}$.
- Critical and tricritical q-state Potts have same S_{q} global symmetry, but tricritical has extra relevant singlet operator for $q=3$.
the theories merge
and then go off into complex plane

Merger and annihiliation scenario

- Consider two families of unitary CFTs parameterized by s with same global symmetry and number of relevant operators, except one CFT has extra relevant singlet.
- As s changes, the CFT data of these two CFTs gets closer until a $s_{\text {crit }}$, where the two CFTs become identical and go off into the complex plane (no longer unitary) [Kaplan, Lee, Son 09'].
- The "extra" relevant singlet operator becomes marginal at $s_{\text {crit }}$.
- Critical and tricritical q-state Potts have same S_{q} global symmetry, but tricritical has extra relevant singlet operator for $q=3$.
- In 2d, critical and tricritical q-state Potts let $s=q$: as $q \rightarrow q_{\text {crit }}=4$ the theories merge

Merger and annihiliation scenario

- Consider two families of unitary CFTs parameterized by s with same global symmetry and number of relevant operators, except one CFT has extra relevant singlet.
- As s changes, the CFT data of these two CFTs gets closer until a $s_{\text {crit }}$, where the two CFTs become identical and go off into the complex plane (no longer unitary) [Kaplan, Lee, Son 09'].
- The "extra" relevant singlet operator becomes marginal at $s_{\text {crit }}$.
- Critical and tricritical q-state Potts have same S_{q} global symmetry, but tricritical has extra relevant singlet operator for $q=3$.
- In 2d, critical and tricritical q-state Potts let $s=q$: as $q \rightarrow q_{\text {crit }}=4$ the theories merge [Neinhuis, Berker, Riedel, Schick '79] and then go off into complex plane [Gorbenko, Rychkov, Zan '18] .

$q_{\text {crit }}$ for critical Potts for $d>2$

- In $d \geq 4$, proven that $q_{\text {crit }}=2$ [Aharony, Pytte '81] .
- No merger/annihilation in this case, instead $q=2$ critical Potts (i.e. Ising) becomes free at $d=4$.
- In 3d, lattice Monte Carlo suggests $q_{\text {crit }} \sim 2.45$
- In $2<d \leq 3$, various estimates of ($\left.d_{\text {crit }}, q_{\text {crit }}\right)$:
- Lattice Monte Carlo of generalization of Potts model gives (2.5, 2.68)
- $d=4-\epsilon$ and $q=2+\epsilon$ expansion gives $(4-\epsilon, 2+\epsilon)+O\left(\epsilon^{2}\right)$ see also
- RG analysis gives $(2.32,2.85)$
- This talk: Use bootstrap to find upper critical dimension $d_{\text {crit }} \sim 2.5$ for $q=3$ via merger/annihilation of critical/tricritical CFTs.

$q_{\text {crit }}$ for critical Potts for $d>2$

- In $d \geq 4$, proven that $q_{\text {crit }}=2$ [Aharony, Pytte '81] .
- No merger/annihilation in this case, instead $q=2$ critical Potts (i.e. Ising) becomes free at $d=4$.

```
- In 3d, lattice Monte Carlo suggests qcrit ~ 2.45
- In 2<d\leq3, various estimates of ( }\mp@subsup{d}{\mathrm{ crit }}{},\mp@subsup{q}{\mathrm{ crit }}{})\mathrm{ :
    - Lattice Monte Carlo of gencralization of Dotts model gives
    (2.5, 2.68)
    - d=4-\epsilon and q=2 +\epsilon expansion gives (4-\epsilon,2+\epsilon)+O(\mp@subsup{\epsilon}{}{2})
    see also
    - RG analysis gives (2.32, 2.85)
- This talk: Use bootstrap to find upper critical dimension dcrit }~2.
for q=3 via merger/annihilation of critical/tricritical CFTs.
```


$q_{\text {crit }}$ for critical Potts for $d>2$

- In $d \geq 4$, proven that $q_{\text {crit }}=2$ [Aharony, Pytte '81] .
- No merger/annihilation in this case, instead $q=2$ critical Potts (i.e. Ising) becomes free at $d=4$.
- In 3d, lattice Monte Carlo suggests $q_{\text {crit }} \sim 2.45$ [Lee, Kosterlitz '91] .
- $\ln 2<d \leq 3$, various estimates of $\left(d_{\text {crit }}, q_{\text {crit }}\right)$:
- Lattice Monte Carlo of generalization of Potts model gives (2.5, 2.68)
- $d=4-\epsilon$ and $q=2+\epsilon$ expansion gives $(4-\epsilon, 2+\epsilon)+O\left(\epsilon^{2}\right)$ see also
-RG analysis gives (2.32,2.85)
- This talk: Use bootstrap to find upper critical dimension $d_{\text {crit }} \sim 2.5$ for $q=3$ via merger/annihilation of critical/tricritical CFTs.

$q_{\text {crit }}$ for critical Potts for $d>2$

- In $d \geq 4$, proven that $q_{\text {crit }}=2$ [Aharony, Pytte '81] .
- No merger/annihilation in this case, instead $q=2$ critical Potts (i.e. Ising) becomes free at $d=4$.
- In 3d, lattice Monte Carlo suggests $q_{\text {crit }} \sim 2.45$ [Lee, Kosterlitz '91] .
- In $2<d \leq 3$, various estimates of $\left(d_{\text {crit }}, q_{\text {crit }}\right)$:
- Lattice Monte Carlo of generalization of Potts model gives $(2.5,2.68)$
- $d=1-\epsilon$ and $q=2+\epsilon$ expansion gives $(4-\epsilon, 2+\epsilon)+O\left(\epsilon^{2}\right)$ see also
- RG analysis gives $(2.32,2.85)$
- This talk: Use bootstrap to find upper critical dimension $d_{\text {crit }} \sim 2.5$ for $q=3$ via merger/annihilation of critical/tricritical CFTs.

$q_{\text {crit }}$ for critical Potts for $d>2$

- In $d \geq 4$, proven that $q_{\text {crit }}=2$ [Aharony, Pytte '81] .
- No merger/annihilation in this case, instead $q=2$ critical Potts (i.e. Ising) becomes free at $d=4$.
- In 3d, lattice Monte Carlo suggests $q_{\text {crit }} \sim 2.45$ [Lee, Kosterlitz '91] .
- In $2<d \leq 3$, various estimates of ($d_{\text {crit }}, q_{\text {crit }}$):
- Lattice Monte Carlo of generalization of Potts model gives $(2.5,2.68)$ [Barkema, de Boer '91] .
- $d=4-\epsilon$ and $q=2+\epsilon$ expansion gives $(4-\epsilon, 2+\epsilon)+O\left(\epsilon^{2}\right)$ see also
-RG analysis gives $(2.32,2.85)$
- This talk: Use bootstrap to find upper critical dimension $d_{\text {crit }} \sim 2.5$

$q_{\text {crit }}$ for critical Potts for $d>2$

- In $d \geq 4$, proven that $q_{\text {crit }}=2$ [Aharony, Pytte '81] .
- No merger/annihilation in this case, instead $q=2$ critical Potts (i.e. Ising) becomes free at $d=4$.
- In 3d, lattice Monte Carlo suggests $q_{\text {crit }} \sim 2.45$ [Lee, Kosterlitz '91].
- In $2<d \leq 3$, various estimates of ($d_{\text {crit }}, q_{\text {crit }}$):
- Lattice Monte Carlo of generalization of Potts model gives $(2.5,2.68)$ [Barkema, de Boer '91] .
- $d=4-\epsilon$ and $q=2+\epsilon$ expansion gives $(4-\epsilon, 2+\epsilon)+O\left(\epsilon^{2}\right)$ [Aharony, Pytte '81] see also [Newman, Riedel, Mutto '83].
- RG analysis gives $(2.32,2.85)$

$q_{\text {crit }}$ for critical Potts for $d>2$

- In $d \geq 4$, proven that $q_{\text {crit }}=2$ [Aharony, Pytte '81] .
- No merger/annihilation in this case, instead $q=2$ critical Potts (i.e. Ising) becomes free at $d=4$.
- In 3d, lattice Monte Carlo suggests $q_{\text {crit }} \sim 2.45$ [Lee, Kosterlitz '91].
- In $2<d \leq 3$, various estimates of ($d_{\text {crit }}, q_{\text {crit }}$):
- Lattice Monte Carlo of generalization of Potts model gives $(2.5,2.68)$ [Barkema, de Boer '91] .
- $d=4-\epsilon$ and $q=2+\epsilon$ expansion gives $(4-\epsilon, 2+\epsilon)+O\left(\epsilon^{2}\right)$ [Aharony, Pytte '81] see also [Newman, Riedel, Mutto '83].
- RG analysis gives $(2.32,2.85)$ [Nienhuis, Riedel, Schick '80].

$q_{\text {crit }}$ for critical Potts for $d>2$

- In $d \geq 4$, proven that $q_{\text {crit }}=2$ [Aharony, Pytte '81] .
- No merger/annihilation in this case, instead $q=2$ critical Potts (i.e. Ising) becomes free at $d=4$.
- In 3d, lattice Monte Carlo suggests $q_{\text {crit }} \sim 2.45$ [Lee, Kosterlitz '91].
- In $2<d \leq 3$, various estimates of ($d_{\text {crit }}, q_{\text {crit }}$):
- Lattice Monte Carlo of generalization of Potts model gives $(2.5,2.68)$ [Barkema, de Boer '91] .
- $d=4-\epsilon$ and $q=2+\epsilon$ expansion gives $(4-\epsilon, 2+\epsilon)+O\left(\epsilon^{2}\right)$ [Aharony, Pytte '81] see also [Newman, Riedel, Mutto '83].
- RG analysis gives $(2.32,2.85)$ [Nienhuis, Riedel, Schick '80].
- This talk: Use bootstrap to find upper critical dimension $d_{\text {crit }} \sim 2.5$ for $q=3$ via merger/annihilation of critical/tricritical CFTs.

Outline of talk

- Define q-state Potts model in any spacetime d, and the critical and tricritical fixed points.
- Review exact solutions in 2d for various q.
- In 2d, use conformal bootstrap to find kinks that correspond to the exact solutions of the 3-state critical and tricritical Potts CFTs.
- Using same bootstrap setup, increase d and find that critical and tricritical kinks merge and disappear around $d \sim 2.5$.

Outline of talk

- Define q-state Potts model in any spacetime d, and the critical and tricritical fixed points.
- Review exact solutions in 2d for various q.
- In 2d, use conformal bootstrap to find kinks that correspond to the exact solutions of the 3-state critical and tricritical Potts CFTs.
- Using same bootstrap setup, increase d and find that critical and tricritical kinks merge and disappear around $d \sim 2.5$.

Outline of talk

- Define q-state Potts model in any spacetime d, and the critical and tricritical fixed points.
- Review exact solutions in 2d for various q.
- In 2d, use conformal bootstrap to find kinks that correspond to the exact solutions of the 3-state critical and tricritical Potts CFTs.
- Using same bootstrap setup, increase d and find that critical and tricritical kinks merge and disappear around $d \sim 2.5$.

