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Why study the 3-state Potts model?

The critical 3-state Potts model describes phase transitions in
nature in 2d , e.g. 4He atoms on graphite at 1

3 coverage show
second order phase transition with critical exponents that match
theory [Alexander ’75; Bretz ’77; Tejwani et al ’80] .

In 3d, the Potts lattice model describes cubic ferromagnets with 3
easy axes, e.g. DyAl2, but shows a first order phase transition
[Mukamel et al ’76; Barbara et al ’78] (so NOT critical).

Simplest QFT after the Ising model, i.e. few relevant operators,
global symmetry just S3.

The critical and tricritical q-state Potts models are believed to
demonstrate merger and annihilation scenario for critical points,
as function of either q or d near q = 3.
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Merger and annihiliation scenario

Consider two families of unitary CFTs parameterized by s with
same global symmetry and number of relevant operators, except
one CFT has extra relevant singlet.

As s changes, the CFT data of these two CFTs gets closer until a
scrit, where the two CFTs become identical and go off into the
complex plane (no longer unitary) [Kaplan, Lee, Son 09’] .

The “extra” relevant singlet operator becomes marginal at scrit.

Critical and tricritical q-state Potts have same Sq global symmetry,
but tricritical has extra relevant singlet operator for q = 3.

In 2d, critical and tricritical q-state Potts let s = q: as q → qcrit = 4
the theories merge [Neinhuis, Berker, Riedel, Schick ’79] and then go off
into complex plane [Gorbenko, Rychkov, Zan ’18] .
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qcrit for critical Potts for d > 2
In d ≥ 4, proven that qcrit = 2 [Aharony, Pytte ’81] .

No merger/annihilation in this case, instead q = 2 critical Potts (i.e.
Ising) becomes free at d = 4.

In 3d, lattice Monte Carlo suggests qcrit ∼ 2.45 [Lee, Kosterlitz ’91] .

In 2 < d ≤ 3, various estimates of (dcrit,qcrit):

Lattice Monte Carlo of generalization of Potts model gives
(2.5,2.68) [Barkema, de Boer ’91] .

d = 4− ε and q = 2 + ε expansion gives (4− ε,2 + ε) + O(ε2)
[Aharony, Pytte ’81] see also [ Newman, Riedel, Mutto ’83] .

RG analysis gives (2.32,2.85) [ Nienhuis, Riedel, Schick ’80] .

This talk: Use bootstrap to find upper critical dimension dcrit ∼ 2.5
for q = 3 via merger/annihilation of critical/tricritical CFTs.
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Outline of talk

Define q-state Potts model in any spacetime d , and the critical
and tricritical fixed points.

Review exact solutions in 2d for various q.

In 2d, use conformal bootstrap to find kinks that correspond to the
exact solutions of the 3-state critical and tricritical Potts CFTs.

Using same bootstrap setup, increase d and find that critical and
tricritical kinks merge and disappear around d ∼ 2.5.
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Lattice definition of Potts for any d ,q

Consider d-dimensional square lattice of random spins with
Hamiltonian for si ∈ {1,2, . . . ,q} [Potts ’52] :

Z =
∑
{si}

e−H[{si}] , H[{si}] = β
∑
〈ij〉

δsi ,sj

Has exact Sq global symmetry.

At large β ordered phase with q degenerate ground states with Sq
broken and 1 spin value prefered, at small β have disordered
phase with one ground state with Sq symmetry.

Tune β = βcrit to get phase transition called critical Potts model.

Consider dilute lattice model where some lattice sites are vacant,
can tune β to get same critical Potts model, can tune both β and
chemical potential of vacancies to get tricritical Potts model.
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q = 2 Potts (Ising)
q = 2 critical and tricritical Potts model are the critical and
tricritical Ising models with S2

∼= Z2 global symmetry.

In d = 2 Z2 even subsector of tricritical has enhanced
superconformal algebra, but not for d > 2 (tricritical in d > 2
unrelated to N = 1 super-Ising model).

