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Introduction

Polynomial Matrix Problem

® |n numerics we usually discretize the space of functionals by
taking derivatives around the point z = zb = 1/2:

> amFR7 > 0.

mn
where FA'] = 3manFAA7_( _)‘z 7=1/2

and Fp5(2,2) = (1 - 2)(1 - 2))*"ga(z.2)
—(z2)%7ga (1 — 2,1 - 2).

® These derivatives around z = zb = 1/2 can be approximated
(to arbitrary precision) by a positive function times a
polynomial:

0707 Fa,1(1/2,1/2) = x(A)P™(A).
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Introduction

Polynomial Matrix Problem

® These derivatives around z = zb = 1/2 can be approximated
(to arbitrary precision) by a positive function times a
polynomial:

0707 Fa,1(1/2,1/2) = x(A)P™(A).

® Here P"™"(A) is a polynomial in A and x;(A) >0
VA > Aunitarity -

e We can simply divide by the strictly positive factor x;(A) and
this will leave our search for a positive functional unchanged.

® We will keep track of x;(A) only to improve the stability of
the numerics since it can be helpful to set some appropriate
scales.
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Introduction

Polynomial Matrix Problem

® Thus, numerical bootstrap problems can be posed as a
Polynomial Matrix Problems (PMP's)

over a € RN,

i(A) =0 foral A>0and 1< <J

=1

lD‘l

maximize
such that

QL QL &
3y

® Here I\ﬁj(A) are vectors of polynomials where the m-th entry
corresponds to the m-th non-zero derivative of Fa j and j
labels the different families of operators that we demand
positivity on. So in the simplest single correlator bootstrap j
would run over the even spins: L =0,2,4..., Lmax. E.g.

v 0,1)(A n,m)(A
Mo = (PLOY™) . plmm&))

® The functional @ is normalized on a vector i and the vector b
can be chosen to maximize the action of the functional on for

example a specific operator.
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Introduction & IHES

Polynomial Matrix Problem

® The identity vector is often chosen as the normalization vector
since it is known to be exchanged a-priori. This automatically
imposes strict positivity on one term.

® For the objective vector b =0 is often chosen if one is only
interested in the feasibility of a certain spectrum assumption.

® However, by choosing " and b appropriately we can also
compute bounds on OPE coefficients squared or obtain
additional information (Navigator bootstrap).
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Introduction

OPE Bound

e First we write the crossing equations with some terms
separated out

MNF+ 5, Fo,+ Y A\o.Fo, =0
o,
where the sum over O, is over all other operators.

® We can set A2 = 1 by normalizing the two point functions of
the involved operators to 1. We then act with « and demand
positivity on all Fp, and subtract the strictly positive infinite
sum. This gives the inequality

2o, (Fo,) < —a(F)

So if we normalize a(Fp,,) = 1 we find an upper bound on
A%, . The strictest upper bound is found by maximizing a(Fy).
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Introduction & IHES

OPE Bound

¢ A lower bound can be found in a similar way (exercise). In this
case one has to be careful with allowing another operator in
the spectrum that is continuously connected to the operator
that you are bounding.
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Introduction

Navigator function

® In general it is much better to replace the zero-objective 0 by a
meaningful one that tells you how far you are from the
boundary of between the dis-allowed and allowed region.

® The navigator function, presented last week by Ning Su, is a
way to get such a quantitative measure. It consists of
maximizing the identity for a smartly chosen normalization
vector. The normalization vector must be chosen such that
@ - b is bounded for all points. (It is pointless to have a
navigator function that steps from 400 to finite negative
values at the boundary of the allowed region.)

e This weeks tutorial also contains an example of how to
compute such a navigator function.
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Introduction

PMP as special case of SDP

® The search for an a,, obeying the conditions above can be
phrased as a semi-definite program (SDP).

® The same holds if we replace positivity of a polynomial P(x)
with positive semi-definiteness of a symmetric matrix of
polynomials. This kind of constraints occur when you consider
the crossing equation for multiple correlators.

® SDP’'s can be solved efficiently for example using interior-point
methods.

® Bootstrap problems turn out to require very high precision. A
dedicated arbitrary precision solver called SDPB was created
and is actively being maintained.

® |n practice, it is easiest and usually sufficient to think of a
bootstrap questions on the level of the PMP.
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Introduction & IHES

PMP as special case of SDP (more details)

® Theorem due to Hilbert
p(x) > 0Vx >0 < p(x) = f(x) + xg(x)

where f(x) and g(x) are sums of squares of polynomials. Let

[x]4 denote the vector with entries (1,x,...,x9). If f(x) is a
sum of squares of polynomials with coefficients
C;i = (C,'(), RN C,'d), then

fx) =) (] xa)* = g (ch )[X]d

= [X]JA[xX]4, with A= Z cic] 0.

i
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Introduction & IHES

PMP as special case of SDP (more details)

® So that

p(x) > 0Vx >0 —

p(x) = [x]q Alx]a + x([x]4 BIx]ar),
with A, B >0,
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Introduction

SDPB

e Available cross platform through something called Docker.
(For Windows and iOS use 3.2.2 and not the newest version
because there is a bug in the newest one. For Ubuntu | did not
encounter the bug in the newest version but perhaps using an
older version is still safest.)

