Operator expansions, layer susceptibility and two-point functions in BCFT

Mykola Shpot

ICMP Lviv

based on work with Parijat Dey and Tobias Hansen

> DHS, JHEP 12 (2020) 051 MS, JHEP 1 (2021) 055

> > Bootstat 2021

INTRODUCTION

1995 McAvity Osborn CFTs near a boundary in general dimensions cond-mat/9505127

g, h. To achieve this it is convenient to define a transform, $g \to \hat{g}$, by integrating G over planes parallel to the boundary⁹

⁸ The two-loop results [12,19,20,21] for the surface exponents $\hat{\eta}$, $\hat{\eta}_n$ vanish as $N \to \infty$. ⁹ This is analogous to the radon transform [22].

$$\int d^{d-1} \mathbf{x} \, G(x, x') = \frac{1}{(4yy')^{\alpha-\lambda}} \hat{g}(\rho) ,$$

$$\rho = \frac{(y-y')^2}{4yy'} , \quad \lambda = \frac{1}{2}(d-1) , \qquad (4.17)$$

where

$$\hat{g}(\rho) = \frac{\pi^{\lambda}}{\Gamma(\lambda)} \int_{0}^{\infty} du \, u^{\lambda-1} g(u+\rho) \, .$$

This transform may be inverted, $\hat{g} \rightarrow g$, by

$$g(\xi) = \frac{1}{\pi^{\lambda} \Gamma(-\lambda)} \int_{0}^{\infty} \mathrm{d}\rho \, \rho^{-\lambda-1} \hat{g}(\rho + \xi)$$

1995 McAvity hep-th/9507028

J. Phys. A: Math. Gen. 28 (1995) 6915-6930. Printed in the UK Integral transforms for conformal field theories with a boundary

2013 Liendo Rastelli van Rees The bootstrap program for boundary CFT $_d$ 1210.4258

Critical phenomena in semi-infinite systems Phase diagram in the absence of ordering fields: $h = h_1 = 0$

surface interactions

EOT exists in *d* dimensions if d-1-dimensional *ST* is possible: $d \ge 3$

 $h_1 \neq 0$ — Critical Adsorbtion/Normal Transition — occurs whenever a *d* dimensional *bulk transition* is possible: $d \ge 2$

- Metlitski 2020 d = 3, $n \ge 2$ - Parisen Toldin 2021 d = 3, n = 3

Extraordinary transition

- Lubensky Rubin 1975 MF two-point function \rightarrow DHS20 $O(\varepsilon)$
- Bray Moore 1977 scaling; Ohno Okabe 1984 large n

 \Rightarrow <u>exact</u> *parallel* correlation critical exponents for L and T components

$$\left\{\eta_{\parallel} = d + 2, \ \eta_{\perp} = \frac{1}{2}(d + 2 + \eta)\right\}^{L} \qquad \left\{\eta_{\parallel} = d, \ \eta_{\perp} = \frac{1}{2}(d + \eta)\right\}^{T}$$

 $\Delta_{\phi} = (d - 2 + \eta)/2 \qquad \qquad \left[\frac{\eta}{2} \equiv \gamma_{\sigma} \right] \qquad \qquad \hat{\Delta} = (d - 2 + \eta_{\parallel})/2$

scaling dimension of the leading nontrivial boundary operator $\hat{O} \uparrow$

 conformal bootstrap: Liendo Rastelli van Rees 2013, Gliozzi Liendo Meineri Rago 2015

EXP Law 2001 Wetting, adsorption and surface critical phenomena

LGW hamiltonian and boundary conditions

$$\mathcal{H}[\phi] = \int d^{d-1}r \int_0^\infty dz \left[\frac{1}{2} |\nabla \phi|^2 + \frac{m_0^2}{2} |\phi|^2 + \frac{u_0}{4!} (|\phi|^2)^2 \right] + \int d^{d-1}r \left(\frac{c_0}{2} |\hat{\phi}|^2 - h_1 \hat{\phi}^1 \right)$$

$$\phi = \{ \phi^i, i = 1, \underbrace{2, ..., n}_{\text{Transverse}} \}$$

Transverse

BC:
$$\frac{\partial}{\partial z} \phi^1(z) \Big|_{z=0} = c_0 \phi^1(0) - h_1$$
 Longitudinal component

$$\langle \phi^{i}(z) \rangle = 0, \qquad i = 2, ..., n$$

$$m(z) \equiv \langle \phi^{1}(z) \rangle = \frac{\mu_{0}}{(2z)^{\Delta_{\phi}}} \qquad - \text{ OP profile:} \qquad \mu_{0} = \begin{cases} 0, ORD, SP, ST \\ \neq 0, EOT / N \end{cases}$$

$$EOT : \begin{cases} h_{1} = 0 \\ c_{0} < 0 \end{cases} \qquad CA/N : \begin{cases} h_{1} \neq 0 \\ \text{arbitrary } c_{0} \end{cases}$$

Two-point functions in BCFT $(T = T_c)$

- Cardy 1984; Mc Avity Osborn 1993, 1995
- Nakayama 2013 Is boundary conformal in CFT?

$$G(\boldsymbol{x}, \boldsymbol{x}') \equiv \langle \phi(\boldsymbol{r}_1, z) \phi(\boldsymbol{r}_2, z') \rangle = \frac{g(\xi)}{(4zz')^{\Delta_{\phi}}} = \frac{F(v^2)}{|\boldsymbol{x} - \boldsymbol{x}'|^{2\Delta_{\phi}}} \qquad g(\xi) = \xi^{-\Delta_{\phi}} F(v^2)$$

$$\xi = \frac{r^2 + (z' - z)^2}{4zz'} = \frac{|\boldsymbol{x} - \boldsymbol{x}'|^2}{4zz'} \qquad v^2 = \frac{r^2 + (z' - z)^2}{r^2 + (z + z')^2} = \frac{|\boldsymbol{x} - \boldsymbol{x}'|^2}{|\boldsymbol{x} - \hat{\boldsymbol{x}}'|^2}$$

$$u_{4} = \frac{x_{12} x_{34}}{x_{13} x_{24}} \qquad v_{4} = \frac{x_{14} x_{23}}{x_{13} x_{24}}$$
$$\xi = u_{4} \qquad v^{2} = \frac{u_{4}}{u_{4}}$$

