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@ Uniformization hypothesis for bounded domains
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Bounded critical systems

Why study critical systems with boundaries?

@ Important to compare with experiments

@ Bulk universal quantities can be computed from them

@ Many interesting phenomena are observed in bounded
systems at criticality

@ Necessary to interpret numerical simulations

We will focus on systems with Fixed Boundary Conditions:
aligned spins on the boundaries, e.g on the edges of a slab —
diverging order parameter after rescaling
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Uniformization hypothesis

Introducing a boundary breaks translational and conformal
invariance

Is there a way to put bulk and boundary on the same footing?
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Uniformization hypothesis

Introducing a boundary breaks translational and conformal
invariance

Is there a way to put bulk and boundary on the same footing?
@ A metric with negative curvature sets the boundary
infinitely far away
@ Requiring homogeneity in the system means the curvature
must be constant

© The system has to be locally euclidean

[Giacomo Gori and Andrea Trombettoni. Geometry of bounded critical phenomena.
JSTAT, 2020]
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Metric and curvature

@ To preserve local properties, a natural way is to pick a
metric in the same conformal class as the euclidean metric

Jjj -
5,/—>g,/_W, ij=1,...,d

v(x) is a point-dependent scale factor

@ From g we can compute the Christoffel symbols, the Ricci
tensor and then the Ricci scalar

. 1 .
k= EQ" (Okgj + 9j9K — A1Gj)

Rj =0} — O+ Tl 7 = Til 7
R = R;g’
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@ Yamabe equation




Yamabe problem

@ The requirement of uniform curvature, written for v(x),
gives us the Yamabe equation:

(a0 = —d(d{z)v(x)—dzz

@ The problem can be framed more generally:
given a smooth manifold with a Riemann metric g, is it
always possible to find a metric in the same conformal
class as g with constant scalar curvature?
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Yamabe problem

@ The requirement of uniform curvature, written for v(x),
gives us the Yamabe equation:

(-~ = - N8

a+2
2

@ The problem can be framed more generally:
given a smooth manifold with a Riemann metric g, is it
always possible to find a metric in the same conformal
class as g with constant scalar curvature?

@ Yes, provided the manifold is compact
[Hidehiko Yamabe. On a deformation of riemannian structures on compact
manifolds. Osaka Mathematical Journal, 1960]
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Solutions of the Yamabe equation: half-space

Exact solutions are available in a few interesting cases

@ For a half space, x; > 0,x...xy € R%~": ~ only depends
on the transverse coordinate x;

d—2 d? d—2
Ay(x)" 2 = ——y(x)” 2
ax2
Y(X) = xi

[ John M Lee, Thomas H Parker, The Yamabe problem. Bulletin of the American

Mathematical Society, 1987]

Alessandro Galvani

Critical geometry approach to three-dimensional percolation



Solutions of the Yamabe equation: ball

@ For a ball of radius R in any d

"=

Notice that v = 0 on
the boundary

The half-space and ball solutions actually construct the
hyperbolic space HY [ John M Lee, Thomas H Parker, The Yamabe problem.

Bulletin of the American Mathematical Society, 1987]
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Solutions of the Yamabe equation: slab

@ Foraslab —1 < x; < 1,x---x4 € R9~", a solution for any
d is found in the inverse function x1 (7).

i (7) = 1—aF 11_1 1 (v d

1(v) = 1—2F 2 g’ +a' % ———————————— A
_ TG+a)
T AT+ )

Ford =2,3,4,6 it can be inverted

[Alessandro Galvani, Giacomo Gori, and Andrea Trombettoni. Magnetization profiles at
the upper critical dimension as solutions of the integer Yamabe problem,
arXiv:2103.12449]
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@ Correlation functions




Correlation functions

@ For a rescaling of the domain Q — A2, v(x) and one-point
functions of scaling fields at the critical point are required
to transform as

1a(AX) = Aya(x), (ora(AX)) = A72¢ (pq(x))
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Correlation functions

@ For a rescaling of the domain Q — A2, v(x) and one-point
functions of scaling fields at the critical point are required
to transform as

1a(AX) = Aya(x), (ora(AX)) = A72¢ (pq(x))

Main (naive) conjecture:
Correlation functions can be expressed through ~(x)

(X)) = 1(x)"2(y) "2 F (Dy(x. )
® F (Dy(x,y)) is an unknown function of the distance
computed with the metric g; = &;/~2(x).
But...
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Yamabe equation as mean field of O(N) theories