Outline of talk

- Define q-state Potts model in any spacetime d, and the critical and tricritical fixed points.
- Review exact solutions in 2d for various q.
- In 2d, use conformal bootstrap to find kinks that correspond to the exact solutions of the 3-state critical and tricritical Potts CFTs.
- Using same bootstrap setup, increase d and find that critical and tricritical kinks merge and disappear around $d \sim 2.5$.

Lattice definition of Potts for any d, q

- Consider d-dimensional square lattice of random spins with Hamiltonian for $s_{i} \in\{1,2, \ldots, q\}$ [Potts '52]:

- Has exact S_{q} global symmetry.
- At large β ordered phase with q degenerate ground states with S_{q} broken and 1 spin value prefered, at small β have disordered phase with one ground state with S_{q} symmetry.
- Tune $\beta=\beta_{\text {crit }}$ to get phase transition called critical Potts model.
- Consider dilute lattice model where some lattice sites are vacant, can tune β to get same critical Potts model, can tune both β and chemical potential of vacancies to get tricritical Potts model.

Lattice definition of Potts for any d, q

- Consider d-dimensional square lattice of random spins with Hamiltonian for $s_{i} \in\{1,2, \ldots, q\}$ [Potts '52]:

$$
Z=\sum_{\left\{s_{i}\right\}} e^{-H\left[\left\{s_{i}\right\}\right]}, \quad H\left[\left\{s_{i}\right\}\right]=\beta \sum_{\langle i j\rangle} \delta_{s_{i}, s_{j}}
$$

- Has exact S_{q} global symmetry.
- At large β ordered phase with q degenerate ground states with S_{q} broken and 1 spin value prefered, at small β have disordered phase with one ground state with S_{q} symmetry.
- Tune $\beta=\beta_{\text {crit }}$ to get phase transition called critical Potts model.
- Consider dilute lattice model where some lattice sites are vacant can tune β to get same critical Potts model, can tune both β and chemical potential of vacancies to get tricritical Potts model.

Lattice definition of Potts for any d, q

- Consider d-dimensional square lattice of random spins with Hamiltonian for $s_{i} \in\{1,2, \ldots, q\}$ [Potts '52]:

$$
Z=\sum_{\left\{s_{i}\right\}} e^{-H\left[\left\{s_{i}\right\}\right]}, \quad H\left[\left\{s_{i}\right\}\right]=\beta \sum_{\langle i j\rangle} \delta_{s_{i}, s_{j}}
$$

- Has exact S_{q} global symmetry.
- At large β ordered phase with q degenerate ground states with S_{q} broken and 1 spin value prefered, at small β have disordered phase with one ground state with S_{q} symmetry.
- Tune $\beta=\beta_{\text {crit }}$ to get phase transition called critical Potts model.
- Consider dilute lattice model where some lattice sites are vacant, can tune β to get same critical Potts model, can tune both β and chemical potential of vacancies to get tricritical Potts model.

Lattice definition of Potts for any d, q

- Consider d-dimensional square lattice of random spins with Hamiltonian for $s_{i} \in\{1,2, \ldots, q\}$ [Potts '52] :

$$
Z=\sum_{\left\{s_{i}\right\}} e^{-H\left[\left\{s_{i}\right\}\right]}, \quad H\left[\left\{s_{i}\right\}\right]=\beta \sum_{\langle j\rangle} \delta_{s_{i}, s_{j}}
$$

- Has exact S_{q} global symmetry.
- At large β ordered phase with q degenerate ground states with S_{q} broken and 1 spin value prefered, at small β have disordered phase with one ground state with S_{q} symmetry.
- Tune $\beta=\beta_{\text {crit }}$ to get phase transition called critical Potts model.
- Consider dilute lattice model where some lattice sites are vacant, can tune β to get same critical Potts model, can tune both β and chemical potential of vacancies to get tricritical Poits model.

Lattice definition of Potts for any d, q

- Consider d-dimensional square lattice of random spins with Hamiltonian for $s_{i} \in\{1,2, \ldots, q\}$ [Potts '52]:

$$
Z=\sum_{\left\{s_{i}\right\}} e^{-H\left[\left\{s_{i}\right\}\right]}, \quad H\left[\left\{s_{i}\right\}\right]=\beta \sum_{\langle i j\rangle} \delta_{s_{i}, s_{j}}
$$

- Has exact S_{q} global symmetry.
- At large β ordered phase with q degenerate ground states with S_{q} broken and 1 spin value prefered, at small β have disordered phase with one ground state with S_{q} symmetry.
- Tune $\beta=\beta_{\text {crit }}$ to get phase transition called critical Potts model.
- Consider dilute lattice model where some lattice sites are vacant, can tune β to get same critical Potts model, can tune both β and chemical potential of vacancies to get tricritical Potts model.

Lattice definition of Potts for any d, q

- Consider d-dimensional square lattice of random spins with Hamiltonian for $s_{i} \in\{1,2, \ldots, q\}$ [Potts '52] :

$$
Z=\sum_{\left\{s_{i}\right\}} e^{-H\left[\left\{s_{i}\right\}\right]}, \quad H\left[\left\{s_{i}\right\}\right]=\beta \sum_{\langle i j\rangle} \delta_{s_{i}, s_{j}}
$$

- Has exact S_{q} global symmetry.
- At large β ordered phase with q degenerate ground states with S_{q} broken and 1 spin value prefered, at small β have disordered phase with one ground state with S_{q} symmetry.
- Tune $\beta=\beta_{\text {crit }}$ to get phase transition called critical Potts model.
- Consider dilute lattice model where some lattice sites are vacant, can tune β to get same critical Potts model, can tune both β and chemical potential of vacancies to get tricritical Potts model.

$q=2$ Potts (Ising)

- $q=2$ critical and tricritical Potts model are the critical and tricritical Ising models with $S_{2} \cong \mathbb{Z}_{2}$ global symmetry.
- In $d=2 Z_{2}$ even subsector of tricritical has enhanced superconformal algebra, but not for $d>2$ (tricritical in $d>2$ unrelated to $\mathcal{N}=1$ super-Ising model).
- Critical Ising has two relevant operators ($1 \mathbb{Z}_{2}$ odd, $1 \mathbb{Z}_{2}$ even), tricritical has 4 relevant operator ($2 \mathbb{Z}_{2}$ odd, $2 \mathbb{Z}_{2}$ even).
- In 2d, critical and tricritical are lowest two unitary diagonal minimal models $M_{4,3}\left(c=\frac{1}{2}\right)$ and $M_{5,4}\left(c=\frac{7}{10}\right)$, i.e. exactly solvable
- Diagonal minimal models $M_{p+1, p}$ described by Lagrangian $(\partial \phi)^{2}+\lambda\left(\phi^{2}\right)^{p-1}$, has upper critical dimension $d_{\text {crit }}=\frac{2 p-2}{p-2}$ when $\left(\phi^{2}\right)^{p-1}$ becomes marginal \Leftrightarrow theory becomes free.
- Thus $d_{\text {crit }}=4$ for critical Ising, $d_{\text {crit }}=3$ for tricritical Ising, no merger/annihilation.

$q=2$ Potts (Ising)

- $q=2$ critical and tricritical Potts model are the critical and tricritical Ising models with $S_{2} \cong \mathbb{Z}_{2}$ global symmetry.
- In $d=2 Z_{2}$ even subsector of tricritical has enhanced superconformal algebra, but not for $d>2$ (tricritical in $d>2$ unrelated to $\mathcal{N}=1$ super-Ising model).
- Critical Ising has two relevant operators ($1 \mathbb{Z}_{2}$ odd, $1 \mathbb{Z}_{2}$ even), tricritical has 4 relevant operator ($2 \mathbb{Z}_{2}$ odd, $2 \mathbb{Z}_{2}$ even).
- In 2d, critical and tricritical are lowest two unitary diagonal minimal models $M_{4,3}\left(c=\frac{1}{2}\right)$ and $M_{5,4}\left(c=\frac{7}{10}\right)$, i.e. exactly solvable
- Diagonal minimal models $M_{p+1, p}$ described by Lagrangian $(\partial \phi)^{2}+\lambda\left(\phi^{2}\right)^{p-1}$, has upper critical dimension $d_{\text {crit }}=\frac{2 p-2}{p-2}$ when $\left(\phi^{2}\right)^{p-1}$ becomes marginal \Leftrightarrow theory becomes free.
- Thus $d_{\text {crit }}=4$ for critical Ising, $d_{\text {crit }}=3$ for tricritical Ising, no merger/annihilation.

$q=2$ Potts (Ising)

- $q=2$ critical and tricritical Potts model are the critical and tricritical Ising models with $S_{2} \cong \mathbb{Z}_{2}$ global symmetry.
- In $d=2 Z_{2}$ even subsector of tricritical has enhanced superconformal algebra, but not for $d>2$ (tricritical in $d>2$ unrelated to $\mathcal{N}=1$ super-Ising model).
- Critical Ising has two relevant operators ($1 \mathbb{Z}_{2}$ odd, $1 \mathbb{Z}_{2}$ even), tricritical has 4 relevant operator ($2 \mathbb{Z}_{2}$ odd, $2 \mathbb{Z}_{2}$ even).
- In 2d, critical and tricritical are lowest two unitary diagonal minimal models $M_{4,3}\left(c=\frac{1}{2}\right)$ and $M_{5,4}\left(c=\frac{7}{10}\right)$, i.e. exactly solvable
- Diagonal minimal models $M_{p: 1, p}$ described by Lagrangian $(\partial \phi)^{2}+\lambda\left(\phi^{2}\right)^{p-1}$, has upper critical dimension $d_{\text {crit }}=\frac{2 p-2}{p-2}$ when $\left(\phi^{2}\right)^{p-1}$ becomes marginal \Leftrightarrow theory becomes free. - Thus $d_{\text {crit }}=4$ for critical Ising, $d_{\text {crit }}=3$ for tricritical Ising, no

$q=2$ Potts (lsing)

- $q=2$ critical and tricritical Potts model are the critical and tricritical Ising models with $S_{2} \cong \mathbb{Z}_{2}$ global symmetry.
- In $d=2 Z_{2}$ even subsector of tricritical has enhanced superconformal algebra, but not for $d>2$ (tricritical in $d>2$ unrelated to $\mathcal{N}=1$ super-Ising model).
- Critical Ising has two relevant operators ($1 \mathbb{Z}_{2}$ odd, $1 \mathbb{Z}_{2}$ even), tricritical has 4 relevant operator ($2 \mathbb{Z}_{2}$ odd, $2 \mathbb{Z}_{2}$ even).
- In 2d, critical and tricritical are lowest two unitary diagonal minimal models $M_{4,3}\left(c=\frac{1}{2}\right)$ and $M_{5,4}\left(c=\frac{7}{10}\right)$, i.e. exactly solvable
- Diagonal minimal models $M_{p+1, p}$ described by Lagrangian

$$
\text { becomes marginal } \Leftrightarrow \text { theory becomes free. }
$$

- Thus $d_{\text {crit }}=4$ for critical Ising, $d_{\text {crit }}=3$ for tricritical Ising, no

$q=2$ Potts (lsing)

- $q=2$ critical and tricritical Potts model are the critical and tricritical Ising models with $S_{2} \cong \mathbb{Z}_{2}$ global symmetry.
- In $d=2 Z_{2}$ even subsector of tricritical has enhanced superconformal algebra, but not for $d>2$ (tricritical in $d>2$ unrelated to $\mathcal{N}=1$ super-Ising model).
- Critical Ising has two relevant operators ($1 \mathbb{Z}_{2}$ odd, $1 \mathbb{Z}_{2}$ even), tricritical has 4 relevant operator ($2 \mathbb{Z}_{2}$ odd, $2 \mathbb{Z}_{2}$ even).
- In 2d, critical and tricritical are lowest two unitary diagonal minimal models $M_{4,3}\left(c=\frac{1}{2}\right)$ and $M_{5,4}\left(c=\frac{7}{10}\right)$, i.e. exactly solvable
- Diagonal minimal models $M_{p+1, p}$ described by Lagrangian $(\partial \phi)^{2}+\lambda\left(\phi^{2}\right)^{p-1}$, has upper critical dimension $d_{\text {crit }}=\frac{2 p-2}{p-2}$ when $\left(\phi^{2}\right)^{p-1}$ becomes marginal \Leftrightarrow theory becomes free.