 v_4

Asymptotic limits. 1. Bulk limit

$$G(\boldsymbol{x}, \boldsymbol{x}') = \frac{\boldsymbol{g}(\boldsymbol{\xi})}{(4zz')^{\Delta_{\phi}}} = \frac{\boldsymbol{F}(\boldsymbol{v}^2)}{|\boldsymbol{x} - \boldsymbol{x}'|^{2\Delta_{\phi}}} \qquad \boldsymbol{\xi} = \frac{|\boldsymbol{x} - \boldsymbol{x}'|^2}{4zz'} \qquad \boldsymbol{v}^2 = \frac{\boldsymbol{\xi}}{\boldsymbol{\xi} + 1}$$
$$G(\boldsymbol{x}, \boldsymbol{x}') \sim |\boldsymbol{x} - \boldsymbol{x}'|^{-2\Delta_{\phi}} \quad \boldsymbol{\xi} \qquad \boldsymbol{g}(\boldsymbol{\xi}) \sim \boldsymbol{\xi}^{-\Delta_{\phi}}, \qquad \boldsymbol{\xi}, \, \boldsymbol{v}^2 \to 0$$

$$\xi \to 0 \quad \Leftarrow \quad \left\{ \begin{array}{l} |\boldsymbol{x} - \boldsymbol{x}'| \ll z, z' - |\boldsymbol{x} - \boldsymbol{x}'| \rightarrow 0 \end{array} \right.$$

 $ightarrow \infty$ bulk limit short-distance (OPE) limit $F(0) = C^1_{\phi\phi}$

Asymptotic limits. 2. Boundary limit $\xi \rightarrow \infty$

$$G(\boldsymbol{x}, \boldsymbol{x}') = \frac{\boldsymbol{g}(\boldsymbol{\xi})}{(4zz')^{\Delta_{\phi}}} = \frac{\boldsymbol{F}(\boldsymbol{v}^2)}{|\boldsymbol{x} - \boldsymbol{x}'|^{2\Delta_{\phi}}} \qquad \qquad g(\boldsymbol{\xi} \to \infty) \sim \boldsymbol{\xi}^{-\hat{\boldsymbol{\Delta}}}$$

• $r \to \infty | z, z'$ fixed $\Rightarrow G(r; z, z') \sim r^{-2\hat{\Delta}} = r^{-(d-2+\eta_{\parallel})}$

•
$$z' \to \infty | r, z$$
 fixed $\Rightarrow G(r; z, z') \sim z'^{-(\Delta_{\phi} + \hat{\Delta})} = z'^{-(d-2 + \eta_{\perp})}$ $\eta_{\perp} = \frac{\eta_{\parallel} + \eta_{\perp}}{2}$

• $z \to 0 | r, z'$ fixed $\Rightarrow G(r; z, z') \sim z^{\hat{\Delta} - \Delta_{\phi}} = z^{\eta_{\perp} - \eta}$ short-distance (BOE) limit

Short-distance operator expansions

 $\hat{b} = \hat{\Delta} + 1 - d/2 \qquad \underline{\text{conformal blocks}} \qquad b = \Delta + 1 - d/2$ $\mathcal{G}_{\text{boe}}(\hat{\Delta};\xi) = \xi^{-\hat{\Delta}_2} F_1(\hat{\Delta}, \hat{b}; 2\hat{b}; -\xi^{-1}) \qquad \mathcal{G}_{\text{ope}}(\Delta;\xi) = \xi^{\Delta/2} {}_2 F_1(\underline{\Delta}, \underline{\Delta}; \xi; -\xi)$ $g(\xi) = \sum_{\hat{\Delta} \ge 0} \mu_{\hat{\Delta}}^2 \mathcal{G}_{\text{boe}}(\hat{\Delta};\xi) = \xi^{-\Delta_\phi} \sum_{\Delta \ge 0} \lambda_\Delta \mathcal{G}_{\text{ope}}(\Delta;\xi)$ $\underline{\text{bootstrap}} \qquad g(\xi) = \xi^{-\Delta_\phi} F(v^2) \qquad \underline{\text{equation}}$

Correlation function *Radon transformation** Layer suceptibility

* McAvity Osborn95 CFTs near a boundary in general dimensions NPB455 522

Simple examples. 1. Dirichlet propagator

$$\begin{aligned} G_D(r;z,z') &= C_d \left(|\boldsymbol{x} - \boldsymbol{x}'|^{2-d} - |\boldsymbol{x} - \hat{\boldsymbol{x}}'|^{2-d} \right) = \frac{g(\xi)}{(4zz')^{\Delta_{\phi}^{(0)}}} \\ g(\xi) &= C_d \left[\xi^{1-\frac{d}{2}} - (\xi+1)^{1-\frac{d}{2}} \right] \qquad C_d = \frac{S_d^{-1}}{d-2} \qquad \Delta_{\phi}^{(0)} = \frac{d-2}{2} \\ \tilde{G}(p;z,z') &= \frac{1}{2p} \left[e^{-p|z-z'|} - e^{-p(z+z')} \right] \\ \chi(z,z') &= \lim_{p \to 0} \tilde{G}(p;z,z') = \frac{1}{2} (z+z'-|z'-z|) = \min(z,z') \\ \chi(z,z') &= \sqrt{4zz'} \frac{1}{2} \zeta^{\frac{1}{2}} \equiv \sqrt{4zz'} X(\zeta) = \sqrt{4zz'} R(\rho) \qquad \zeta = \frac{\min(z,z')}{\max(z,z')} \\ R(\rho) &= X(\zeta)|_{\zeta = (\sqrt{\rho+1} - \sqrt{\rho})^2} = \left(\sqrt{\rho+1} - \sqrt{\rho}\right)/2 \qquad \rho = \frac{(z'-z)^2}{4zz'} = \xi|_{r=0} \end{aligned}$$

$$g(\xi) = \frac{\pi^{-\lambda}}{\Gamma(-\lambda)} \int_0^\infty d\rho \ \rho^{-1-\lambda} R(\rho+\xi) = C_d \left[\xi^{1-\frac{d}{2}} - (\xi+1)^{1-\frac{d}{2}}\right]$$