Critical Ising has two relevant operators (1 Z2 odd, 1 Z2 even),
tricritical has 4 relevant operator (2 Z2 odd, 2 Z2 even).

In 2d, critical and tricritical are lowest two unitary diagonal minimal
models M4,3 (c = 1

2 ) and M5,4 (c = 7
10 ), i.e. exactly solvable

Diagonal minimal models Mp+1,p described by Lagrangian
(∂φ)2 + λ(φ2)p−1, has upper critical dimension dcrit = 2p−2

p−2 when
(φ2)p−1 becomes marginal⇔ theory becomes free.

Thus dcrit = 4 for critical Ising, dcrit = 3 for tricritical Ising, no
merger/annihilation.
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2 ) and M5,4 (c = 7
10 ), i.e. exactly solvable

Diagonal minimal models Mp+1,p described by Lagrangian
(∂φ)2 + λ(φ2)p−1, has upper critical dimension dcrit = 2p−2

p−2 when
(φ2)p−1 becomes marginal⇔ theory becomes free.

Thus dcrit = 4 for critical Ising, dcrit = 3 for tricritical Ising, no
merger/annihilation.
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Other q 6= 3 Potts

For q = 4, tricritical and critical Potts are the same unitary CFT:
free scalar compactified on on S1/Z2 with radius R = 1/

√
2 with

three marginal operators [Dijkgraaf, Verlinde2] .

One of these marginal operators expected from merger/annihilation
scenario [Gorbenko, Rychkov, Zan ’18] .

For q → 1, consider random-cluster definition of Potts model to
get real but non-unitary CFT that describes percolation [Fortuin,
Kasteleyn ’72] .

Recently studied by [Picco, Ribault, Santachiara ’16; Jacobsen, Saleur ’18] .

Cluster definition can also be used to define q → 0 limit that
describes spanning trees (not CFT) [Fortuin, Kasteleyn ’72] .
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q = 3 Potts CFT: General definitions

Define 3-state Potts CFTs in general d as CFT with S3 global
symmetry and certain number of relevant operators.

S3 has 3 irreps: singlet 0, sign 0− (odd under Z2 ⊂ S3), and
charged 1 (±1 charge under Z3 ⊂ S3).

Critical Potts has two relevant charged operators σ, σ′, and one
relevant singlet ε.

Tricritical Potts has two relevant charged operators σ, σ′, and two
relevant singlet ε, ε′.

Unlike q = 2 Potts (i.e. Ising), for q = 3 Potts critical and tricritical
CFTs differ by just a single relevant operator, which is why they
are good candidate for merger/annihilation scenario.

Shai Chester (Weizmann Institute) May 13, 2021 9 / 29



q = 3 Potts CFT: General definitions

Define 3-state Potts CFTs in general d as CFT with S3 global
symmetry and certain number of relevant operators.

S3 has 3 irreps: singlet 0, sign 0− (odd under Z2 ⊂ S3), and
charged 1 (±1 charge under Z3 ⊂ S3).

Critical Potts has two relevant charged operators σ, σ′, and one
relevant singlet ε.

Tricritical Potts has two relevant charged operators σ, σ′, and two
relevant singlet ε, ε′.

Unlike q = 2 Potts (i.e. Ising), for q = 3 Potts critical and tricritical
CFTs differ by just a single relevant operator, which is why they
are good candidate for merger/annihilation scenario.

Shai Chester (Weizmann Institute) May 13, 2021 9 / 29



q = 3 Potts CFT: General definitions

Define 3-state Potts CFTs in general d as CFT with S3 global
symmetry and certain number of relevant operators.

S3 has 3 irreps: singlet 0, sign 0− (odd under Z2 ⊂ S3), and
charged 1 (±1 charge under Z3 ⊂ S3).

Critical Potts has two relevant charged operators σ, σ′, and one
relevant singlet ε.