@ At the upper critical dimension d = d., the anomalous
dimension vanishes, that is A4 = 952. Of course, for
d=4,04=1

@ The Yamabe equation in this case can be seen as the
mean field equation for an O(N) theory

_d=2
2

m(x) = (¢(x)) = ar(x)

Ay(x)~ 2 xA(x)" % = Am(x) o m(x)&2

@ The (integer) Yamabe equation, then, cannot describe
models at d < d; !
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@ Fractional Yamabe equation
@ Computing the fractional Laplacian
@ Ising and XY models
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Fractional Yamabe equation

@ We can try and modify the exponent of v(x) to include the
anomalous dimension

(—A)(x) 8 = ky(x)Re=9 2

@ Now, however, the equation does not scale correctly

@ A way out is to change the exponent of the Laplacian as
well, turning it into a fractional Laplacian

g - -
()2 89y, (X) 72 = Kya,y(x)2e ¢

T(Ay)

k = m, T(x)=T(1— x)cos(mx/2)
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Fractional Yamabe equation (ll)

a_ - -
(=) 2 Boqya,)(X) 72 = ky(a,)(x) "0 T8e

@ This corresponds to making the so-called fractional
Q-curvature constant

@ Not discussed in the following:
e For any d, Cardy’s results for the half-space are retrieved
[John Cardy. Conformal invariance and surface critical behavior. Nuclear
Physics B, 1984]
e Inthe d = 2 case the structure of correlators is reproduced

[Giacomo Gori and Andrea Trombettoni. Geometry of bounded critical
phenomena. JSTAT, 2020]
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Fractional Laplacian

@ (—A)%is a non-local operator
@ It has many definitions, which are equivalent in R¢

(—A)Sf(x) = / f(k)e™|k[>d%%

. f(x) — f
(—A)*F(x) = Cas mddy

[Mateusz Kwasnicki, Ten equivalent definitions of the fractional laplace operator.
Fractional Calculus and Applied Analysis, 2017]

... however, they are not equivalent in bounded domains
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Fractional Laplacian as an extension problem

@ We want to compute (—A)"/2f(x), for x € Q

@ Define a d + 1—dimensional space © = Q x R* by adding
an auxiliary coordinate y, so that for y = 0 we recover Q

@ Define a harmonic function u on ©, with f as its boundary
condition

Alessandro Galvani Critical geometry approach to three-dimensional percolation



Fractional Laplacian as an extension problem

Aganyu(X,y) = Dy +95u=0,  u(x,0) = f(x)
Then,

(=2)V2f(x) = —dyu(x,0)
Because

(—A)'2(=2)2H(x) = BFu(x,0) = — Ay u(x,0) = — Ag) f(x)

@ (—A)'"/2is a Dirichlet to Neumann operator

[Luis Caffarelli and Luis Silvestre. An extension problem related to the fractional
laplacian. Comm. in PDE, 2007]
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Fractional Laplacian in bounded domains

@ The bounded space Q2 has metric g
@ Define g, on © suchthatg, ~g/y?asy — 0
@ Solve the eigenvalue problem for U € ©

(=Ag)U=Au(d—-A,)U
U=yBeFi+y72Fo

@ /g, is the Laplace-Beltrami operator for the metric g,
1 .
Ng U= —=—0 (\/\g+!giaj)
V19+]
If |imy_>0 F/ = f/, Iimy_>0 FO = fo,

(~2)E2ef = kfo

[C. Robin Graham and Maciej Zworski. Scattering matrix in conformal geometry.
Inventiones Mathematicae, 2003]
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Integer vs fractional Yamabe

(D)2, (X) 78 = ky(a,)(x) 7278

Currently there is no way to obtain the fractional solution
perturbatively, when s is close to 1
Y(a,)(T) = YVa=172)(2)

. 0.54 0.0020
For the 3d Ising V
model, s = 1 — g ~ 0.53 0.0015
0.98 ,«
The fractional Yamabe <% 0.0010
profile is not that st 0.0005

different: is it worth

? 5
the hassle* 0070 —05 00 05 10

We can test the conjecture and the diffe‘r’ence between the two
with the 3d Ising and XY models

[Giacomo Gori and Andrea Trombettoni. Geometry of bounded critical phenomena.
JSTAT, 2020]

0
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Simulation of the Ising model