$q=2$ Potts (Ising)

- $q=2$ critical and tricritical Potts model are the critical and tricritical Ising models with $S_{2} \cong \mathbb{Z}_{2}$ global symmetry.
- In $d=2 Z_{2}$ even subsector of tricritical has enhanced superconformal algebra, but not for $d>2$ (tricritical in $d>2$ unrelated to $\mathcal{N}=1$ super-Ising model).
- Critical Ising has two relevant operators ($1 \mathbb{Z}_{2}$ odd, $1 \mathbb{Z}_{2}$ even), tricritical has 4 relevant operator ($2 \mathbb{Z}_{2}$ odd, $2 \mathbb{Z}_{2}$ even).
- In 2d, critical and tricritical are lowest two unitary diagonal minimal models $M_{4,3}\left(c=\frac{1}{2}\right)$ and $M_{5,4}\left(c=\frac{7}{10}\right)$, i.e. exactly solvable
- Diagonal minimal models $M_{p+1, p}$ described by Lagrangian $(\partial \phi)^{2}+\lambda\left(\phi^{2}\right)^{p-1}$, has upper critical dimension $d_{\text {crit }}=\frac{2 p-2}{p-2}$ when $\left(\phi^{2}\right)^{p-1}$ becomes marginal \Leftrightarrow theory becomes free.
- Thus $d_{\text {crit }}=4$ for critical Ising, $d_{\text {crit }}=3$ for tricritical Ising, no merger/annihilation.

Other $q \neq 3$ Potts

- For $q=4$, tricritical and critical Potts are the same unitary CFT: free scalar compactified on on S_{1} / \mathbb{Z}_{2} with radius $R=1 / \sqrt{2}$ with three marginal operators [Dijkgraaf, Verlinde ${ }^{2}$].
- One of these marginal operators expected from merger/annihilation scenario
- For $q \rightarrow 1$, consider random-cluster definition of Potts model to get real but non-unitary CFT that describes percolation
- Recently studied by
- Cluster definition can also be used to define $q \rightarrow 0$ limit that describes spanning trees (not CFT)

Other $q \neq 3$ Potts

- For $q=4$, tricritical and critical Potts are the same unitary CFT: free scalar compactified on on S_{1} / \mathbb{Z}_{2} with radius $R=1 / \sqrt{2}$ with three marginal operators [Dijkgraaf, Verlinde ${ }^{2}$].
- One of these marginal operators expected from merger/annihilation scenario [Gorbenko, Rychkov, Zan '18] .
- For $q \rightarrow 1$, consider random-cluster definition of Potts model to get real but non-unitary CFT that describes percolation
- Recently studied by
- Cluster definition can also be used to define $q \rightarrow 0$ limit that describes spanning trees (not CFT)

Other $q \neq 3$ Potts

- For $q=4$, tricritical and critical Potts are the same unitary CFT: free scalar compactified on on S_{1} / \mathbb{Z}_{2} with radius $R=1 / \sqrt{2}$ with three marginal operators [Dijkgraaf, Verlinde ${ }^{2}$].
- One of these marginal operators expected from merger/annihilation scenario [Gorbenko, Rychkov, Zan '18] .
- For $q \rightarrow 1$, consider random-cluster definition of Potts model to get real but non-unitary CFT that describes percolation [Fortuin, Kasteleyn '72] .
- Recently studied by
- Cluster definition can also be used to define $q \rightarrow 0$ limit that describes spanning trees (not CFT)

Other $q \neq 3$ Potts

- For $q=4$, tricritical and critical Potts are the same unitary CFT: free scalar compactified on on S_{1} / \mathbb{Z}_{2} with radius $R=1 / \sqrt{2}$ with three marginal operators [Dijkgraaf, Verlinde ${ }^{2}$].
- One of these marginal operators expected from merger/annihilation scenario [Gorbenko, Rychkov, Zan '18] .
- For $q \rightarrow 1$, consider random-cluster definition of Potts model to get real but non-unitary CFT that describes percolation [Fortuin, Kasteleyn '72] .
- Recently studied by [Picco, Ribault, Santachiara '16; Jacobsen, Saleur ' '18] .
- Cluster definition can also be used to define $q \rightarrow 0$ limit that describes spanning trees (not CFT)

Other $q \neq 3$ Potts

- For $q=4$, tricritical and critical Potts are the same unitary CFT: free scalar compactified on on S_{1} / \mathbb{Z}_{2} with radius $R=1 / \sqrt{2}$ with three marginal operators [Dijkgraaf, Verlinde ${ }^{2}$].
- One of these marginal operators expected from merger/annihilation scenario [Gorbenko, Rychkov, Zan '18] .
- For $q \rightarrow 1$, consider random-cluster definition of Potts model to get real but non-unitary CFT that describes percolation [Fortuin, Kasteleyn '72] .
- Recently studied by [Picco, Ribault, Santachiara '16; Jacobsen, Saleur ' 18].
- Cluster definition can also be used to define $q \rightarrow 0$ limit that describes spanning trees (not CFT) [Fortuin, Kasteleyn '72].

$q=3$ Potts CFT: General definitions

- Define 3-state Potts CFTs in general d as CFT with S_{3} global symmetry and certain number of relevant operators.
- S_{3} has 3 irreps: singlet 0 , sign 0_{-}(odd under $\left.\mathbb{Z}_{2} \subset S_{3}\right)$, and charged $1\left(\pm 1\right.$ charge under $\left.\mathbb{Z}_{3} \subset S_{3}\right)$.
- Critical Potts has two relevant charged operators σ, σ^{\prime}, and one relevant singlet
- Tricritical Potts has two relevant charged operators σ, σ^{\prime}, and two relevant singlet $\epsilon, \epsilon^{\prime}$.
- Unlike $q=2$ Potts (i.e. Ising), for $q=3$ Potts critical and tricritical CFTs differ by just a single relevant operator, which is why they are good candidate for merger/annihilation scenario.

$q=3$ Potts CFT: General definitions

- Define 3-state Potts CFTs in general d as CFT with S_{3} global symmetry and certain number of relevant operators.
- S_{3} has 3 irreps: singlet $\mathbf{0}$, sign $\mathbf{0}_{-}$(odd under $\left.\mathbb{Z}_{2} \subset S_{3}\right)$, and charged 1 (± 1 charge under $\mathbb{Z}_{3} \subset S_{3}$).
- Critical Potts has two relevant charged operators σ, σ^{\prime}, and one relevant singlet ϵ
- Tricritical Potts has two relevant charged operators σ, σ^{\prime}, and two relevant singlet
- Unlike $q=2$ Potts (i.e. Ising), for $q=3$ Potts critical and tricritical CFTs differ by just a single relevant operator, which is why they are good candidate for merger/annihilation scenario.

$q=3$ Potts CFT: General definitions

- Define 3-state Potts CFTs in general d as CFT with S_{3} global symmetry and certain number of relevant operators.
- S_{3} has 3 irreps: singlet $\mathbf{0}$, sign $\mathbf{0}_{-}$(odd under $\left.\mathbb{Z}_{2} \subset S_{3}\right)$, and charged 1 (± 1 charge under $\mathbb{Z}_{3} \subset S_{3}$).
- Critical Potts has two relevant charged operators σ, σ^{\prime}, and one relevant singlet ϵ.
- Tricritical Potts has two relevant charged operators σ, σ^{\prime}, and two relevant singlet ϵ
- Unlike $q=2$ Potts (i.e. Ising), for $q=3$ Potts critical and tricritical CFTs differ by just a single relevant operator, which is why they are good candidate for merger/annihilation scenario.

$q=3$ Potts CFT: General definitions

- Define 3-state Potts CFTs in general d as CFT with S_{3} global symmetry and certain number of relevant operators.
- S_{3} has 3 irreps: singlet $\mathbf{0}$, sign $\mathbf{0}_{-}$(odd under $\left.\mathbb{Z}_{2} \subset S_{3}\right)$, and charged 1 (± 1 charge under $\mathbb{Z}_{3} \subset S_{3}$).
- Critical Potts has two relevant charged operators σ, σ^{\prime}, and one relevant singlet ϵ.
- Tricritical Potts has two relevant charged operators σ, σ^{\prime}, and two relevant singlet $\epsilon, \epsilon^{\prime}$.
- Unlike $q=2$ Potts (i.e. Ising), for $q=3$ Potts critical and tricritical CFTs differ by just a single relevant operator, which is why they are good candidate for merger/annihilation scenario.

$q=3$ Potts CFT: General definitions

- Define 3-state Potts CFTs in general d as CFT with S_{3} global symmetry and certain number of relevant operators.
- S_{3} has 3 irreps: singlet $\mathbf{0}$, sign $\mathbf{0}_{-}$(odd under $\left.\mathbb{Z}_{2} \subset S_{3}\right)$, and charged 1 (± 1 charge under $\mathbb{Z}_{3} \subset S_{3}$).
- Critical Potts has two relevant charged operators σ, σ^{\prime}, and one relevant singlet ϵ.
- Tricritical Potts has two relevant charged operators σ, σ^{\prime}, and two relevant singlet $\epsilon, \epsilon^{\prime}$.
- Unlike $q=2$ Potts (i.e. Ising), for $q=3$ Potts critical and tricritical CFTs differ by just a single relevant operator, which is why they are good candidate for merger/annihilation scenario.