Tricritical Potts has two relevant charged operators σ, σ′, and two
relevant singlet ε, ε′.

Unlike q = 2 Potts (i.e. Ising), for q = 3 Potts critical and tricritical
CFTs differ by just a single relevant operator, which is why they
are good candidate for merger/annihilation scenario.

Shai Chester (Weizmann Institute) May 13, 2021 9 / 29



q = 3 Potts CFT: General definitions

Define 3-state Potts CFTs in general d as CFT with S3 global
symmetry and certain number of relevant operators.

S3 has 3 irreps: singlet 0, sign 0− (odd under Z2 ⊂ S3), and
charged 1 (±1 charge under Z3 ⊂ S3).

Critical Potts has two relevant charged operators σ, σ′, and one
relevant singlet ε.

Tricritical Potts has two relevant charged operators σ, σ′, and two
relevant singlet ε, ε′.

Unlike q = 2 Potts (i.e. Ising), for q = 3 Potts critical and tricritical
CFTs differ by just a single relevant operator, which is why they
are good candidate for merger/annihilation scenario.

Shai Chester (Weizmann Institute) May 13, 2021 9 / 29



q = 3 Potts CFT: General definitions

Define 3-state Potts CFTs in general d as CFT with S3 global
symmetry and certain number of relevant operators.

S3 has 3 irreps: singlet 0, sign 0− (odd under Z2 ⊂ S3), and
charged 1 (±1 charge under Z3 ⊂ S3).

Critical Potts has two relevant charged operators σ, σ′, and one
relevant singlet ε.

Tricritical Potts has two relevant charged operators σ, σ′, and two
relevant singlet ε, ε′.

Unlike q = 2 Potts (i.e. Ising), for q = 3 Potts critical and tricritical
CFTs differ by just a single relevant operator, which is why they
are good candidate for merger/annihilation scenario.

Shai Chester (Weizmann Institute) May 13, 2021 9 / 29



q = 3 Potts CFT: 2d exact solutions

Critical and tricritical Potts in 2d are minimal models M6,5 (c = 4
5 )

and M7,6 (c = 6
7 ) with non-diagonal modular partition functions.

Recall that diagonal M6,5 and M7,6 are Z2 invariant (φ2)4 and (φ2)5

CFTs, multi-critical generalizations of Ising model.

Critical Potts has Virasoro enhanced to W (3) symmetry in 2d.

Lowest central charge member of family of unitary CFTs with W (3)

symmetry [Zamolodchikov, Fateev ’86] .

Tricritical Potts has Virasoro enhanced to W (2,5) symmetry in 2d

Only unitary CFT with W (2,5) symmetry, bc exceptional algebra
(only exists for certain c) unlike W (3) [Bouwknegt ’88] .

Lowest central charge member of family of unitary CFTs with
S3 symmetry built from parafermions [Zamolodchikov, Fateev ’87] .
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Primaries in 2d critical Potts

Virasoro primaries (with integer spin) given by subset of M6,5 that
appear in non-diagonal torus partition function labeled by (∆, j , r)
for scaling dimension ∆, Lorentz spin j , and S3 irrep r:

σ = (2/15 ,0 ,1) , σ′ = (4/3 ,0 ,1) ,

ε = (4/5 ,0 ,0) , ε′ = (14/5 ,0 ,0) , ε′′ = (6 ,0 ,0) ,

O = (9/5 ,1 ,0−) , W = (3 ,3 ,0−) .

Conserved current W is the generator of W (3) algebra.

Quasiprimaries under global conformal group, e.g. stress tensor,
then given as usual by acting with Virasoro generators Ln for n > 1
(or expand torus partition function in quasiprimary characters).