2. EOT, Landau approximation [Eisenriegler1984 J Chem Phys 81 4666]

$$G_E(p; z < z') = \frac{1}{2p} \left[W(-pz) - W(pz) \right] W(pz') \qquad W(x) = e^{-x} \left(1 + \frac{3}{x} + \frac{3}{x^2} \right)$$
$$\chi_E(z, z') = \lim_{p \to 0} G_0(p; z, z') = \frac{1}{5} \frac{\left[\min(z, z') \right]^3}{\left[\max(z, z') \right]^2} = \sqrt{4zz'} \frac{1}{10} \zeta^{\frac{5}{2}}$$

$$\mathsf{R} \implies G_E(r; z, z') = (4zz')^{-\Delta_{\phi}} g_E(\xi)$$

$$g_E(\xi) = \underbrace{\xi^{1-\frac{d}{2}} - (\xi+1)^{1-\frac{d}{2}}}_{g_D(\xi)} + \frac{12}{4-d} \left[\xi^{2-\frac{d}{2}} + (\xi+1)^{2-\frac{d}{2}} + \frac{4}{6-d} \left(\xi^{3-\frac{d}{2}} - (\xi+1)^{3-\frac{d}{2}} \right) \right]$$
[Luborslow Public 1075]

[Lubensky Rubin 1975]

$$g_E^{(d=4)}(\xi) = \frac{1}{\xi} - \frac{1}{\xi+1} + 12 + 6(1+2\xi)\ln\frac{\xi}{\xi+1}$$

[LR75, ..., Liendo Rastelli van Rees 2013]

Radon transformation and BOE blocks [DHS20] $\xi = \frac{r^2 + (z' - z)^2}{4zz'} \qquad \qquad \zeta = \frac{\min(z, z')}{\max(z, z')}$ $G_{\text{con}}(r; z, z') = (4zz')^{-\Delta_{\phi}} g_{\text{con}}(\xi) \quad \longleftrightarrow \quad \chi(z, z') = (4zz')^{\lambda - \Delta_{\phi}} X(\zeta)$

one-to-one correspondence between BOE blocks and ζ powers $g_{\text{con}}(\xi) = \sum_{\hat{\Delta}>0} \mu_{\hat{\Delta}}^2 \, \mathcal{G}_{\text{boe}}(\hat{\Delta};\xi) \xrightarrow{R} X(\zeta) = \sum_{\hat{\Delta}>0} c_{\hat{\Delta}} \, \zeta^{\hat{\Delta}-\lambda}$

in scaling functions of correlator $g_{\mathbf{con}}(\xi)$ and layer susceptibility $X(\zeta)$

 $\star \text{ Enhanced scaling form:} \quad \chi(z, z') = (4zz')^{\lambda - \Delta_{\phi}} \zeta^{\hat{\Delta}^{(l.n.)} - \lambda} Y(\zeta) \quad [MS20] \\ Y(\zeta \to 0) - \text{ regular} \\ \rightarrow \text{ Guess:} \quad G(r; z, z') = \frac{(1 - v^2)^{\hat{\Delta} - \Delta_{\phi}}}{|\boldsymbol{x} - \boldsymbol{x'}|^{2\Delta_{\phi}}} \tilde{F}(v^2) \quad \tilde{F}(v^2 \to 1) - \text{ regular}$

3. BOE decompositions via Radon transformation

$$g(\xi) = (\xi + 1)^{-a} \qquad \qquad \xi = \frac{r^2}{4zz'} + \rho \qquad \qquad \rho = \frac{1}{4}(\zeta + \zeta^{-1} - 2)$$

$$R(\rho) = \frac{\pi^{\lambda}}{\Gamma(\lambda)} \int_0^\infty du \ u^{-1+\lambda} g(u+\rho), \ \lambda > 0 \quad \Rightarrow \quad R(\rho) = \pi^{\lambda}(a)_{-\lambda}(\rho+1)^{\lambda-a}$$

$$X(\zeta) \sim \zeta^{a-\lambda} (1+\zeta)^{-2(a-\lambda)} = \sum_{n \ge 0} (-1)^n \frac{(2a-2\lambda)_n}{n!} \zeta^{a-\lambda+n} \qquad [DHS\,20]$$

$$(\xi+1)^{-a} = \sum_{n\geq 0} \frac{(a)_n (2a-2\lambda)_n}{(-4)^n (a-\lambda)_n n!} \xi^{-a-n} {}_2F_1 \left(a+n, a-\lambda+\frac{1}{2}+n; 2a-2\lambda+1+2n; -\xi^{-1}\right)$$

 $\lambda = \frac{d-1}{2} \rightarrow$ Herzog Huang JHEP<u>2017</u> 189 deduced "with a little bit of guess work"

EXTRAORDINARY TRANSITION 1Loop: $O(\varepsilon = 4 - d)$

$$\chi(z,z') = -\underbrace{(a)}_{(a)} + \underbrace{\swarrow'}_{(b)} + \underbrace{\bigcirc}_{(c)} + \underbrace{\checkmark'}_{(d)} + \cdots \Rightarrow$$

$$\chi_{L}(z,z') = \sqrt{4zz'} \zeta^{\frac{5-\varepsilon}{2}} C_{d} [1+\varepsilon h(\zeta)] \chi_{T}(z,z') = \sqrt{4zz'} \zeta^{\frac{3-\varepsilon}{2}} \tilde{C}_{d-1} [1+\varepsilon j(\zeta)] \bigg\} \chi(z,z') = (4zz')^{\lambda-\Delta_{\phi}} \zeta^{\hat{\Delta}-\lambda} Y(\zeta)$$

$$h(\zeta) = h_0(\zeta) + h_1(\zeta) + h_1(-\zeta)$$

$$h_0(\zeta) = \frac{1}{140(n+8)} \left[203n + 3140 - 10(7n+96)\zeta^{-2} + 20(7n+128)\zeta^{-4} \right]$$

$$h_1(\zeta) = \frac{(21n+204)\zeta(1+\zeta^2) + 4(7n+74)\zeta^2 - 72(1+\zeta^4)}{42(n+8)\zeta^6} (1-\zeta)^3 \ln(1-\zeta)$$

 $\underline{\zeta \to 0} - \text{BOE limit} (\text{exponentiated with } \varepsilon \to 0) \quad \underline{\zeta \to 1} \,, -1 - \text{OPE limit}$