@ Universality allows the choice of a more convenient model
in the Ising class

@ We use the improved Blume-Capel model

BH=-B) sis;+ DY s, s ==1,0
(i i

B, = 0.387721735(25), D = 0.655

[Martin Hasenbusch. Finite size scaling study of lattice models in the
three-dimensional ising universality class. PRB, 2010]
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Testing the conjecture: 3d Ising

@ The latticeis a L x 6L x 6L slab, with L =24,...,192
@ The data for different sizes collapse to

oo = [t (250

where a is the extrapolation length

[H. W. Diehl. The Theory of boundary critical phenomena. Int. J. Mod. Phys.,
1997]

@ A4 can be obtained as a fit parameter, by choosing

Y= "T0 (or, as a check 7 = Vinteger Yamabe)

Alessandro Galvani
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Ising magnetization profile

—theory curve

8
L=32 0.6 1
7] L =48
—— L=64 _04]
6{ —— L=96
—— =128 21
8s
a9 —— L=192 . . . |
’q. 0.00 0.25 0.50 75 1.00
£ 4 v
3 4
2 4
1 . . . .
0.0 0.2 0.4 0.6 0.8 1.0

z/(1+ax/L)

[Giacomo Gori and Andrea Trombettoni. Geometry of bounded critical phenomena.

JSTAT, 2020]
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A, comparison

Linear size L

A, FYE profile fit

A, YE profile fit

32
48
64
96
128
192

ASOO?P — (5181489

¢

0.52287(24)

0.51955(21)

0.51812(13)
)
)
2

0.51812
0.518150(22)

— o~~~

2
1
7
0.51811(5

0.52570(17)
0.52200(15)
0.52038(7)
0.51983(3)
0.51931(3)
0.518923(15)

AFYE = 0.518142(8)

(10), ANC© =0.51801(35)

[Filip Kos, David Poland, David Simmons-Duffin, and Alessandro Vichi. Precision
islands in the Ising and O(N) models. JHEP, 2016]
[Alan M. Ferrenberg, Jiahao Xu, and David P. Landau. Pushing the limits of Monte
Carlo simulations for the three-dimensional Ising model. PRE, 2018]
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Simulation of the XY model

@ We again choose a model with vacancies

@ Additionally, rather than spins € [0, 27), we use the
N—state clock model, with N = 8

H=-> pjpjcos(6; — ) = DY uf, B¢ =0.5637963
(i) i
2
/’Li:17 af:th pi€{17"'7N}7 or /’LIZO

[Martin Hasenbusch. Monte Carlo study of an improved clock model in three
dimensions. PRB, 2019]
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XY magnetization profile

— theory curve

AYE =0.5192(2)

B
A" = 0.519088(22), ANC = 0.519050(40)

[Alessandro Galvani, Giacomo Gori, and Andrea Trombettoni, to be submitted]
[S.M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-Duffin, N. Su, and A. Vichi.
Carving out OPE space and precise O(2) model critical exponents. JHEP, 2020]
[Martin Hasenbusch. Monte Carlo study of an improved clock model in three
dimensions. PRB, 2019]
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Four-dimensional Ising model

@ Test the validity of the saddle-point equation at d = d,

L =56

0.8 0.6 04 0.2 0.0

E=uaf(1+a/L)

[Alessandro Galvani, Giacomo Gori, and Andrea Trombettoni. Magnetization profiles at
the upper critical dimension as solutions of the integer Yamabe problem,
arXiv:2103.12449]
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Collapse of the Ising correlation functions

@ To test the hypothesis for two-point correlations, we can

> for the Ising model as a function of the

Q-hyperbolic distance and the euclidean distance

P(x)o(y.

plot B0
24 L =128 g=94
2.2
2.0
1.8
1.6
1.4
1.2
1.0 A

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Dy(z,y)
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L=128  g=6/yacm? X =0.00031

2.4
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Collapse of the XY correlation functions

@ The same can be done for the XY model

L=128 g=4§ L=128  g=0/yacr)} AP =0519088
3.5 = 35 3
. 35
\
304\
3.0 3.0 \
\.
25 | \
= | AN
) | Y &
20 1.0
1 02 04 06 08 10 12
\ Dy(z,y)
1.5 1.5 L
1.0 L — = 1.0 -
000 025 050 075 100 125 150 0 1 5 3 1 : G 7
Dy(z,y) Dy(z.y)
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@ Percolation