$q=3$ Potts CFT: 2d exact solutions

- Critical and tricritical Potts in 2d are minimal models $M_{6,5}\left(c=\frac{4}{5}\right)$ and $M_{7,6}\left(c=\frac{6}{7}\right)$ with non-diagonal modular partition functions.
- Recall that diagonal $M_{6,5}$ and $M_{7,6}$ are \mathbb{Z}_{2} invariant $\left(\phi^{2}\right)^{4}$ and $\left(\phi^{2}\right)^{5}$ CFTs, multi-critical generalizations of Ising model.
- Critical Potts has Virasoro enhanced to W(3) symmetry in 2d.
- Lowest central charge member of family of unitary CFTs with $W(3)$ symmetry
- Tricritical Potts has Virasoro enhanced to $W(2,5)$ symmetry in 2d
- Only unitary CFT with $W(2,5)$ symmetry, bc exceptional algebra (only exists for certain c) unlike $W(3)$
- Lowest central charge member of family of unitary CFTs with S_{3} symmetry built from parafermions

$q=3$ Potts CFT: 2d exact solutions

- Critical and tricritical Potts in 2d are minimal models $M_{6,5}\left(c=\frac{4}{5}\right)$ and $M_{7,6}\left(c={ }_{7}^{6}\right)$ with non-diagonal modular partition functions.
- Recall that diagonal $M_{6,5}$ and $M_{7,6}$ are \mathbb{Z}_{2} invariant $\left(\phi^{2}\right)^{4}$ and $\left(\phi^{2}\right)^{5}$ CFTs, multi-critical generalizations of Ising model.
- Critical Potts has Virasoro enhanced to W(3) symmetry in 2d.
- Lowest central charge member of family of unitary CFTs with W(3) symmetry
- Tricritical Potts has Virasoro enhanced to $W(2,5)$ symmetry in 2d
- Only unitary CFT with $W(2,5)$ symmetry, bc exceptional algebra (only exists for certain c) unlike $W(3)$
- Lowest central charge member of family of unitary CFTs with S_{3} symmetry built from parafermions

$q=3$ Potts CFT: 2d exact solutions

- Critical and tricritical Potts in 2d are minimal models $M_{6,5}\left(c=\frac{4}{5}\right)$ and $M_{7,6}\left(c={ }_{7}^{6}\right)$ with non-diagonal modular partition functions.
- Recall that diagonal $M_{6,5}$ and $M_{7,6}$ are \mathbb{Z}_{2} invariant $\left(\phi^{2}\right)^{4}$ and $\left(\phi^{2}\right)^{5}$ CFTs, multi-critical generalizations of Ising model.
- Critical Potts has Virasoro enhanced to $W(3)$ symmetry in 2d.
- Lowest central charge member of family of unitary CFTs with W(3) symmetry
- Tricritical Potts has Virasoro enhanced to W $(2,5)$ symmetry in 2d
- Only unitary CFT with $W(2,5)$ symmetry, bc exceptional algebra (only exists for certain c) unlike $W(3)$
- Lowest central charge member of family of unitary CFTs with S_{3} symmetry built from parafermions

$q=3$ Potts CFT: 2d exact solutions

- Critical and tricritical Potts in 2d are minimal models $M_{6,5}\left(c=\frac{4}{5}\right)$ and $M_{7,6}\left(c={ }_{7}^{6}\right)$ with non-diagonal modular partition functions.
- Recall that diagonal $M_{6,5}$ and $M_{7,6}$ are \mathbb{Z}_{2} invariant $\left(\phi^{2}\right)^{4}$ and $\left(\phi^{2}\right)^{5}$ CFTs, multi-critical generalizations of Ising model.
- Critical Potts has Virasoro enhanced to $W(3)$ symmetry in 2d.
- Lowest central charge member of family of unitary CFTs with $W(3)$ symmetry [Zamolodchikov, Fateev '86] .
- Tricritical Potts has Virasoro enhanced to W(2,5) symmetry in 2d
- Only unitary CFT with $W(2,5)$ symmetry, bc exceptional algebra (only exists for certain c) unlike $W(3)$
- Lowest central charge member of family of unitary CFTs with S_{3} symmetry built from parafermions

$q=3$ Potts CFT: 2d exact solutions

- Critical and tricritical Potts in 2d are minimal models $M_{6,5}\left(c=\frac{4}{5}\right)$ and $M_{7,6}\left(c=\frac{6}{7}\right)$ with non-diagonal modular partition functions.
- Recall that diagonal $M_{6,5}$ and $M_{7,6}$ are \mathbb{Z}_{2} invariant $\left(\phi^{2}\right)^{4}$ and $\left(\phi^{2}\right)^{5}$ CFTs, multi-critical generalizations of Ising model.
- Critical Potts has Virasoro enhanced to $W(3)$ symmetry in 2d.
- Lowest central charge member of family of unitary CFTs with $W(3)$ symmetry [Zamolodchikov, Fateev '86] .
- Tricritical Potts has Virasoro enhanced to $W(2,5)$ symmetry in 2d
- Only unitary CFT with $W(2,5)$ symmetry, bc exceptional algebra (only exists for certain c) unlike W(3)
- Lowest central charge member of family of unitary CFTs with S_{3} symmetry built from parafermions

$q=3$ Potts CFT: 2d exact solutions

- Critical and tricritical Potts in 2d are minimal models $M_{6,5}\left(c=\frac{4}{5}\right)$ and $M_{7,6}\left(c=\frac{6}{7}\right)$ with non-diagonal modular partition functions.
- Recall that diagonal $M_{6,5}$ and $M_{7,6}$ are \mathbb{Z}_{2} invariant $\left(\phi^{2}\right)^{4}$ and $\left(\phi^{2}\right)^{5}$ CFTs, multi-critical generalizations of Ising model.
- Critical Potts has Virasoro enhanced to $W(3)$ symmetry in 2d.
- Lowest central charge member of family of unitary CFTs with $W(3)$ symmetry [Zamolodchikov, Fateev '86] .
- Tricritical Potts has Virasoro enhanced to $W(2,5)$ symmetry in 2d
- Only unitary CFT with $W(2,5)$ symmetry, bc exceptional algebra (only exists for certain c) unlike $W(3)$ [Bouwknegt '88] .
- Lowest central charge member of family of unitary CFTs with S_{3} symmetry built from parafermions

$q=3$ Potts CFT: 2d exact solutions

- Critical and tricritical Potts in 2d are minimal models $M_{6,5}\left(c=\frac{4}{5}\right)$ and $M_{7,6}\left(c=\frac{6}{7}\right)$ with non-diagonal modular partition functions.
- Recall that diagonal $M_{6,5}$ and $M_{7,6}$ are \mathbb{Z}_{2} invariant $\left(\phi^{2}\right)^{4}$ and $\left(\phi^{2}\right)^{5}$ CFTs, multi-critical generalizations of Ising model.
- Critical Potts has Virasoro enhanced to $W(3)$ symmetry in 2d.
- Lowest central charge member of family of unitary CFTs with $W(3)$ symmetry [Zamolodchikov, Fateev '86] .
- Tricritical Potts has Virasoro enhanced to $W(2,5)$ symmetry in 2d
- Only unitary CFT with $W(2,5)$ symmetry, bc exceptional algebra (only exists for certain c) unlike $W(3)$ [Bouwknegt '88] .
- Lowest central charge member of family of unitary CFTs with S_{3} symmetry built from parafermions [Zamolodchikov, Fateev '87].

Primaries in 2d critical Potts

- Virasoro primaries (with integer spin) given by subset of $M_{6,5}$ that appear in non-diagonal torus partition function labeled by (Δ, j, r) for scaling dimension Δ, Lorentz spin j, and S_{3} irrep r:

- Conserved current W is the generator of $W(3)$ algebra.
- Quasiprimaries under giobaĺ conformal group, e.g. siress tensor, then given as usual by acting with Virasoro generators L_{n} for $n>1$ (or expand torus partition function in quasiprimary characters).

Primaries in 2d critical Potts

- Virasoro primaries (with integer spin) given by subset of $M_{6,5}$ that appear in non-diagonal torus partition function labeled by (Δ, j, r) for scaling dimension Δ, Lorentz spin j, and S_{3} irrep r:

$$
\begin{aligned}
\sigma & =(2 / 15,0, \mathbf{1}), & \sigma^{\prime} & =(4 / 3,0, \mathbf{1}), \\
\epsilon & =(4 / 5,0,0), & \epsilon^{\prime} & =(14 / 5,0, \mathbf{0}), \\
\mathcal{O} & =\left(9 / 5,1, \mathbf{0}_{-}\right), & W & =\left(3,3, \mathbf{0}_{-}\right)
\end{aligned}
$$

- Conserved current W is the generator of $W(3)$ algebra.
- Quasiprimaries under g'obal conformal group, e.g. siress tensor, then given as usual by acting with Virasoro generators L_{n} for $n>1$ (or expand torus partition function in quasiprimary characters).

Primaries in 2d critical Potts

- Virasoro primaries (with integer spin) given by subset of $M_{6,5}$ that appear in non-diagonal torus partition function labeled by (Δ, j, \mathbf{r}) for scaling dimension Δ, Lorentz spin j, and S_{3} irrep r:

$$
\begin{aligned}
\sigma & =(2 / 15,0, \mathbf{1}), & \sigma^{\prime} & =(4 / 3,0, \mathbf{1}), \\
\epsilon & =(4 / 5,0, \mathbf{0}), & \epsilon^{\prime} & =(14 / 5,0, \mathbf{0}), \\
\mathcal{O} & =\left(9 / 5,1, \mathbf{0}_{-}\right), & W & =\left(3,3, \mathbf{0}_{-}\right)
\end{aligned}
$$

- Conserved current W is the generator of $W(3)$ algebra.
- Quasiprimaries under global conformal group, e.g. stress tensor, then given as usual by acting with Virasoro generators L_{n} for $n>1$ (or expand torus partition function in quasiprimary characters).

Primaries in 2d critical Potts

- Virasoro primaries (with integer spin) given by subset of $M_{6,5}$ that appear in non-diagonal torus partition function labeled by (Δ, j, r) for scaling dimension Δ, Lorentz spin j, and S_{3} irrep r:

$$
\begin{aligned}
\sigma & =(2 / 15,0, \mathbf{1}), & \sigma^{\prime} & =(4 / 3,0, \mathbf{1}), \\
\epsilon & =(4 / 5,0,0), & \epsilon^{\prime} & =(14 / 5,0, \mathbf{0}), \\
\mathcal{O} & =\left(9 / 5,1, \mathbf{0}_{-}\right), & W & =\left(3,3, \mathbf{0}_{-}\right) .
\end{aligned}
$$

- Conserved current W is the generator of $W(3)$ algebra.
- Quasiprimaries under global conformal group, e.g. stress tensor, then given as usual by acting with Virasoro generators L_{n} for $n>1$ (or expand torus partition function in quasiprimary characters).

Primaries in 2d tricritical Potts

- Virasoro primaries (with integer spin) given by subset of $M_{7,6}$ that appear in non-diagonal torus partition function:

- Conserved current W is the generator of $W(2,5)$ algebra, along with stress tensor.