Power expansions of $\chi_{L,T}(z,z')$

$$\chi_L(z,z') = (4zz')^{\lambda - \Delta_{\phi}} \zeta^{-\lambda} \sum_{\hat{\Delta} = d, k} c_{\hat{\Delta}} \zeta^{\hat{\Delta}} + O(\varepsilon^2) \qquad k = 6, 8, 10, \dots$$

$$c_{d} = \frac{1}{10} \left[1 + \frac{76 - n}{60(n+8)} \varepsilon \right] \qquad c_{k} = 2 \frac{k(k-3)(n+8) - 2(5n+76)}{(k-5)_{3}(k)_{3}(n+8)} \varepsilon$$

$$\chi_T(z,z') = (4zz')^{\lambda - \Delta_{\phi}} \zeta^{-\lambda} \sum_{\hat{\Delta} = d-1, k} \tilde{c}_{\hat{\Delta}} \zeta^{\hat{\Delta}} + O(\varepsilon^2) \qquad k = 7, 9, 11, \dots$$

$$\tilde{c}_{d-1} = \frac{1}{6} \left[1 + \frac{2n+15}{6(n+8)} \varepsilon \right] \qquad c_k = 4 \frac{(k+2)(k-5)}{(k-4)_6(n+8)} \varepsilon$$

 $\left\{\hat{\Delta}; c_{\hat{\Delta}}, \tilde{c}_{\hat{\Delta}}\right\}$ — BCFT data for the layer susceptibility

BOE decompositions for correlation functions

$$\begin{split} \zeta^{-\lambda+\hat{\Delta}} & \underset{\longrightarrow}{R} \quad \sigma_{\hat{\Delta}} \, \mathcal{G}_{\text{boe}}(\hat{\Delta};\xi) \qquad \mathcal{G}_{\text{boe}}(\hat{\Delta};\xi) = \xi^{-\hat{\Delta}} \, _{2}F_{1}(\hat{\Delta},\hat{b};2\hat{b};-\xi^{-1}) \\ \hat{\Delta} &= d \downarrow \mathbf{T}_{\mathbf{z}\mathbf{z}} \qquad \qquad \hat{b} = \hat{\Delta} + 1 - \frac{d}{2} \\ g_{L}^{\text{con}}(\xi) &= \sigma_{d}c_{d} \, \mathcal{G}_{\text{boe}}(4-\varepsilon;\xi) + \underbrace{\sum_{k=6,\text{even}}^{\infty} \sigma_{k} \, c_{k} \, \mathcal{G}_{\text{boe}}(k;\xi) + O(\varepsilon^{2})}_{O(\varepsilon)} \\ g_{T}^{\text{con}}(\xi) &= \sigma_{d-1}\tilde{c}_{d-1} \, \mathcal{G}_{\text{boe}}(3-\varepsilon;\xi) + \underbrace{\sum_{k=7,\text{odd}}^{\infty} \sigma_{k} \, \tilde{c}_{k} \, \mathcal{G}_{\text{boe}}(k;\xi) + O(\varepsilon^{2})}_{\hat{\Delta} &= d-1 \uparrow \text{ the analogue of the displacement operator} \\ \hat{\sigma}(z) &= 0 - 1 \uparrow \text{ the analogue of the displacement operator} \\ \left\{\hat{\Delta}; \sigma_{\hat{\Delta}}c_{\hat{\Delta}}, \sigma_{\hat{\Delta}}\tilde{c}_{\hat{\Delta}}\right\} - \text{BCFT data for the two-point function} \end{split}$$

$$\begin{split} & \text{Explicit results} \qquad g_{L,T}^{\text{con}}(\xi) = g_{L,T}^{(0)}(\xi) + \varepsilon \, g_{L,T}^{(1)}(\xi) + O(\varepsilon^2) \\ g_L^{(0)}(\xi) = & \frac{1}{2\xi} - \frac{1}{2(\xi+1)} + 6 + 3(2\xi+1) \ln \frac{\xi}{\xi+1} \qquad g_T^{(0)}(\xi) = & \frac{1}{2\xi} + \frac{1}{2(\xi+1)} + \ln \frac{\xi}{\xi+1} \\ g_L^{(1)}(\xi) = & \frac{1 + \ln \left[\xi(\xi+1)\right]}{4\xi(\xi+1)} + 6 \ln \xi + 3(2\xi+1) \ln \xi \cdot \ln \frac{\xi}{\xi+1} \\ & + \left[\frac{72\xi(2\xi+3) + n + 80}{4(n+8)} \ln \frac{\xi}{\xi+1} - 2 \frac{(5n+52)\xi + 2(2n+19)}{n+8} \right] \ln \frac{\xi}{\xi+1} \\ & + 2 \frac{n+14}{n+8} \left[1 + 3(2\xi+1) \text{Li}_2\left(-\frac{1}{\xi}\right) \right] \end{split}$$

(i) OPE limit: $\xi \to 0$: $g_{L,T}^{\operatorname{con}}(\xi) \sim \xi^{-1+\frac{\varepsilon}{2}} + O(\varepsilon^2) = \xi^{-\Delta_{\phi}} + O(\varepsilon^2)$ (ii) BOE: $\xi \to \infty$: $g_L^{\operatorname{con}}(\xi) \sim \xi^{-4+\varepsilon} = \xi^{-d}$ $g_T^{\operatorname{con}}(\xi) \sim \xi^{-3+\varepsilon} = \xi^{-(d-1)}$

Bootstrap equation

$$g(\xi) = \sum_{\hat{\Delta} \ge 0} \mu_{\hat{\Delta}}^2 \, \mathcal{G}_{\text{boe}}(\hat{\Delta}; \xi) := \xi^{-\Delta_{\phi}} \sum_{\Delta \ge 0} \lambda_{\Delta} \, \mathcal{G}_{\text{ope}}(\Delta; \xi)$$

 $G(x,x') = \langle \phi(x)\phi(x') \rangle = \frac{g(\xi)}{(4zz')^{\Delta_{\phi}}} \qquad - \qquad \underline{\text{full two-point function}}$

$$g(\xi) = \mu_0^2 + g_L^{\text{con}}(\xi) + (n-1) g_T^{\text{con}}(\xi)$$

One-point function

$$\langle \phi_L \rangle = \dots + \dots + (n-1) \dots + \dots = \frac{\mu_0}{(2z)^{\Delta_\phi}}$$

$$\Rightarrow \quad \mu_0^2 = 2 \frac{n+8}{\varepsilon} - \frac{n^2 + 46n + 244}{n+8} + O(\varepsilon)$$