Shai Chester (Weizmann Institute) May 13, 2021 11 / 29



Primaries in 2d critical Potts

Virasoro primaries (with integer spin) given by subset of M6,5 that
appear in non-diagonal torus partition function labeled by (∆, j , r)
for scaling dimension ∆, Lorentz spin j , and S3 irrep r:

σ = (2/15 ,0 ,1) , σ′ = (4/3 ,0 ,1) ,

ε = (4/5 ,0 ,0) , ε′ = (14/5 ,0 ,0) , ε′′ = (6 ,0 ,0) ,

O = (9/5 ,1 ,0−) , W = (3 ,3 ,0−) .

Conserved current W is the generator of W (3) algebra.

Quasiprimaries under global conformal group, e.g. stress tensor,
then given as usual by acting with Virasoro generators Ln for n > 1
(or expand torus partition function in quasiprimary characters).

Shai Chester (Weizmann Institute) May 13, 2021 11 / 29



Primaries in 2d critical Potts

Virasoro primaries (with integer spin) given by subset of M6,5 that
appear in non-diagonal torus partition function labeled by (∆, j , r)
for scaling dimension ∆, Lorentz spin j , and S3 irrep r:

σ = (2/15 ,0 ,1) , σ′ = (4/3 ,0 ,1) ,

ε = (4/5 ,0 ,0) , ε′ = (14/5 ,0 ,0) , ε′′ = (6 ,0 ,0) ,

O = (9/5 ,1 ,0−) , W = (3 ,3 ,0−) .

Conserved current W is the generator of W (3) algebra.

Quasiprimaries under global conformal group, e.g. stress tensor,
then given as usual by acting with Virasoro generators Ln for n > 1
(or expand torus partition function in quasiprimary characters).

Shai Chester (Weizmann Institute) May 13, 2021 11 / 29



Primaries in 2d critical Potts

Virasoro primaries (with integer spin) given by subset of M6,5 that
appear in non-diagonal torus partition function labeled by (∆, j , r)
for scaling dimension ∆, Lorentz spin j , and S3 irrep r:

σ = (2/15 ,0 ,1) , σ′ = (4/3 ,0 ,1) ,

ε = (4/5 ,0 ,0) , ε′ = (14/5 ,0 ,0) , ε′′ = (6 ,0 ,0) ,

O = (9/5 ,1 ,0−) , W = (3 ,3 ,0−) .

Conserved current W is the generator of W (3) algebra.

Quasiprimaries under global conformal group, e.g. stress tensor,
then given as usual by acting with Virasoro generators Ln for n > 1
(or expand torus partition function in quasiprimary characters).

Shai Chester (Weizmann Institute) May 13, 2021 11 / 29



Primaries in 2d tricritical Potts

Virasoro primaries (with integer spin) given by subset of M7,6 that
appear in non-diagonal torus partition function:

σ = (2/21 ,0 ,1) , σ′ = (20/21 ,0 ,1) , σ′′ = (8/3 ,0 ,1) ,

ε = (2/7 ,0 ,0) , ε′ = (10/7 ,0 ,0) , ε′′ = (
24
7
,0 ,0) ,

ε′′′ = (44/7 ,0 ,0) , ε′′′′ = (10 ,0 ,0) ,

O = (17/7 ,1 ,0−) , O′ = (23/7 ,3 ,0−) , W = (5 ,5 ,0−) .

Conserved current W is the generator of W (2,5) algebra, along
with stress tensor.
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OPE coefficients in 2d

OPE coefficients in minimal models are all computable in principle,
for non-diagonal models method was outlined in [Fuchs, Klemm ’89] .

This algorithm was carried out for the critical Potts in [McCabe, Wydro

’95] , see also [Migliaccio, Ribault ’18] . E.g.:

λεσσ̄ =

√
1
2(1 +

√
5)Γ(3

5)2

2Γ(2
5)Γ(4

5)

For tricritical Potts, this algorithm not done yet, but a few OPE
coefficients were computed in [Zamolodchikov, Fateev ’87] .