Primaries in 2d tricritical Potts

- Virasoro primaries (with integer spin) given by subset of $M_{7,6}$ that appear in non-diagonal torus partition function:

$$
\begin{aligned}
\sigma & =(2 / 21,0, \mathbf{1}), & \sigma^{\prime} & =(20 / 21,0, \mathbf{1}), & \sigma^{\prime \prime} & =(8 / 3,0, \mathbf{1}), \\
\epsilon & =(2 / 7,0,0), & \epsilon^{\prime} & =(10 / 7,0, \mathbf{0}), & \epsilon^{\prime \prime} & =\left(\frac{24}{7}, 0,0\right) \\
\epsilon^{\prime \prime \prime} & =(44 / 7,0, \mathbf{0}), & \epsilon^{\prime \prime \prime \prime} & =(10,0, \mathbf{0}), & & \\
\mathcal{O} & =\left(17 / 7,1, \mathbf{0}_{-}\right), & \mathcal{O}^{\prime} & =\left(23 / 7,3, \mathbf{0}_{-}\right), & W & =\left(5,5, \mathbf{0}_{-}\right) .
\end{aligned}
$$

- Conserved current W is the generator of $W(2,5)$ algebra, along with stress tensor.

Primaries in 2d tricritical Potts

- Virasoro primaries (with integer spin) given by subset of $M_{7,6}$ that appear in non-diagonal torus partition function:

$$
\begin{aligned}
\sigma & =(2 / 21,0, \mathbf{1}), & \sigma^{\prime} & =(20 / 21,0, \mathbf{1}), & \sigma^{\prime \prime} & =(8 / 3,0, \mathbf{1}), \\
\epsilon & =(2 / 7,0,0), & \epsilon^{\prime} & =(10 / 7,0, \mathbf{0}), & \epsilon^{\prime \prime} & =\left(\frac{24}{7}, 0,0\right) \\
\epsilon^{\prime \prime \prime} & =(44 / 7,0, \mathbf{0}), & \epsilon^{\prime \prime \prime \prime} & =(10,0, \mathbf{0}), & & \\
\mathcal{O} & =\left(17 / 7,1, \mathbf{0}_{-}\right), & \mathcal{O}^{\prime} & =\left(23 / 7,3, \mathbf{0}_{-}\right), & W & =\left(5,5, \mathbf{0}_{-}\right) .
\end{aligned}
$$

- Conserved current W is the generator of $W(2,5)$ algebra, along with stress tensor.

OPE coefficients in 2d

- OPE coefficients in minimal models are all computable in principle, for non-diagonal models method was outlined in [Fuchs, Klemm '89].
- This algorithm was carried out for the critical Potts in see also

- For tricritical Potts, this algorithm not done yet, but a few OPE coefficients were computed in
- In both critical and tricritical Potts, many OPE coefficients that would be allowed by S_{3} symmetry in general $d>2$ are zero in $2 d$ due to enhanced Virasoro (and W-algebra) constraints. E.g.

OPE coefficients in 2d

- OPE coefficients in minimal models are all computable in principle, for non-diagonal models method was outlined in [Fuchs, Klemm '89] .
- This algorithm was carried out for the critical Potts in [McCabe, Wydro '95] , see also [Migliaccio, Ribault '18]. E.g.:

- For tricritical Potts, this algorithm not done yet, but a few OPE coefficients were computed in
- In both critical and tricritical Potts, many OPE coefficients that would be allowed by S_{3} symmetry in general $d>2$ are zero in 2d due to enhanced Virasoro (and W-algebra) constraints. E.g.

OPE coefficients in 2d

- OPE coefficients in minimal models are all computable in principle, for non-diagonal models method was outlined in [Fuchs, klemm '89].
- This algorithm was carried out for the critical Potts in [McCabe, Wydro '95], see also [Migliaccio, Ribault' 18] . E.g.:

$$
\lambda_{\sigma \bar{\sigma}}^{\epsilon}=\frac{\sqrt{\frac{1}{2}(1+\sqrt{5})} \Gamma\left(\frac{3}{5}\right)^{2}}{2 \Gamma\left(\frac{2}{5}\right) \Gamma\left(\frac{4}{5}\right)}
$$

- For tricritical Potts, this algorithm not done yet, but a few OPE coefficients were computed in
- In both critical and tricritical Potts, many OPE coefficients that would be allowed by S_{3} symmetry in general $d>2$ are zero in 2d due to enhanced Virasoro (and W-algebra) constraints. E.g.

OPE coefficients in 2d

- OPE coefficients in minimal models are all computable in principle, for non-diagonal models method was outlined in [Fuchs, klemm '89].
- This algorithm was carried out for the critical Potts in [McCabe, Wydro '95], see also [Migliaccio, Ribault' 18] . E.g.:

$$
\lambda_{\sigma \bar{\sigma}}^{\epsilon}=\frac{\sqrt{\frac{1}{2}(1+\sqrt{5})} \Gamma\left(\frac{3}{5}\right)^{2}}{2 \Gamma\left(\frac{2}{5}\right) \Gamma\left(\frac{4}{5}\right)}
$$

- For tricritical Potts, this algorithm not done yet, but a few OPE coefficients were computed in [Zamolodchikov, Fateev' ${ }^{87]}$.
- In both critical and tricritical Potts, many OPE coefficients that would be allowed by S_{3} symmetry in general $d>2$ are zero in $2 d$ due to enhanced Virasoro (and W-algebra) constraints. E.g.

OPE coefficients in 2d

- OPE coefficients in minimal models are all computable in principle, for non-diagonal models method was outlined in [Fuchs, klemm '89].
- This algorithm was carried out for the critical Potts in [McCabe, Wydro '95], see also [Migliaccio, Ribault' 18] . E.g.:

$$
\lambda_{\sigma \bar{\sigma}}^{\epsilon}=\frac{\sqrt{\frac{1}{2}(1+\sqrt{5})} \Gamma\left(\frac{3}{5}\right)^{2}}{2 \Gamma\left(\frac{2}{5}\right) \Gamma\left(\frac{4}{5}\right)}
$$

- For tricritical Potts, this algorithm not done yet, but a few OPE coefficients were computed in [Zamolodchikov, Fateev '87].
- In both critical and tricritical Potts, many OPE coefficients that would be allowed by S_{3} symmetry in general $d>2$ are zero in 2d due to enhanced Virasoro (and W-algebra) constraints. E.g.:

OPE coefficients in 2d

- OPE coefficients in minimal models are all computable in principle, for non-diagonal models method was outlined in [Fuchs, klemm '89].
- This algorithm was carried out for the critical Potts in [McCabe, Wydro '95], see also [Migliaccio, Ribault' 18] . E.g.:

$$
\lambda_{\sigma \bar{\sigma}}^{\epsilon}=\frac{\sqrt{\frac{1}{2}(1+\sqrt{5})} \Gamma\left(\frac{3}{5}\right)^{2}}{2 \Gamma\left(\frac{2}{5}\right) \Gamma\left(\frac{4}{5}\right)}
$$

- For tricritical Potts, this algorithm not done yet, but a few OPE coefficients were computed in [Zamolodchikov, Fateev '87].
- In both critical and tricritical Potts, many OPE coefficients that would be allowed by S_{3} symmetry in general $d>2$ are zero in 2d due to enhanced Virasoro (and W-algebra) constraints. E.g.:

$$
\lambda_{\epsilon \epsilon}^{\epsilon}=0 .
$$

W(3) minimal models [Zamolodochioov, Fateev' 88]

- Recall that critical Potts $\left(c=\frac{4}{5}\right)$ is lowest member of family of $W(3)$ minimal models with $c=2\left(1-\frac{12}{p(p+1)}\right)$ for $p \geq 4$.

- Number of relevant operators grows with p, but fusion rules set OPE $\sigma \times \sigma=\sigma+\sigma^{\prime}$ for all $p=1,2$ Mod 3 where

- For $p=0 \operatorname{Mod} 3$, these operators are 0 instead of 1

W(3) minimal models [Zamolodchikov, Fateev '86]

- Recall that critical Potts $\left(c=\frac{4}{5}\right)$ is lowest member of family of $W(3)$ minimal models with $c=2\left(1-\frac{12}{p(p+1)}\right)$ for $p \geq 4$.
- Scalar Virasoro primaries $\Phi\left(\begin{array}{ll}n_{1} & m_{1} \\ n_{2} & m_{2}\end{array}\right)$ for $n_{1}+n_{2} \leq p-1$ and $m_{1}+m_{2} \leq p$ labeled by Dynkin labels of $\mathfrak{s l}(3) \times \mathfrak{s l}(3) \subset W(3) \times \overline{W(3)}$ with known $\Delta\left(\begin{array}{ll}n_{1} & m_{1} \\ n_{2} & m_{2}\end{array}\right)$.
- Number of relevant operators grows with p, but fusion rules set OPE $\sigma \times \sigma=\sigma+\sigma^{\prime}$ for all $p=1,2$ Mod 3 where

- For $p=0 \operatorname{Mod} 3$, these operators are 0 instead of 1 .

W(3) minimal models [Zamolodchikov, Fateev '86]

- Recall that critical Potts $\left(c=\frac{4}{5}\right)$ is lowest member of family of $W(3)$ minimal models with $c=2\left(1-\frac{12}{p(p+1)}\right)$ for $p \geq 4$.
- Scalar Virasoro primaries $\Phi\left(\begin{array}{ll}n_{1} & m_{1} \\ n_{2} & m_{2}\end{array}\right)$ for $n_{1}+n_{2} \leq p-1$ and $m_{1}+m_{2} \leq p$ labeled by Dynkin labels of $\mathfrak{s l}(3) \times \mathfrak{s l}(3) \subset W(3) \times \overline{W(3)}$ with known $\Delta\left(\begin{array}{ll}n_{1} & m_{1} \\ n_{2} & m_{2}\end{array}\right)$.
- Number of relevant operators grows with p, but fusion rules set OPE $\sigma \times \sigma=\sigma+\sigma^{\prime}$ for all $p=1,2 \operatorname{Mod} 3$ where

$$
\text { - For } p=0 \text { Mod 3, these operators are } 0 \text { instead of } 1 .
$$

W(3) minimal models [Zamolodchikov, Fateev '86]

- Recall that critical Potts $\left(c=\frac{4}{5}\right)$ is lowest member of family of $W(3)$ minimal models with $c=2\left(1-\frac{12}{p(p+1)}\right)$ for $p \geq 4$.
- Scalar Virasoro primaries $\Phi\left(\begin{array}{ll}n_{1} & m_{1} \\ n_{2} & m_{2}\end{array}\right)$ for $n_{1}+n_{2} \leq p-1$ and $m_{1}+m_{2} \leq p$ labeled by Dynkin labels of $\mathfrak{s l}(3) \times \mathfrak{s l}(3) \subset W(3) \times \overline{W(3)}$ with known $\Delta\left(\begin{array}{ll}n_{1} & m_{1} \\ n_{2} & m_{2}\end{array}\right)$.
- Number of relevant operators grows with p, but fusion rules set OPE $\sigma \times \sigma=\sigma+\sigma^{\prime}$ for all $p=1,2 \operatorname{Mod} 3$ where

$$
\Delta_{\sigma}=\Delta\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\frac{2(p-3)}{3(p+1)}, \quad \Delta_{\sigma^{\prime}}=\Delta\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)=\frac{5}{2} \Delta_{\sigma}+1
$$