Bulk-channel expansion

 $b = \Delta + 1 - \frac{d}{2}$

$$F_{\rm ope}(\xi) \equiv \sum_{\Delta \ge 0} \lambda_{\Delta} \, \mathcal{G}_{\rm ope}(\Delta; \xi) = \sum_{\Delta \ge 0} a_{\Delta} \, \xi^{\frac{\Delta}{2}} \, g_{\rm ope}(\Delta; \xi) := \xi^{\Delta_{\phi}} g(\xi)$$
$$g_{\rm ope}(\Delta; \xi) = \beta(\Delta; \varepsilon)_2 F_1\left(\frac{\Delta}{2}, \frac{\Delta}{2}; b; -\xi\right) \quad a_{\Delta} = \frac{\lambda_{\Delta}}{\beta(\Delta; \varepsilon)} \qquad \beta(\Delta; \varepsilon) = \frac{\Gamma(\frac{\Delta}{2})\Gamma(\frac{\Delta}{2}+2-\frac{d}{2})}{\Gamma(b)}$$

$\boldsymbol{\varepsilon}$ expansion of $F_{\mathrm{ope}}(\boldsymbol{\xi})$

$$F_{\rm ope}(\xi) = \varepsilon^{-1} F_{\rm ope}^{(-1)}(\xi) + F_{\rm ope}^{(0)}(\xi) + \varepsilon F_{\rm ope}^{(1)}(\xi) + O(\varepsilon^2)$$

$$\Delta := \Delta_k = 2 + 2k + \gamma_k^{(1)} \varepsilon + \gamma_k^{(2)} \varepsilon^2 + O(\varepsilon^3) \qquad \longleftrightarrow \qquad |\phi|^{2(1+k)}$$

$$a_{\Delta} := a_{\Delta_k} = a_k^{(-1)} \varepsilon^{-1} + a_k^{(0)} + a_k^{(1)} \varepsilon + O(\varepsilon^2) \qquad k = -1, 0, 1, 2...$$

$$\varepsilon$$
 expansion: $F_{\text{ope}}(\xi) = \varepsilon^{-1} F_{\text{ope}}^{(-1)}(\xi) + F_{\text{ope}}^{(0)}(\xi) + \varepsilon F_{\text{ope}}^{(1)}(\xi) + O(\varepsilon^2)$

$$F_{\text{ope}}^{(-1)}(\xi) = \sum_{k=0}^{\infty} \xi^{k+1} < a_k^{(-1)} > g_{\text{ope}}(2k+2;\xi)|_{\varepsilon=0} \qquad \langle x_k \rangle = \sum_j x_{k,j}$$

$$F_{\text{ope}}^{(0)}(\xi) = \sum_{k=-1}^{\infty} \xi^{k+1} \left(\frac{1}{2} < a_k^{(-1)} \gamma_k^{(1)} > \ln \xi + < a_k^{(-1)} > \partial_{\varepsilon} + < a_k^{(0)} > \right) g_{\text{ope}}(2k+2;\xi)$$

$$F_{\text{ope}}^{(1)}(\xi) = \sum_{k=-1}^{\infty} \xi^{k+1} \Big[\frac{1}{8} < a_k^{(-1)} (\gamma_k^{(1)})^2 > \ln^2 \xi + < a_k^{(1)} > + < a_k^{(0)} > \partial_{\varepsilon} + \frac{1}{2} < a_k^{(-1)} > \partial_{\varepsilon}^2 \Big]$$

$$+ \frac{1}{2} (\langle a_k^{(-1)} \gamma_k^{(2)} \rangle + \langle a_k^{(0)} \gamma_k^{(1)} \rangle + \langle a_k^{(-1)} \gamma_k^{(1)} \rangle \partial_{\varepsilon}) \ln \xi \Big] g_{\text{ope}}(2k+2;\xi)$$

$$\varepsilon^{-1} F_{\rm ope}^{(-1)}(\xi) + F_{\rm ope}^{(0)}(\xi) + \varepsilon F_{\rm ope}^{(1)}(\xi) = \xi^{\Delta_{\phi}} \left[\mu_0^2 + g_L^{\rm con}(\xi) + (n-1) g_T^{\rm con}(\xi) \right]$$

$$\longrightarrow \qquad \underset{-1 < \xi < 0}{\operatorname{Disc}} \ln \xi = 2\pi i \qquad \qquad \underset{-1 < \xi < 0}{\operatorname{Disc}} \ln^2 \xi = 4\pi i \ln(-\xi)$$

 $a_k^{(1)}$ remains undetermined

$$\begin{aligned} & \text{Bulk CFT data} \quad 2. \text{ Scaling dimensions} \\ & \Delta_k = 2 + 2k + \gamma_k^{(1)} \varepsilon + \gamma_k^{(2)} \varepsilon^2 + O(\varepsilon^3) \qquad k = 0, 1, 2... \\ & \gamma_k^{(1)} = 6 \frac{k^2 - 1}{n + 8} \qquad \gamma_0^{(2)} = \frac{(n + 2)(13n + 44)}{2(n + 8)^3} \\ & \gamma_{k \ge 1}^{(2)} = -2 \frac{6k^2(n + 20) + 13n + 50}{(n + 8)^2} H_{k-1} + \frac{36 k^4 - 3 k^2(n + 44) - 13n - 50}{k(n + 8)^2} \\ & + \frac{k^2(n(11n + 314) + 1628) - 2(n(2n + 77) + 398)}{(n + 8)^3} \\ & \Delta_0 = \Delta_{\phi^2} = 2 - \frac{6\varepsilon}{n + 8} + \frac{(n + 2)(13n + 44)}{2(n + 8)^3} \varepsilon^2 + O(\varepsilon^3) \quad \left[\Delta_{\phi^2} = d - y_t = d - \frac{1}{\nu}\right] \end{aligned}$$

$$\Delta_{1} = \Delta_{\phi^{4}} = 4 - 3 \frac{3n + 14}{(n+8)^{2}} \varepsilon^{2} + O(\varepsilon^{3}) \qquad \qquad \left[\Delta_{\phi^{4}} = d - y_{u_{0}} = d + \omega \right]$$

$$\Delta_{\phi} = 1 - \frac{\varepsilon}{2} + \frac{n+2}{4(n+8)^{2}} \varepsilon^{2} + O(\varepsilon^{3})$$

Checks: Δ_k with k = 0, 1, 2 agree with

•
$$\Delta_{\phi^{2(k+1)}} = 2k + 2 + \frac{6(k^2 - 1)}{n+8}\varepsilon - \frac{k+1}{(n+8)^3} \Big[-\frac{1}{2}(13n+44)(n+2) + k\Big(34(k-1)(n+8) + 11n^2 + 92n + 212\Big) \Big]\varepsilon^2 + O(\varepsilon^3)$$