In both critical and tricritical Potts, many OPE coefficients that
would be allowed by S3 symmetry in general d > 2 are zero in 2d
due to enhanced Virasoro (and W-algebra) constraints. E.g.:

λεεε = 0 .
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W (3) minimal models [Zamolodchikov, Fateev ’86]

Recall that critical Potts (c = 4
5 ) is lowest member of family of

W (3) minimal models with c = 2(1− 12
p(p+1) ) for p ≥ 4.

Scalar Virasoro primaries Φ

(
n1 m1
n2 m2

)
for n1 + n2 ≤ p − 1 and

m1 + m2 ≤ p labeled by Dynkin labels of

sl(3)× sl(3) ⊂W (3)×W (3) with known ∆

(
n1 m1
n2 m2

)
.

Number of relevant operators grows with p, but fusion rules set
OPE σ × σ = σ + σ′ for all p = 1,2 Mod 3 where

∆σ = ∆

(
0 1
0 0

)
=

2(p − 3)

3(p + 1)
, ∆σ′ = ∆

(
0 2
0 0

)
=

5
2

∆σ + 1 .

For p = 0 Mod 3, these operators are 0 instead of 1.
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Bootstrapping the Potts CFTs: General strategy

For all d ≥ 2 we consider the global conformal group
SO(d + 1,1), i.e. in 2d we consider quasiprimaries.

As usual, we consider correlators of relevant scalar operators: σ,
σ′, ε or ε′ (the last only for tricritical).

Let’s start with the simplest correlator that is sensitive to S3 global
symmetry:

〈σ(x1)σ(x2)σ(x3)σ(x4)〉

More abstractly we consider correlator of a scalar in 1 irrep, of
which σ is defined to be the lowest dimension one.

We will consider mixed correlators later.
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σ correlator

Expand σ correlator in blocks for each irrep in 1⊗ 1 = 0⊕ 0− ⊕ 1:

〈σ(x1)σ(x2)σ(x3)σ(x4)〉 =
1

x2∆σ
12 x2∆σ

34

∑
∆,j

∑
r=0,0−,1

λ2
∆,j,rg∆,j(u, v) ,

j = 0,2,4, . . . for 0,1 which are in symmetric product of 1⊗ 1, while
j = 1,3,5, . . . for 0− in antisymmmetric product.

1↔ 3 gives 3 crossing equations same as correlator of scalar in
O(2) fundamental F where F ⊗ F = S ⊕ A⊕ T for singlet S,
antisymmetric A, and symmetric traceless T [Kos, DSD, Poland ’15] .

We identify F = 1 = T , S = 0, A = 0−, so difference with O(2) is
that external operator appears in its own OPE.

Also critical O(2) CFT does not exist in 2d.

q-state Potts model with q 6= 2,3 has 4 crossing equations for
correlator of fundamental of Sq [Rong, Su ’17] .
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2d bounds with only σ, σ′ relevant

Tricritical

Critical (p = 4)

p = 5

p = 7
p = 8

d = 2, nmax= 14

Allowed

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Δσ

0.5

1.0

1.5

2.0

Δσ'

Red line to guide eye, purple line corresponds to W (3) minimal
model with c = 2(1− 12

p(p+1) ) for p ≥ 4 for p = 1,2 Mod3, including
critical Potts at p = 4 (first observed by [Rong, Su ’17] ).
Kink near Tricritical Potts (requires gap to see).
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Numerical convergence

nmax = 14

nmax = 18

nmax = 22

nmax = 26

Tricritical

0.080 0.085 0.090 0.095 0.100 0.105 0.110
Δσ

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Δσ'

Plot is changing the most near the kink, moving toward the
expected exact value.