W(3) minimal models [Zamolodchikov, Fateev '86]

- Recall that critical Potts $\left(c=\frac{4}{5}\right)$ is lowest member of family of $W(3)$ minimal models with $c=2\left(1-\frac{12}{p(p+1)}\right)$ for $p \geq 4$.
- Scalar Virasoro primaries $\Phi\left(\begin{array}{ll}n_{1} & m_{1} \\ n_{2} & m_{2}\end{array}\right)$ for $n_{1}+n_{2} \leq p-1$ and $m_{1}+m_{2} \leq p$ labeled by Dynkin labels of $\mathfrak{s l}(3) \times \mathfrak{s l}(3) \subset W(3) \times \overline{W(3)}$ with known $\Delta\left(\begin{array}{ll}n_{1} & m_{1} \\ n_{2} & m_{2}\end{array}\right)$.
- Number of relevant operators grows with p, but fusion rules set OPE $\sigma \times \sigma=\sigma+\sigma^{\prime}$ for all $p=1,2 \operatorname{Mod} 3$ where

$$
\Delta_{\sigma}=\Delta\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\frac{2(p-3)}{3(p+1)}, \quad \Delta_{\sigma^{\prime}}=\Delta\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)=\frac{5}{2} \Delta_{\sigma}+1
$$

- For $p=0 \operatorname{Mod} 3$, these operators are $\mathbf{0}$ instead of $\mathbf{1}$.

Bootstrapping the Potts CFTs: General strategy

- For all $d \geq 2$ we consider the global conformal group $S O(d+1,1)$, i.e. in $2 d$ we consider quasiprimaries.
- As usual, we consider correlators of relevant scalar operators: σ, $\sigma^{\prime}, \epsilon$ or ϵ^{\prime} (the last only for tricritical).
- Let's start with the simplest correlator that is sensitive to S_{3} global symmetry:
$\left\langle\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \sigma\left(x_{3}\right) \sigma\left(x_{4}\right)\right\rangle$
- More abstractly we consider correlator of a scalar in 1 irrep, of which σ is defined to be the lowest dimension one.
- We will consider mixed correlators later.

Bootstrapping the Potts CFTs: General strategy

- For all $d \geq 2$ we consider the global conformal group $S O(d+1,1)$, i.e. in $2 d$ we consider quasiprimaries.
- As usual, we consider correlators of relevant scalar operators: σ, $\sigma^{\prime}, \epsilon$ or ϵ^{\prime} (the last only for tricritical).
- Let's start with the simplest correlator that is sensitive to S_{3} global symmetry:
$\left\langle\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \sigma\left(x_{3}\right) \sigma\left(x_{4}\right)\right\rangle$
- More abstractly we consider correlator of a scalar in 1 irrep, of which σ is defined to be the lowest dimension one.
- We will consider mixed correlators later.

Bootstrapping the Potts CFTs: General strategy

- For all $d \geq 2$ we consider the global conformal group $S O(d+1,1)$, i.e. in $2 d$ we consider quasiprimaries.
- As usual, we consider correlators of relevant scalar operators: σ, $\sigma^{\prime}, \epsilon$ or ϵ^{\prime} (the last only for tricritical).
- Let's start with the simplest correlator that is sensitive to S_{3} global symmetry:
- More abstractly we consider correlator of a scalar in 1 irrep, of which σ is defined to be the lowest dimension one.
- We will consider mixed correlators later.

Bootstrapping the Potts CFTs: General strategy

- For all $d \geq 2$ we consider the global conformal group $S O(d+1,1)$, i.e. in $2 d$ we consider quasiprimaries.
- As usual, we consider correlators of relevant scalar operators: σ, $\sigma^{\prime}, \epsilon$ or ϵ^{\prime} (the last only for tricritical).
- Let's start with the simplest correlator that is sensitive to S_{3} global symmetry:

$$
\left\langle\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \sigma\left(x_{3}\right) \sigma\left(x_{4}\right)\right\rangle
$$

- More abstractly we consider correlator of a scalar in 1 irrep, of which σ is defined to be the lowest dimension one.
- We will consider mixed correlators later.

Bootstrapping the Potts CFTs: General strategy

- For all $d \geq 2$ we consider the global conformal group $S O(d+1,1)$, i.e. in $2 d$ we consider quasiprimaries.
- As usual, we consider correlators of relevant scalar operators: σ, $\sigma^{\prime}, \epsilon$ or ϵ^{\prime} (the last only for tricritical).
- Let's start with the simplest correlator that is sensitive to S_{3} global symmetry:

$$
\left\langle\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \sigma\left(x_{3}\right) \sigma\left(x_{4}\right)\right\rangle
$$

- More abstractly we consider correlator of a scalar in 1 irrep, of which σ is defined to be the lowest dimension one.
- We will consider mixed correlators later.

Bootstrapping the Potts CFTs: General strategy

- For all $d \geq 2$ we consider the global conformal group $S O(d+1,1)$, i.e. in $2 d$ we consider quasiprimaries.
- As usual, we consider correlators of relevant scalar operators: σ, $\sigma^{\prime}, \epsilon$ or ϵ^{\prime} (the last only for tricritical).
- Let's start with the simplest correlator that is sensitive to S_{3} global symmetry:

$$
\left\langle\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \sigma\left(x_{3}\right) \sigma\left(x_{4}\right)\right\rangle
$$

- More abstractly we consider correlator of a scalar in 1 irrep, of which σ is defined to be the lowest dimension one.
- We will consider mixed correlators later.

σ correlator

- Expand σ correlator in blocks for each irrep in $\mathbf{1} \otimes \mathbf{1}=\mathbf{0} \oplus \mathbf{0}_{-} \oplus \mathbf{1}$:
$\left\langle\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \sigma\left(x_{3}\right) \sigma\left(x_{4}\right)\right\rangle=\frac{1}{x_{12}^{2 \Delta_{\sigma}} x_{34}^{2 \Delta_{\sigma}}} \sum_{\Delta, j} \sum_{\mathrm{r}=0,0-, 1} \lambda_{\Delta, j, \mathrm{r}}^{2} g_{\Delta, j}(u, v)$,

- $j=0,2,4, \ldots$ for $\mathbf{0}, \mathbf{1}$ which are in symmetric product of $\mathbf{1} \otimes \mathbf{1}$, while $j=1,3,5, \ldots$ for 0_{-}in antisymmmetric product.

- $1 \leftrightarrow 3$ gives 3 crossing equations same as correlator of scalar in $O(2)$ fundamental F where $F \otimes F=S \oplus A \oplus T$ for singlet S, antisymmetric A, and symmetric traceless T
- We identify $F=1=T, S=0, A=0_{-}$, so difference with $O(2)$ is that external operator appears in its own OPE.
- Also critical $O(2)$ CFT does not exist in 2d
- q-state Potts model with $q \neq 2,3$ has 4 crossing equations for correlator of fundamental of S_{q}

σ correlator

- Expand σ correlator in blocks for each irrep in $\mathbf{1} \otimes \mathbf{1}=\mathbf{0} \oplus \mathbf{0}_{-} \oplus \mathbf{1}$:

$$
\left\langle\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \sigma\left(x_{3}\right) \sigma\left(x_{4}\right)\right\rangle=\frac{1}{x_{12}^{2 \Delta_{\sigma}} x_{34}^{2 \Delta_{\sigma}}} \sum_{\Delta, j} \sum_{\mathbf{r}=0,0_{-}, \mathbf{1}} \lambda_{\Delta, j, \mathbf{r}}^{2} g_{\Delta, j}(u, v),
$$

 $j=1,3,5, \ldots$ for 0_{-}in antisymmmetric product.

- $1 \leftrightarrow 3$ gives 3 crossing equations same as correlator of scalar in $O(2)$ fundamental F where $F \otimes F=S \oplus A \oplus T$ for singlet S, antisymmetric A, and symmetric traceless T
- We identify $F=\mathbf{1}=T, S=\mathbf{0}, A=\mathbf{0}$, so difference with $O(2)$ is that external operator appears in its own OPE.
- Also critical $O(2)$ CFT does not exist in 2d.
- q-state Potts model with $q \neq 2,3$ has 4 crossing equations for correlator of fundamental of S_{q}

σ correlator

- Expand σ correlator in blocks for each irrep in $\mathbf{1} \otimes \mathbf{1}=\mathbf{0} \oplus \mathbf{0}_{-} \oplus \mathbf{1}$:

$$
\left\langle\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \sigma\left(x_{3}\right) \sigma\left(x_{4}\right)\right\rangle=\frac{1}{x_{12}^{2 \Delta_{\sigma}} x_{34}^{2 \Delta_{\sigma}}} \sum_{\Delta, j} \sum_{\mathbf{r}=\mathbf{0}, \mathbf{0}_{-}, \mathbf{1}} \lambda_{\Delta, j, \mathbf{r}}^{2} g_{\Delta, j}(u, v),
$$

- $j=0,2,4, \ldots$ for $\mathbf{0}, \mathbf{1}$ which are in symmetric product of $\mathbf{1} \otimes \mathbf{1}$, while $j=1,3,5, \ldots$ for $\mathbf{0}_{-}$in antisymmmetric product.