Derkachov Manashov On the stability problem in the O(n) nonlinear sigma model Phys Rev Lett 1997 **79** 1423

$$\begin{split} \Delta_{\psi^{k+1}} &= 2k + 2 - \frac{2^d \Gamma(\frac{d+1}{2}) \sin(\pi \frac{d}{2})}{\pi^{\frac{3}{2}} \Gamma(\frac{d}{2} + 1)} (k+1) \left[(k-1)(d-2) + \frac{k}{2} (d-4)(d-1) \right] \frac{1}{n} + O\left(\frac{1}{n^2}\right) \\ &= 2k + 2 + 6(k^2 - 1)\frac{\varepsilon}{n} - \frac{1}{2} \left(22k^2 + 9k - 13 \right) \frac{\varepsilon^2}{n} + O(\varepsilon^3) + O\left(\frac{1}{n^2}\right) \end{split}$$

Lang Rühl The critical $O(n) \sigma$ -model at dimension 2 < d < 4: Fusion coefficients and anomalous dimensions Nucl Phys B 1993 **400** 597

Outlook 1. Bootstrap equation for the layer susceptibility

$$\frac{g(\xi)}{(4zz')^{\Delta_{\phi}}} = G(\boldsymbol{x}, \boldsymbol{x}') = \frac{F(v^2)}{|\boldsymbol{x} - \boldsymbol{x}'|^{2\Delta_{\phi}}}$$

$$R \uparrow \qquad \uparrow ?$$

$$(4zz')^{\lambda - \Delta_{\phi}} X(\zeta) = \chi(z, z') = \left(\frac{z+z'}{2}\right)^{2(\lambda - \Delta_{\phi})} Z(y)$$

$$\zeta \to 0 \downarrow \qquad \underline{\zeta \to 1} \downarrow y \to 0$$

$$! (4zz')^{\lambda - \Delta_{\phi}} \sum_{\hat{\Delta} > 0} c_{\hat{\Delta}} \zeta^{\hat{\Delta} - \lambda} = \chi(z, z') = \left(\frac{z+z'}{2}\right)^{2(\lambda - \Delta_{\phi})} \sum_{\Delta \ge 0} b_{\Delta} y^{\Delta} !$$

$$DHS \uparrow \qquad \uparrow ?$$

$$\sum_{\hat{\Delta} \ge 0} \mu_{\hat{\Delta}}^2 \mathcal{G}_{\text{boe}}(\hat{\Delta}; \xi) = g(\xi) = \xi^{-\Delta_{\phi}} \sum_{\Delta \ge 0} \lambda_{\Delta} \mathcal{G}_{\text{ope}}(\Delta; \xi)$$

$$\underline{Suggestion:} \quad \zeta = \frac{\min(z, z')}{\max(z, z')} = \frac{z + z' - |z - z'|}{z + z' + |z - z'|} \equiv \frac{1 - y}{1 + y} \quad y = \frac{|z - z'|}{z + z'}$$

Outlook 2. Correlation functions to $O(\varepsilon^2)$

Diehl Dietrich 1981

To determine $G^{R}(\rho; z, z', u^{*}, 0)...$ one still has to do a Fourier transform in one parallel and two perpendicular momenta...

of

Ohno Okabe 1985

$$G_{\rho}(z_1, z_2) = (z_1 z_2)^{(2-d-\eta)/2} f(v)$$

non-dimensional argument

$$v = \frac{z_1^2 + z_2^2 + \rho^2}{2z_1 z_2} = \frac{\bar{r}^2 + r^2}{\bar{r}^2 - r^2}.$$

$$G_{\text{loc}}^{(2)R^*}(\mathbf{q}_1) = \mu^{-2} (|\mathbf{q}_1|/\mu)^{-2+\eta} \left[1 + \eta \left(\frac{C_E}{2} - \frac{13}{8} \right) \right] + O(\varepsilon^3),$$

$$G_{\text{nloc}}^{(2)R^*}(\mathbf{p}_1, k_1, k_2) = \mu^{-3} \left[\left(\frac{\mathbf{p}_1^2 + k_1^2}{\mu^2} \right) \left(\frac{\mathbf{p}_1^2 + k_2^2}{\mu^2} \right) \right]^{-1} \cdot \frac{\pi}{4} \cdot \frac{n+2}{n+8} \cdot \varepsilon$$

$$\cdot \left\{ \left[\left| \frac{k_1 + k_2}{\mu} \right|^1 - \frac{6\varepsilon}{n+8}}{-1} - \left| \frac{k_1 - k_2}{\mu} \right|^1 - \frac{6\varepsilon}{n+8}}{1 + \frac{-(n^2/2) + 4n + 34}{(n+8)^2}} \varepsilon - \frac{6\ln 2}{n+8} \varepsilon \right]$$

$$+ \frac{6\varepsilon}{n+8} \left[\frac{n+2}{12} \left(\left| \frac{k_1 + k_2}{\mu} \right| - \left| \frac{k_1 - k_2}{\mu} \right| \right) \right. \\ + \frac{n+2}{12} \left(4 \frac{k_1 k_2}{2|\mathbf{p}_1|\mu} \operatorname{arccot} \frac{|k_1 + k_2| + |k_1 - k_2|}{2|\mathbf{p}_1|} \right) \\ - \left| \frac{2p_1}{\mu} \right| \operatorname{arctan} \frac{|k_1 + k_2| - |k_1 - k_2|}{|2\mathbf{p}_1|} \right) \\ + \frac{k_1 k_2}{\mu \cdot |\mathbf{p}_1|} \left(\pi - 2 \operatorname{arctan} \frac{|k_1 - k_2| + |k_1 + k_2|}{2|\mathbf{p}_1|} \right) \\ + \left(1 - \frac{n+2}{12} \right) \cdot \frac{1}{2} \left(\left| \frac{k_1 + k_2}{\mu} \right| - \left| \frac{k_1 - k_2}{\mu} \right| \right) \right) \\ \cdot \ln \frac{(2\mathbf{p}_1)^2 + (|k_1 + k_2| - |k_1 - k_2|)^2}{\mu^2} \\ + \frac{n+2}{12} \cdot \frac{1}{2} \left(\left| \frac{k_1 + k_2}{\mu} \right| - \left| \frac{k_1 - k_2}{\mu} \right| \right) \\ \cdot \ln \frac{(2\mathbf{p}_1)^2 + (|k_1 + k_2| + |k_1 - k_2|)^2}{\mu^2} \right] \right\} + O(\varepsilon^3).$$