Percolation

@ Percolation is the simplest statistical model

@ Geometrical in nature, with fractals emerging at the critical
point

@ Simulations are quick due to lack of weights and
acceptance probabilities

@ Has nontrivial critical exponents for2 < d < 6

d 17 2 3 4 5 6 — ¢ [8191[10] 6+
-0.046(8)201 -0.12(4)181
-0.059(9) (221 -0.0944(28) [21] -0.075(20)(18 € 206
n 1 |5/24 - € 0
-0.07(5)!"81 -0.0929(9)1231 -0.056516] 21 3373
-0.0470(16] -0.0954[16]

From the nice page (mostly curated by R. Ziff)

en.wikipedia.org/wiki/Percolation_critical_exponents
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Continuum percolation

@ Discrete lattice percolation
is not the best choice for
obtaining profiles
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Continuum percolation

@ Discrete lattice percolation
is not the best choice for
obtaining profiles

@ Continuum percolation is in
the same universality class

@ |deally suited to the study
of the emergence of
continuous symmetries

[Giacomo Gori and Andrea Trombettoni. Conformal invariance in three dimensional
percolation. JSTAT, 2015]
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Continuum percolation

@ Spheres are randomly
placed throughout the slab
up to a critical filling

@ Intersecting spheres
belong to the same cluster

@ Fixed boundary conditions:

spheres intersecting a
boundary belong to the
boundary cluster

Alessandro Galvani
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Two-dimensional check

@ To ensure that our data analysis is sensible, we first test it
ind =2, where A, = 5/48 is known exactly

@ The d — 2 limit of the Yamabe equation gives the Liouville
equation:

Alog(x) = ky(x) 7
@ Fixing the scalar curvature completely determines the
metric
@ lts solution can be used for any field, even though their
dimensions are entirely anomalous

@ Solving the Liouville equation is equivalent to finding a map
from the upper-half plane to the desired domain
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Two-dimensional order parameter profile

@ (¢(x)) is the total area of the intersection between balls in
the large cluster and a plane through x, parallel to the
boundaries

1.15
Inaslab -1 <x <1, _
< 1104
(X) 2 (Wx) 1051
= —cos | —
i T 2
1.00 1
0.8 —0.6 —0.4 —0.2 0.0
§=a/(1+a/L)
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Obtaining A,

e —— 0.1041 + 0.03006 % 08132
® Foreach L, Ay(L)iS o I
extracted from the fit N f Finite L data
.. 0.106 X
@ Ay(L) decreases Bl
with L as 0.105
A¢(L) A¢ + 7w LW 0.104
20 40 60 . 80 100 120
A further fit gives us Ay, to compare with the exact value
All =0.1041(5), AT = 58 ~0.10417
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Three-dimensional percolation

The same procedure can be repeated in three dimensions

0.8 0.6 0.4 —0.2 0.0
§=z/(1+a/L)
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A, for three-dimensional percolation

0.4925

0.4900

0.4875

0.4850

0.4825

0.4800

0.4775

0.4750

Ay =047846(71) — 1 =—0.0431(14)

—— 0.4784 + 8.8110 % L~203%
—— Best estimate 0.4784(7)
}  Finite L data

40 60 80 100
L
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A, for three-dimensional percolation (II)

The points decay with a power close to 2: we can get a more
precise estimate by fixing the exponent to 2

0.4925

0.4900

0.4875

0.4850

L
A‘Jl

0.4825

0.4800

0.4775

0.4750

—— 0.4784 + 7.6519 % L2
—— Best estimate 0.4784(2)
{  Finite L data

40 60 80 100

Ay =04784(2) — n=—0.0432(4)
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Comparison with previous results

Reference year Method n
Adler et al. 1990 | Moment expansion —0.07(5)
Lorenz & Ziff | 1998 | MC, bond percolation | —0.046(8)
Jan & Stauffer | 1998 | MG, site percolation | —0.059(9)
Gracey 2015 4-loop RG —0.0470
This work 2021 Critical geometry —0.0432(4)
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@ Conclusions and work in progress
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Recap and work in progress

Uniformization hypothesis — Yamabe equation
@ d=2d; . Integer Yamabe equation <> mean field
@ d. > d > 2 : Fractional Yamabe equation

Results in 3d

o Critical order parameter profiles
@ Scaling dimensions:

AE™ =0518142(8), AXY =0.5192(2),
Ap‘ercolation -0 4784(2)
(o] )

e Ising and XY: two-point correlations satisfy the conjecture
Up next:
@ Correlation functions for different fields
@ Fractional epsilon expansion
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Thank you!
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