Note that plot is very zoomed in, kink still matches expected point
to few percent error.
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Bootstrap spectrum in 2d (singlet sector)

0.08 0.09 0.10 0.11 0.12 0.13
Δσ0
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3

4

Δ0,0
d = 2, nmax = 10

0.080 0.085 0.090 0.095
Δσ

1.6

1.8

2.0

2.2

2.4

2.6

Δ0,2
d = 2, nmax = 10

Spectrum from boundary of allowed region, made with navigator
function [Reehorst, van Rees, Rychkov, Sirois, DSD, Su ’21]

Red dotted line shows where kink is, see operator rearrangement
in spin 2 singlet channel, black dotted line is where operators
would cross marginality, blue/purple dots denote exact spectrum
for tricritical/critical.
Sometimes fake operators show up in spectrum at unitarity bound.
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Bootstrap spectrum in 2d (0− sector)
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d = 2, nmax = 10

Approximate match with exact value in blue/purple for
tricritical/critical.
Also see operator rearrangement at tricritical kink.
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Bootstrapping in fractional d
Our bootstrap changes in two ways as we go to d > 2:

We use global conformal blocks in SO(d + 1,1) (smooth functions
of d [Dolan, Osborn ’03] ) as we did in 2d.

We impose a gap to d in the scalar 1 sector, and insert two
relevant operators (as in 2d).

Some CFTs in fractional d have operators with large ∆ that violate
unitarity, e.g. Ising model [Hogervorst, Rychkov, van Rees ’16] .

Contribution of high dimension operators highly suppressed in
block expansion, so hard to see from numerical bootstrap, which
matches ε expansion and interpolates between known results in
integer dimensions. [El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin,

Vichi ’14; Cappelli, Maffi, Okuda ’18] .

This violation of unitarity different from complex CFTs, where
violation of unitarity large and noticeable from bootstrap.
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Potts plots in d > 2
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These plots made with lower precision nmax = 10 (recall WIP!).

Still see clear tricritical kink, getting closer to critical kink (where
line starts to curve).
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Potts plots in d > 2
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Tricritical kink still clear.

Harder to identify Potts kink for d > 2.3, bc top curve becomes
gradually changing curve, but two kinks still seem to moving
closer.

On next slide we will see BOTH kinks disappear altogether...
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Potts plots in d > 2
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Bootstrap spectrum in d = 2.3 (singlet sector)
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Red dotted line shows where kink is, see operator rearrangement
in spin 2 singlet channel, black dotted line is where operators
would cross marginality.
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Bootstrap spectrum in d = 2.6 (singlet sector)
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We no longer see operator rearrangement in the spin 2 channel.
We also no longer see the operator near marginality in the spin 0
channel.
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Other correlators?

With just σ single correlator, can plot σ versus ε with only a gap on
scalar 0 for critical Potts. Gives big allowed region, nothing
interesting (like 2d Ising model numerical bootstrap).

To do: 3d plot of σ, σ′, ε for critical Potts imposing all gaps, or 4d plot
of σ, σ′, ε, ε′ for tricritical, see if kinks become sharper.

Mixed correlators of σ, σ′, ε with gaps in both sectors does NOT
gives islands (without additional assumptions that are not justified
for d > 2).

To do: Mixed correlators could still improve the sharpness of our
kinks, maybe make better kink for critical Potts.

Simplest mixed correlator: σ, σ′, just 15 crossing equations, 2
parameters to plot.
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Conclusion

Found sharp kink that matches known tricritical Potts model in 2d.

Found less sharp feature at expected critical Potts in 2d
(previously observed by [Rong, Su ’17] ), where straight line saturated
by W (3) minimal models starts to curve.

Extracted spectrum in 2d, matches known spectrum for critical
and tricritical Potts.

For d > 2, both kinks get closer and eventually disappear around
d ≈ 2.5, where ε′ also becomes marginal, evidence for merger
and annihilation scenario!
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Future directions

Improve kinks and spectrum by increasing numerical precision
and/or more correlators.

Bootstrap cT , see if it shows minimum at Potts theories, like for
Ising model [El-Showk, Paulos, Poland, Rychkov, DSD, Vichi ’14] .

Determine upper critical dimension for real 2 < q < 4 using
crossing equations analytically continued to real q, match to
previous predictions from lattice.
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