$$f(v) = \frac{1}{(2\pi)^{d/2}} \left[\exp[\frac{1}{2}(2-d)\pi i] \frac{Q_{\mu-1/2}^{(d-2)/2}(v)}{(v^2-1)^{(d-2)/4}} + \eta \frac{y}{v^2-1} \int^v \frac{\mathrm{d}v}{y} \int^v_\infty \mathrm{d}v \frac{y}{v^2-1} \int^v_\infty \frac{\mathrm{d}v}{y} \int^v_\infty \mathrm{d}v \left(\frac{y}{v^2-1}\right)^3 + \eta \frac{y}{v^2-1} \int^v_\infty \frac{\mathrm{d}v}{v^2-1} \int^v_\infty \frac$$

where Q^{σ}_{ν} is the associated Legendre function of second kind and y is t

 $y = \begin{cases} 1 & \text{for the ordinary transition} \\ v & \text{for the special transition.} \end{cases}$

This is the first presentation of the correlation function in real space.

 $O(\varepsilon^3)$

Outlook 3. Correlation functions and critical exponents: $O(\varepsilon^2)$

→ 2019 Bissi Hansen Söderberg Analytic <u>bootstrap</u> for boundary CFT Procházka Söderberg

$$G(x, x') = \frac{(\xi + 1)^{\gamma - \hat{\gamma}}}{|\boldsymbol{x} - \boldsymbol{x}'|^{2\Delta_{\phi}}} \mp \frac{\xi^{\gamma - \hat{\gamma}}}{|\hat{\boldsymbol{x}} - \boldsymbol{x}'|^{2\Delta_{\phi}}}$$

- the scaling form of $\Gamma^*(\vec{x}, \vec{x}') = \frac{1}{|\vec{x} - \vec{x}'|^{d-2+\eta}} \left(\frac{|\vec{x} - \nu \vec{x}' + 2\lambda \hat{e}_1|^2}{4(z+\lambda)(z'+\lambda)} \right)^{\tilde{\eta}}$ Lubensky Rubin 1975: $-\frac{1}{|\vec{x} - \nu \vec{x}' + 2\lambda \hat{e}_1|^{d-2+\eta}} \left(\frac{|\vec{x} - \vec{x}'|^2}{4(z+\lambda)(z'+\lambda)} \right)^{\tilde{\eta}}$

⇒ Use $\chi(z, z')$ to compute correlation functions to $O(\varepsilon^2)$? ⇒ Use $\chi(z, z')$ to compute critical exponents to $O(\varepsilon^3)$?

Outlook 4. Other functions and models, Feynman integrals

2020 Herzog, Kobayashi The O(N) model with ϕ^6 potential in $\mathbb{R}^2 \times \mathbb{R}^+$

2021 Gimenez-Grau, Liendo, van Vliet Superconformal boundaries in 4-arepsilon dimensions

2020 Loebbert, Miczajka, Müller, Münkler <u>Yangian</u> bootstrap for massive Feynman integrals arXiv:2010.08552

The combination of the above inversion with D-dimensional translations yields the special conformal transformations in D + 1 dimensions,

$$x^{\hat{\mu}} \mapsto \frac{x^{\hat{\mu}} + c^{\hat{\mu}} x_{\hat{\nu}} x^{\hat{\nu}}}{1 + 2c_{\hat{\nu}} x^{\hat{\nu}} + c_{\hat{\rho}} c^{\hat{\rho}} x_{\hat{\nu}} x^{\hat{\nu}}},$$
(2.10)

 $\int_{p'}^{(D)} \frac{1}{(p'^2 + m_1^2)^{\alpha} \left[(p' + p)^2 + m_2^2 \right]^{\beta}}$

 $I_{11}^{(D=2)} \sim \frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|^2} v \ln \frac{1+v}{1-v}$

d = D + 1

albeit with the extra-dimensional component c^{D+1} set to zero, since I_n is not invariant under the respective translation. These transformations are generated by the conformal generator

$$I_{11} \sim p^{-\varepsilon} \left(\frac{p^2}{p^2 + (m_1 + m_2)^2} \right)^{\frac{\varepsilon}{2}} F_1 \left(\dots; \frac{p^2}{p^2 + (m_1 + m_2)^2}, \frac{p^2 + (m_1 - m_2)^2}{p^2 + (m_1 + m_2)^2} \right)$$

$$p \to r, \ m_1 \to z, \ m_2 \to z' \longrightarrow u^2 = \frac{r^2}{r^2 + (z+z')^2}, \ v^2 = \frac{r^2 + (z-z')^2}{r^2 + (z+z')^2}$$

[MS'07JMP] A massive Feynman integral...

SUPPLEMENTARY STAFF

m(z)

Flow equation:

$$\ell \frac{d}{d\ell} \bar{u}(\ell) = \beta_u[\bar{u}(\ell)]$$

Solutions:
$$\bar{u}(\ell \to 0) \approx \begin{cases} u^* & \text{for } d < 4 \\ \frac{1}{\beta_2 |\ln \ell|} + O\left(\frac{\ln |\ln \ell|}{|\ln \ell|^2}\right) & \text{for } d = 4 \\ u\ell^{d-4} & \text{for } d > 4 \end{cases}$$

$$d = 4: \qquad m(z) \sim \frac{z^{-1}}{\sqrt{u(\ell)}}, \qquad \ell = (\mu z)^{-1}, \qquad m(z) \sim z^{-1} \sqrt{|\ln \mu z|}$$

 $\begin{array}{ll} \mathsf{BOE asymptotics:} \quad \xi \to \infty \\ & g_L^{\mathrm{con}}(\xi) \sim \xi^{-\hat{\Delta}} & \hat{\Delta} = d: \\ \hat{O} = T_{zz} & - & \mathrm{energy-momentum \ tensor} \\ & g_T^{\mathrm{con}}(\xi) \sim \xi^{-\hat{\Delta}} & \hat{\Delta} = d-1: \end{array}$

 \hat{O} — the analogue of the displacement operator for the broken rotation current $J^{[1i]}_{\mu}$