O(2) gives 3 crossing equations same as cortelatornotscalar in $O(2)$ fundamental F where $F \otimes F=S \oplus A \oplus T$ for singlet S, antisymmetric A, and symmetric traceless T

- We identify $F=1=T, S=0, A=0_{-}$, so difference with $O(2)$ is that external operator appears in its own OPE.
- Also critical $O(2)$ CFT does not exist in 2d
- q-state Potts model with $q \neq 2,3$ has 4 crossing equations for correlator of fundamental of S_{q}

σ correlator

- Expand σ correlator in blocks for each irrep in $\mathbf{1} \otimes \mathbf{1}=\mathbf{0} \oplus \mathbf{0}_{-} \oplus \mathbf{1}$:

$$
\left\langle\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \sigma\left(x_{3}\right) \sigma\left(x_{4}\right)\right\rangle=\frac{1}{x_{12}^{2 \Delta_{\sigma}} x_{34}^{2 \Delta_{\sigma}}} \sum_{\Delta, j} \sum_{r=0,0,-1} \lambda_{\Delta, j, r}^{2} g_{\Delta, j}(u, v),
$$

- $j=0,2,4, \ldots$ for $\mathbf{0}, \mathbf{1}$ which are in symmetric product of $\mathbf{1} \otimes \mathbf{1}$, while $j=1,3,5, \ldots$ for $\mathbf{0}_{-}$in antisymmmetric product.
- $1 \leftrightarrow 3$ gives 3 crossing equations same as correlator of scalar in O (2) fundamental F where $F \otimes F=S \oplus A \oplus T$ for singlet S, antisymmetric A, and symmetric traceless T [Kos, DSD, Poland '15].
that external operator appears in its own OPE.
\square
- q-state Potts model with $q \neq 2,3$ has 4 crossing equations for

σ correlator

- Expand σ correlator in blocks for each irrep in $\mathbf{1} \otimes \mathbf{1}=\mathbf{0} \oplus \mathbf{0}_{-} \oplus \mathbf{1}$:

$$
\left\langle\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \sigma\left(x_{3}\right) \sigma\left(x_{4}\right)\right\rangle=\frac{1}{x_{12}^{2 \Delta_{\sigma}} x_{34}^{2 \Delta_{\sigma}}} \sum_{\Delta, j} \sum_{r=0,0,-1} \lambda_{\Delta, j, r}^{2} g_{\Delta, j}(u, v),
$$

- $j=0,2,4, \ldots$ for $\mathbf{0}, \mathbf{1}$ which are in symmetric product of $\mathbf{1} \otimes \mathbf{1}$, while $j=1,3,5, \ldots$ for $\mathbf{0}_{-}$in antisymmmetric product.
- $1 \leftrightarrow 3$ gives 3 crossing equations same as correlator of scalar in O (2) fundamental F where $F \otimes F=S \oplus A \oplus T$ for singlet S, antisymmetric A, and symmetric traceless T [Kos, DSD, Poland '15].
- We identify $F=\mathbf{1}=T, S=\mathbf{0}, A=\mathbf{0}_{-}$, so difference with $O(2)$ is that external operator appears in its own OPE.
- Also critical O(2) CFT does not exist in 2d.
- q-state Potts model with $q \neq 2,3$ has 4 crossing equations for

σ correlator

- Expand σ correlator in blocks for each irrep in $\mathbf{1} \otimes \mathbf{1}=\mathbf{0} \oplus \mathbf{0}_{-} \oplus \mathbf{1}$:

$$
\left\langle\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \sigma\left(x_{3}\right) \sigma\left(x_{4}\right)\right\rangle=\frac{1}{x_{12}^{2 \Delta_{\sigma}} x_{34}^{2 \Delta_{\sigma}}} \sum_{\Delta, j} \sum_{\mathbf{r}=0,0_{-}, \mathbf{1}} \lambda_{\Delta, j, \mathbf{r}}^{2} g_{\Delta, j}(u, v),
$$

- $j=0,2,4, \ldots$ for $\mathbf{0}, \mathbf{1}$ which are in symmetric product of $\mathbf{1} \otimes \mathbf{1}$, while $j=1,3,5, \ldots$ for $\mathbf{0}_{-}$in antisymmmetric product.
- $1 \leftrightarrow 3$ gives 3 crossing equations same as correlator of scalar in $O(2)$ fundamental F where $F \otimes F=S \oplus A \oplus T$ for singlet S, antisymmetric A, and symmetric traceless T [Kos, DSD, Poland '15].
- We identify $F=\mathbf{1}=T, S=\mathbf{0}, A=\mathbf{0}_{-}$, so difference with $O(2)$ is that external operator appears in its own OPE.
- Also critical $O(2)$ CFT does not exist in 2d.
- q-state Potts model with $q \neq 2,3$ has 4 crossing equations for

σ correlator

- Expand σ correlator in blocks for each irrep in $\mathbf{1} \otimes \mathbf{1}=\mathbf{0} \oplus \mathbf{0}_{-} \oplus \mathbf{1}$:

$$
\left\langle\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \sigma\left(x_{3}\right) \sigma\left(x_{4}\right)\right\rangle=\frac{1}{x_{12}^{2 \Delta_{\sigma}} x_{34}^{2 \Delta_{\sigma}}} \sum_{\Delta, j} \sum_{\mathbf{r}=0,0_{-}, \mathbf{1}} \lambda_{\Delta, j, \mathbf{r}}^{2} g_{\Delta, j}(u, v)
$$

- $j=0,2,4, \ldots$ for $\mathbf{0}, \mathbf{1}$ which are in symmetric product of $\mathbf{1} \otimes \mathbf{1}$, while $j=1,3,5, \ldots$ for 0_{-}in antisymmmetric product.
- $1 \leftrightarrow 3$ gives 3 crossing equations same as correlator of scalar in $O(2)$ fundamental F where $F \otimes F=S \oplus A \oplus T$ for singlet S, antisymmetric A, and symmetric traceless T [Kos, DSD, Poland '15].
- We identify $F=\mathbf{1}=T, S=\mathbf{0}, A=\mathbf{0}_{-}$, so difference with $O(2)$ is that external operator appears in its own OPE.
- Also critical $O(2)$ CFT does not exist in 2d.
- q-state Potts model with $q \neq 2,3$ has 4 crossing equations for correlator of fundamental of S_{q} [Rong, Su'17].

2 d bounds with only σ, σ^{\prime} relevant

- Red line to guide eye, purple line corresponds to W(3) minimal model with $c=2\left(1-\frac{12}{p(p+1)}\right)$ for $p \geq 4$ for $p=1,2$ Mod3, including critical Potts at $p=4$ (first observed by [Rong, Su '17]).
- Kink near Tricritical Potts (requires gap to see).

2d bounds with only σ, σ^{\prime} relevant

- Red line to guide eye, purple line corresponds to $W(3)$ minimal model with $c=2\left(1-\frac{12}{p(p+1)}\right)$ for $p \geq 4$ for $p=1,2$ Mod3, including critical Potts at $p=4$ (first observed by [Rong, Su'17]).

2d bounds with only σ, σ^{\prime} relevant

- Red line to guide eye, purple line corresponds to $W(3)$ minimal model with $c=2\left(1-\frac{12}{p(p+1)}\right)$ for $p \geq 4$ for $p=1,2$ Mod3, including critical Potts at $p=4$ (first observed by [Rong, Su'17]).
- Kink near Tricritical Potts (requires gap to see).

Numerical convergence

- Plot is changing the most near the kink, moving toward the expected exact value.
- Note that plot is very zoomed in, kink still matches expected point to few percent error.

Numerical convergence

- Plot is changing the most near the kink, moving toward the expected exact value.
- Note that plot is very zoomed in, kink still matches expected point to few percent error.

Numerical convergence

- Plot is changing the most near the kink, moving toward the expected exact value.
- Note that plot is very zoomed in, kink still matches expected point to few percent error.

Bootstrap spectrum in 2d (singlet sector)

$$
d=2, \quad n_{\max }=10
$$

- Spectrum from boundary of allowed region, made with navigator function [Reehorst, van Rees, Rychkov, Sirois, DSD, Su '21]
- Red dotted line shows where kink is, see operator rearrangement in spin 2 singlet channel, black dotted line is where operators would cross marginality, blue/purple dots denote exact spectrum for tricritical/critical.
- Sometimes fake operators show up in spectrum at unitarity bound.

Bootstrap spectrum in 2d (singlet sector)

$$
d=2, \quad n_{\max }=10
$$

- Spectrum from boundary of allowed region, made with navigator function [Reehorst, van Rees, Rychkov, Sirois, DSD, Su '21]
- Red dotted line shows where kink is, see operator rearrangement in spin 2 singlet channel, black dotted line is where operators would cross marginality, blue/purple dots denote exact spectrum for tricritical/critical.

Bootstrap spectrum in 2d (singlet sector)

$$
d=2, \quad n_{\max }=10
$$

$$
\Delta_{\mathbf{0}, 2}
$$

$$
d=2, \quad n_{\max }=10
$$

- Spectrum from boundary of allowed region, made with navigator function [Reehorst, van Rees, Rychkov, Sirois, DSD, Su '21]
- Red dotted line shows where kink is, see operator rearrangement in spin 2 singlet channel, black dotted line is where operators would cross marginality, blue/purple dots denote exact spectrum for tricritical/critical.
- Sometimes fake operators show up in spectrum at unitarity bound.

Bootstrap spectrum in 2d (0_ sector)

$$
d=2, \quad n_{\max }=10
$$

- Approximate match with exact value in blue/purple for tricritical/critical.
- Also see operator rearrangement at tricritical kink.

Bootstrap spectrum in 2d (0_ sector)

$$
d=2, \quad n_{\max }=10
$$

- Approximate match with exact value in blue/purple for tricritical/critical.
- Also see operator rearrangement at tricritical kink.

Bootstrapping in fractional d

- Our bootstrap changes in two ways as we go to $d>2$:
- We use global conformal blocks in $S O(d+1,1)$ (smooth functions of d [Dolan, Osborn '03]) as we did in 2d.
- We impose a gap to d^{\prime} in the scalar 1 sector, and insert two relevant operators (as in 2d).
- Some CFTs in fractional d have operators with large Δ that violate unitarity, e.g. Ising model
- Contribution of high dimension operators highly suppressed in block expansion, so hard to see from numerical bootstrap, which matches ϵ expansion and interpolates between known results in integer dimensions.
- This violation of unitarity different from complex CFTs, where violation of unitarity large and noticeable from bootstrap.

Bootstrapping in fractional d

- Our bootstrap changes in two ways as we go to $d>2$:
- We use global conformal blocks in $S O(d+1,1)$ (smooth functions of d [Dolan, Osborn '03]) as we did in 2d.
- We impose a gap to d in the scalar 1 sector, and insert two relevant operators (as in 2d).
- Some CFTs in fractional d have onerators with large Δ that violate unitarity, e.g. Ising model
- Contribution of high dimension operators highly suppressed in block expansion, so hard to see from numerical bootstrap, which matches ϵ expansion and interpolates between known results in integer dimensions.
- This violation of unitarity different from complex CFTs, where violation of unitarity large and noticeable from bootstrap.

Bootstrapping in fractional d

- Our bootstrap changes in two ways as we go to $d>2$:
- We use global conformal blocks in $S O(d+1,1)$ (smooth functions of d [Dolan, Osborn '03]) as we did in 2d.
- We impose a gap to d in the scalar 1 sector, and insert two relevant operators (as in 2d).
- Some CFTs in fractional d have operators with large Δ that violate unitarity, e.g. Ising model
- Contribution of high dimension operators highly suppressed in block expansion, so hard to see from numerical bootstrap, which matches ϵ expansion and interpolates between known results in integer dimensions.
- This violation of unitarity different from complex CFTs, where violation of unitarity large and noticeable from bootstrap.

Bootstrapping in fractional d

- Our bootstrap changes in two ways as we go to $d>2$:
- We use global conformal blocks in $S O(d+1,1)$ (smooth functions of d [Dolan, Osborn '03]) as we did in 2d.
- We impose a gap to d in the scalar 1 sector, and insert two relevant operators (as in 2d).
- Some CFTs in fractional d have operators with large Δ that violate unitarity, e.g. Ising model [Hogervorst, Rychkov, van Rees '16].
- Contribution of high dimension operators highly suppressed in block expansion, so hard to see from numerical bootstrap, which matches ϵ expansion and interpolates between known results in integer dimensions.
- This violation of unitarity different from complex CFTs, where violation of unitarity large and noticeable from bootstrap.