® The newest version of SDPB takes as input a directory
containing in JSON the parameters describing the SDP.

® |n order to write this input one first has to formulate the
correct PMP and then convert it.

® The historic work flow is to first compute the PMP in for
example Mathematica and write it to an .xml file. To do the
latter there is a Mathematica notebook SDPB.m available with
SDPB.
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Introduction

SDPB

For simplicity you can view all of this as a black box and all you
need to write is:

® The objective 5 the normalization vector " and the list of
vectors of polynomials M; for which we demand

a-Mj=0 Vx>0

¢ Since SDPB will demand positivity for all x > 0 you will have to
shift x appropriately to correspond to the bound you want to
impose, for example such that x = 0 corresponds to the
unitarity bound.

® Sometimes you might have to impose positivity on a specific
disconnected operator. This happens for example when you
demand that there is only one relevant scalar. In this case you
simply replace x with the appropriate fixed value and add it to
the list M;.
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Introduction & IHES

Setting up the PMP

Constructing I\_ﬂ'J involves a few steps.

® First one has to (efficiently) compute the appropriate
derivatives of the conformal blocks appearing in the crossing

function F. One standard tool to do this is scalar_blocks. !

® Next you have to put these derivatives together correctly to
form the vector M;.

e Finally, you can give this to the SDPB through some interface
as found for example in SDPB.m.

'There is an issue with the rational approximation made in scalar_blocks.
It does not make the optimal minimal choice for the separation into the
denominator x(x) and the numerator P(x). Using it still gives the correct
results but is numerically not optimal for convergence properties. An
alternative code to compute the conformal block approximations is included in
SimpleBoot by Ning Su. This is a great tool for setting up PMP’s but is not
the simplest to get started.
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Introduction

Exercise set 2

e Unfortunately part of getting started with numerical bootstrap
is just a matter of managing to install the appropriate tools.
So the first exercise will be to actually manage to install
SDPB.m (scalar_blocks will come with it).

® The provided notebook shows a minimal workflow for writing
and solving the PMP corresponding to the question of the
maximal allowed gap A, in the single correlator bootstrap.

® You can then use this to find the Ising kink in d = 3

® You can also try whether there are any assumptions on the
spectrum that you can make that will allow you to isolate the
Ising model, i.e. give you a closed island.
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Introduction

What's next

® Once you are able to run and understand the provided
notebook you are also ready to find your own bounds.

® Bounds on different sectors, L = 2,4, ..., different assumptions
on isolated operators...

® Other spacetime dimensions (scalar_blocks works in any
dimension).

® Multi-correlator bounds, e.g. (coo0o), (ocoee), and (eece).

¢ Global symmetries O(N), SU(N),...

® The main principle is finding which polynomials you want to

demand positivity (or semi-positive definiteness) on and for
which values of x.
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Introduction

Navigator (more details)

e We relax the crossing equations such that they always have a
solution for some value of A

Foo(u, v)+AM(u, v)+ Z pacFa(u,v) =0, pag>0
(A0)ES(AL)

® This can be done for example by taking M(u, v) to be the
Generalized Free Field (GFF) solution.

® |n practice you only have to add the GFF-operators that are
not already allowed by your spectrum assumptions S(A.,).
® When maximizing the bound on A, in the single correlator we

have been studying the only GFF operator that is excluded is
o2 with dimension 2A,,.
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Introduction

Navigator (more details)

® By taking Marr(u,v) = Faa, 0(u, v) the crossing equation
always has a solution.

® \We can minimize the contribution from the GFF solutions to
crossing by minimizing \.

® For points disallowed by crossing a positive A is required to
satisfy the ‘relaxed’ crossing constraint.

e At the boundary of the allowed and disallowed region a
solution without the A contribution, i.e. A = 0 has to exist.

® By choosing the normalization vector n and the objective
vector b appropriately we can minimize A using SDPB.
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Introduction

Navigator (more details)

® By choosing the normalization vector n and the objective
vector b appropriately we can minimize \ using SDPB.

max «(Fo o) over all linear functionals « such that
a(M)=-1
a(Fae) > 0 forall (A,¢) € S(AY)
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Introduction

Aside: Additional tools

Many other useful and interesting tools have been developed over
the past years. Some examples of interesting ones are:

e Autoboot (by Mocho Go), this can automatically give you the
crossing equations appropriately decomposed by irrep for many
groups and representations.

e SimpleBoot (by Ning Su). This is an interface that can set up
any PMP’s arising in the conformal bootstrap given the
crossing equations in the format outputted by Autoboot.

® For computations involving spinning external operators the set
up is much more complicated. Some of this has recently been
simplified for d = 3 by the availability of blocks_3d to
automatically compute spinning blocks.
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