The conservation equation for this current is broken by a delta function on the boundary which is multiplied by a scalar boundary operator that is a vector of the preserved O(N-1) subgroup. Similar to the displacement operator, this operator should obey a Ward identity that relates its coupling μ_{d-1} to the bulk field ϕ^1 with the one-point function coefficient μ_0 of this field. It would be interesting to derive this Ward identity to confirm the nature of this operator. Similar protected defect operators appeared for instance in the context of a BPS defect which breaks part of the R-symmetry in a supersymmetric theory [Marco Meineri]

Simple examples

$$\frac{\xi^{-a}}{2} \left[1 + \left(\frac{\xi}{\xi+1}\right)^a \right] = \sum_{\substack{n \ge 0\\\text{even}}} \mu_n^2 \mathcal{G}_{\text{boe}}(\underbrace{a+n};\xi) \tag{1}$$
$$\frac{\xi^{-a}}{2} \left[1 - \left(\frac{\xi}{\xi+1}\right)^a \right] = \sum_{\substack{n \ge 1\\\text{odd}}} \mu_n^2 \mathcal{G}_{\text{boe}}(\overbrace{a+n};\xi) \tag{2}$$

(1) + (2):
$$\xi^{-a} = \sum_{n \ge 0} \mu_n^2 \mathcal{G}_{\text{boe}}(\hat{\Delta}_n; \xi) \qquad \mathcal{G}_{\text{boe}}(\hat{\Delta}; \xi) = \xi^{-\hat{\Delta}}_2 F_1(\hat{\Delta}, \hat{\beta}; 2\hat{\beta}; -\xi^{-1})$$

(1) - (2):
$$(\xi + 1)^{-a} = \sum_{n \ge 0} (-1)^n \mu_n^2 \mathcal{G}_{boe}(\hat{\Delta}_n; \xi)$$
 $\hat{\beta} = a + 1 - \frac{d}{2}$

$$\mu_n^2 = \frac{(a)_n (\hat{\beta})_n}{(2\hat{\beta} - 1 + n)_n n!}$$

Generalizations [Fields Wimp'60 *Math Comp* <u>15</u> 390]

$$\frac{1}{2} \left[1 + \left(\frac{\xi}{\xi+1}\right)^a \right] = \sum_{\substack{n \ge 0 \\ \text{even}}} p_n \, \xi^{-n} \, _2F_1 \left(a+n, b+n; c+2n; -\xi^{-1}\right) \quad (3)$$

$$\frac{1}{2} \left[1 - \left(\frac{\xi}{\xi+1}\right)^a \right] = \sum_{\substack{n \ge 1 \\ \text{odd}}} p_n \, \xi^{-n} \, _2F_1 \left(a+n, b+n; c+2n; -\xi^{-1}\right) \tag{4}$$

(3) + (4):
$$1 = \sum_{n \ge 0} p_n \xi^{-n} {}_2F_1(a+n, b+n; c+2n; -\xi^{-1})$$

(3) - (4):
$$(\xi + 1)^{-a} = \sum_{n \ge 0} (-1)^n p_n \xi^{-a-n} {}_2F_1 (a+n, b+n; c+2n; -\xi^{-1})$$

$$p_n=rac{(a)_n(b)_n}{(c-1+n)_nn!}$$
 $(a),\,b,\,c-{ free}$

BOE and OPE decompositions of unity
(i) BOE:
$$c = 2b \longrightarrow 1 = \sum_{n \ge 0} p_n|_{c=2b} \xi^{-n} {}_2F_1 \left(a + n, b + n; 2b + 2n; -\xi^{-1}\right)$$

(ii) OPE: $b=a, \xi^{-1} \rightarrow \xi \longrightarrow 1 = \sum_{n \ge 0} p_n|_{b=a} \xi^n {}_2F_1 \left(a + n, a + n; c + 2n; -\xi\right)$
 $\sum_{n \ge 0} p_n|_{c=2b} \xi^{-n} {}_2F_1 \left(\underline{a} + n, b + n; 2b + 2n; -\xi^{-1}\right) = \sum_{n \ge 0} p_n|_{b=a} \xi^n {}_2F_1 \left(\underline{a} + n, a + n; c + 2n; -\xi\right)$
 $\mathcal{G}_{\text{boe}}(\hat{\Delta}; \xi) = \xi^{-\hat{\Delta}} {}_2F_1 \left(\hat{\Delta}, \hat{\beta}; 2\hat{\beta}; -\xi^{-1}\right) \qquad \mathcal{G}_{\text{ope}}(\Delta; \xi) = \xi^{\Delta/2} {}_2F_1 \left(\underline{\Delta}, \underline{\Delta}; \xi; -\xi\right)$
 $\sum_{\hat{\Delta}_n} \frac{(a)_n(b)_n}{(2b - 1 + n)_n n!} \mathcal{G}_{\text{boe}}(\hat{\Delta}_n; \xi) = \xi^{-2a} \sum_{\Delta_n} \frac{(a)_n^2}{(c - 1 + n)_n n!} \mathcal{G}_{\text{ope}}(\Delta_n; \xi)$
 $\hat{\Delta}_n = \{a + n \mid n \in \mathbb{N}_0\} \qquad \Delta_n = \{2a + 2n \mid n \in \mathbb{N}_0\}$

BOE and OPE decompositions of $(\xi + 1)^{-a}$ BOE: $c=2b \rightarrow (\xi+1)^{-a} = \sum_{n>0} (-1)^n p_n |_{c=2b} \xi^{-a-n} {}_2F_1(a+n,b+n;2b+2n;-\xi^{-1})$ OPE: $b=a, \xi^{-1} \to \xi \to (\xi+1)^{-a} = \sum_{n>0} (-1)^n q_n |_{b=a} \xi^n {}_2F_1(a+n, a+n; c+2n; -\xi)$ $q_n = \frac{(a)_n (c-b)_n}{(c-1+n)_n n!}$ $\sum_{\hat{\Delta}} \mu_{\hat{\Delta}_n}^2 \, \mathcal{G}_{\mathbf{boe}}(\hat{\Delta}_n;\xi) = \xi^{-a} \sum_{\Delta_n} \lambda_n \, \mathcal{G}_{\mathbf{ope}}(\Delta_n;\xi)$ $\mu_{\hat{\Delta}_n}^2 = \frac{(-1)^n (a)_n (b)_n}{(2b - 1 + n)_n n!}$ $\lambda_n = \frac{(-1)^n (a)_n (c-a)_n}{(c-1+n)_n!}$ $\hat{\Delta}_n = \{ a + n | n \in \mathbb{N}_0 \}$ $\Delta_n = \{2a+2n | n \in \mathbb{N}_0\}$