Bootstrapping in fractional d

- Our bootstrap changes in two ways as we go to $d>2$:
- We use global conformal blocks in $S O(d+1,1)$ (smooth functions of d [Dolan, Osborn '03]) as we did in 2d.
- We impose a gap to d in the scalar 1 sector, and insert two relevant operators (as in 2d).
- Some CFTs in fractional d have operators with large Δ that violate unitarity, e.g. Ising model [Hogervorst, Rychkov, van Rees '16].
- Contribution of high dimension operators highly suppressed in block expansion, so hard to see from numerical bootstrap, which matches ϵ expansion and interpolates between known results in integer dimensions. [El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi '14; Cappelli, Maffi, Okuda '18].
- This violation of unitarity different from complex CFTs, where violation of unitarity large and noticeable from bootstrap.

Bootstrapping in fractional d

- Our bootstrap changes in two ways as we go to $d>2$:
- We use global conformal blocks in $S O(d+1,1)$ (smooth functions of d [Dolan, Osborn '03]) as we did in 2d.
- We impose a gap to d in the scalar 1 sector, and insert two relevant operators (as in 2d).
- Some CFTs in fractional d have operators with large Δ that violate unitarity, e.g. Ising model [Hogervorst, Rychkov, van Rees '16].
- Contribution of high dimension operators highly suppressed in block expansion, so hard to see from numerical bootstrap, which matches ϵ expansion and interpolates between known results in integer dimensions. [El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi '14; Cappelli, Maffi, Okuda '18].
- This violation of unitarity different from complex CFTs, where violation of unitarity large and noticeable from bootstrap.

Potts plots in $d>2$

- These plots made with lower precision $n_{\max }=10$ (recall WIP!).

- Still see clear tricritical kink, getting closer to critical kink (where line starts to curve).

Potts plots in $d>2$

- These plots made with lower precision $n_{\max }=10$ (recall WIP!).
- Still see clear tricritical kink, getting closer to critical kink (where line starts to curve).

Potts plots in $d>2$

- These plots made with lower precision $n_{\max }=10$ (recall WIP!).
- Still see clear tricritical kink, getting closer to critical kink (where line starts to curve).

Potts plots in $d>2$

- Tricritical kink still clear.
- Harder to identify Polts kink for $d>2.3$, bc top curve becomes gradually changing curve, but two kinks still seem to moving closer.
- On next slide we will see BOTH kinks disappear altogether...

Potts plots in $d>2$

- Tricritical kink still clear.
- Harder to identify Potts kink for $d>2.3$, bc top curve becomes gradually changing curve, but two kinks still seem to moving closer.
- On next slide we will see BOTH kinks disappear altogether...

Potts plots in $d>2$

- Tricritical kink still clear.
- Harder to identify Potts kink for $d>2.3$, bc top curve becomes gradually changing curve, but two kinks still seem to moving closer.
- On next slide we will see BOTH kinks disappear altogether..

Potts plots in $d>2$

- Tricritical kink still clear.
- Harder to identify Potts kink for $d>2.3$, bc top curve becomes gradually changing curve, but two kinks still seem to moving closer.
- On next slide we will see BOTH kinks disappear altogether...

Potts plots in $d>2$

Bootstrap spectrum in $d=2.3$ (singlet sector)

- Red dotted line shows where kink is, see operator rearrangement in spin 2 singlet channel, black dotted line is where operators would cross marginality.

Bootstrap spectrum in $d=2.6$ (singlet sector)

- We no longer see operator rearrangement in the spin 2 channel.
- We also no longer see the operator near marginality in the spin 0 channel.

Bootstrap spectrum in $d=2.6$ (singlet sector)

- We no longer see operator rearrangement in the spin 2 channel.
- We also no longer see the operator near marginality in the spin 0 channel.

Other correlators?

- With just σ single correlator, can plot σ versus ϵ with only a gap on scalar \mathbf{O} for critical Potts. Gives big allowed region, nothing interesting (like 2d Ising model numerical bootstrap).
- To do: 3d plot of $\sigma, \sigma^{\prime}, \epsilon$ for critical Potts imposing all gaps, or 4d plot of $\sigma, \sigma^{\prime}, \epsilon, \epsilon^{\prime}$ for tricritical, see if kinks become sharper. gives islands (without additional assumptions that are not justified for $d>2$).
- To do: Mixed correlators could still improve the sharpness of our kinks, maybe make better kink for critical Potts.
- Simplest mixed correlator: σ, σ^{\prime}, just 15 crossing equations, 2 parameters to plot.

Other correlators?

- With just σ single correlator, can plot σ versus ϵ with only a gap on scalar \mathbf{O} for critical Potts. Gives big allowed region, nothing interesting (like 2d Ising model numerical bootstrap).
- To do: 3d plot of $\sigma, \sigma^{\prime}, \epsilon$ for critical Potts imposing all gaps, or 4d plot of $\sigma, \sigma^{\prime}, \epsilon, \epsilon^{\prime}$ for tricritical, see if kinks become sharper.
gives islands (without additional assumptions that are not justified
- To do: Mixed correlators could still improve the sharpness of our kinks, maybe make better kink for critical Potts.
- Simplest mixed correlator: σ, σ^{\prime}, just 15 crossing equations, 2 parameters to plot.

Other correlators?

- With just σ single correlator, can plot σ versus ϵ with only a gap on scalar \mathbf{O} for critical Potts. Gives big allowed region, nothing interesting (like 2d Ising model numerical bootstrap).
- To do: 3d plot of $\sigma, \sigma^{\prime}, \epsilon$ for critical Potts imposing all gaps, or 4d plot of $\sigma, \sigma^{\prime}, \epsilon, \epsilon^{\prime}$ for tricritical, see if kinks become sharper.
- Mixed correlators of $\sigma, \sigma^{\prime}, \epsilon$ with gaps in both sectors does NOT gives islands (without additional assumptions that are not justified for $d>2$).
- To do: Mixed correlators could still improve the sharpness of our kinks, maybe make better kink for critical Potts.
- Simplest mived correlator: σ, σ^{\prime}, just 15 crossing equations, 2 parameters to plot.

Other correlators?

- With just σ single correlator, can plot σ versus ϵ with only a gap on scalar \mathbf{O} for critical Potts. Gives big allowed region, nothing interesting (like 2d Ising model numerical bootstrap).
- To do: 3d plot of $\sigma, \sigma^{\prime}, \epsilon$ for critical Potts imposing all gaps, or 4d plot of $\sigma, \sigma^{\prime}, \epsilon, \epsilon^{\prime}$ for tricritical, see if kinks become sharper.
- Mixed correlators of $\sigma, \sigma^{\prime}, \epsilon$ with gaps in both sectors does NOT gives islands (without additional assumptions that are not justified for $d>2$).
- To do: Mixed correlators could still improve the sharpness of our kinks, maybe make better kink for critical Potts.
- Simplest mixed correlator: σ, σ^{\prime}, just 15 crossing equations, 2 parameters to plot.

Other correlators?

- With just σ single correlator, can plot σ versus ϵ with only a gap on scalar \mathbf{O} for critical Potts. Gives big allowed region, nothing interesting (like 2d Ising model numerical bootstrap).
- To do: 3d plot of $\sigma, \sigma^{\prime}, \epsilon$ for critical Potts imposing all gaps, or 4d plot of $\sigma, \sigma^{\prime}, \epsilon, \epsilon^{\prime}$ for tricritical, see if kinks become sharper.
- Mixed correlators of $\sigma, \sigma^{\prime}, \epsilon$ with gaps in both sectors does NOT gives islands (without additional assumptions that are not justified for $d>2$).
- To do: Mixed correlators could still improve the sharpness of our kinks, maybe make better kink for critical Potts.
- Simplest mixed correlator: σ, σ^{\prime}, just 15 crossing equations, 2 parameters to plot.

Conclusion

- Found sharp kink that matches known tricritical Potts model in 2d.
- Found less sharp feature at expected critical Potts in 2d (previously observed by [Rong, Su'17]), where straight line saturated by $W(3)$ minimal models starts to curve.
- Extracted spectrum in 2d, matches known spectrum for critical and tricritical Potts.
- For $d>2$, both kinks get closer and eventually disappear around $d \approx 2.5$, where ϵ^{\prime} also becomes marginal, evidence for merger and annihilation scenario!

Conclusion

- Found sharp kink that matches known tricritical Potts model in 2d.
- Found less sharp feature at expected critical Potts in 2d (previously observed by [Rong, Su '17]), where straight line saturated by $W(3)$ minimal models starts to curve.
- Extracted spectrum in 2d, matches known spectrum for critical and tricritical Potts.
- For $d>2$, both kinks get closer and eventually disappear around $d \approx 2.5$, where ϵ^{\prime} also becomes marginal, evidence for merger and annihilation scenario!

Conclusion

- Found sharp kink that matches known tricritical Potts model in 2d.
- Found less sharp feature at expected critical Potts in 2d (previously observed by [Rong, Su '17]), where straight line saturated by $W(3)$ minimal models starts to curve.
- Extracted spectrum in 2d, matches known spectrum for critical and tricritical Potts.
- For $d>2$, both kinks get closer and eventually disappear around $d \approx 2.5$, where ϵ^{\prime} also becomes marginal, evidence for merger and annihilation scenario!

Conclusion

- Found sharp kink that matches known tricritical Potts model in 2d.
- Found less sharp feature at expected critical Potts in 2d (previously observed by [Rong, Su'17]), where straight line saturated by $W(3)$ minimal models starts to curve.
- Extracted spectrum in 2d, matches known spectrum for critical and tricritical Potts.
- For $d>2$, both kinks get closer and eventually disappear around $d \approx 2.5$, where ϵ^{\prime} also becomes marginal, evidence for merger and annihilation scenario!

Future directions

- Improve kinks and spectrum by increasing numerical precision and/or more correlators.
- Bootstrap C_{T}, see if it shows minimum at Potts theories, like for Ising model
- Determine upper critical dimension for real $2<q<4$ using crossing equations analytically continued to real q, match to previous predictions from lattice.

Future directions

- Improve kinks and spectrum by increasing numerical precision and/or more correlators.
- Bootstrap c_{T}, see if it shows minimum at Potts theories, like for Ising model [El-Showk, Paulos, Poland, Rychkov, DSD, Vichi '14].
- Determine upper critical dimension for real $2<q<4$ using crossing equations analytically continued to real q, match to previous predictions from lattice.

Future directions

- Improve kinks and spectrum by increasing numerical precision and/or more correlators.
- Bootstrap c_{T}, see if it shows minimum at Potts theories, like for Ising model [El-Showk, Paulos, Poland, Rychkov, DSD, Vichi '14].
- Determine upper critical dimension for real $2<q<4$ using crossing equations analytically continued to real q, match to previous predictions from lattice.

