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Bounded critical systems

Why study critical systems with boundaries?

Important to compare with experiments
Bulk universal quantities can be computed from them
Many interesting phenomena are observed in bounded
systems at criticality
Necessary to interpret numerical simulations

We will focus on systems with Fixed Boundary Conditions:
aligned spins on the boundaries, e.g on the edges of a slab→
diverging order parameter after rescaling
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Uniformization hypothesis

Introducing a boundary breaks translational and conformal
invariance

Is there a way to put bulk and boundary on the same footing?

1 A metric with negative curvature sets the boundary
infinitely far away

2 Requiring homogeneity in the system means the curvature
must be constant

3 The system has to be locally euclidean
[Giacomo Gori and Andrea Trombettoni. Geometry of bounded critical phenomena.
JSTAT, 2020]
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Metric and curvature

To preserve local properties, a natural way is to pick a
metric in the same conformal class as the euclidean metric

δij → gij =
δij

γ(x)2 , i , j = 1, . . . ,d

γ(x) is a point-dependent scale factor
From g we can compute the Christoffel symbols, the Ricci
tensor and then the Ricci scalar

Γi
jk =

1
2

g il (∂kglj + ∂jglk − ∂lgjk
)

Rij = ∂lΓ
l
ji − ∂jΓ

l
li + Γl

lmΓm
ji − Γl

jmΓm
li

R = Rijg ij
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Yamabe problem

The requirement of uniform curvature, written for γ(x),
gives us the Yamabe equation:

(−4)γ(x)−
d−2

2 = −d(d − 2)

4
γ(x)−

d+2
2

The problem can be framed more generally:
given a smooth manifold with a Riemann metric g, is it
always possible to find a metric in the same conformal
class as g with constant scalar curvature?

Yes, provided the manifold is compact
[Hidehiko Yamabe. On a deformation of riemannian structures on compact
manifolds. Osaka Mathematical Journal, 1960]
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Solutions of the Yamabe equation: half-space

Exact solutions are available in a few interesting cases
For a half space, x1 > 0, x2 . . . xd ∈ Rd−1: γ only depends
on the transverse coordinate x1

4γ(x)−
d−2

2 → d2

dx2
1
γ(x1)−

d−2
2

γ(x) = x1

[ John M Lee, Thomas H Parker, The Yamabe problem. Bulletin of the American
Mathematical Society, 1987]
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Solutions of the Yamabe equation: ball

For a ball of radius R in any d

γ(r) =
R2 − r2

2R

Notice that γ = 0 on
the boundary

The half-space and ball solutions actually construct the
hyperbolic space Hd [ John M Lee, Thomas H Parker,The Yamabe problem.

Bulletin of the American Mathematical Society, 1987]
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Solutions of the Yamabe equation: slab

For a slab −1 < x1 < 1, x2 · · · xd ∈ Rd−1, a solution for any
d is found in the inverse function x1(γ).

±x1(γ) = 1−2F1

(
1
2
,

1
d

; 1 +
1
d

;

(
γ

γ0

)d
)
γ,

γ0 =
Γ(1

2 + 1
d )

√
πΓ(1 + 1

d )

For d = 2,3,4,6 it can be inverted
[Alessandro Galvani, Giacomo Gori, and Andrea Trombettoni. Magnetization profiles at
the upper critical dimension as solutions of the integer Yamabe problem,
arXiv:2103.12449]
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Correlation functions

For a rescaling of the domain Ω→ λΩ, γ(x) and one-point
functions of scaling fields at the critical point are required
to transform as

γλΩ(λx) = λγΩ(x), 〈ϕλΩ(λx)〉 = λ−∆ϕ 〈ϕΩ(x)〉

Main (naı̈ve) conjecture:
Correlation functions can be expressed through γ(x)

〈ϕ(x)〉 =
α

γ(x)∆ϕ

〈ϕ(x)ϕ(y)〉 = γ(x)−∆ϕγ(y)−∆ϕF
(
Dg(x , y)

)
F
(
Dg(x , y)

)
is an unknown function of the distance

computed with the metric gij = δij/γ
2(x).

But...
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Yamabe equation as mean field of O(N) theories

At the upper critical dimension d = dc , the anomalous
dimension vanishes, that is ∆φ = d−2

2 . Of course, for
d = 4, ∆φ = 1
The Yamabe equation in this case can be seen as the
mean field equation for an O(N) theory

m(x) = 〈φ(x)〉 = αγ(x)−
d−2

2

4γ(x)−
d−2

2 ∝ γ(x)−
d+2

2 →4m(x) ∝ m(x)
d+2
d−2

The (integer) Yamabe equation, then, cannot describe
models at d < dc !
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Fractional Yamabe equation

We can try and modify the exponent of γ(x) to include the
anomalous dimension

(−4)γ(x)−∆φ = kγ(x)∆φ−d ?

Now, however, the equation does not scale correctly
A way out is to change the exponent of the Laplacian as
well, turning it into a fractional Laplacian

(−4)
d
2−∆φγ(∆φ)(x)−∆φ = kγ(∆φ)(x)∆φ−d

k =
Υ(∆φ)

Υ(d −∆φ)
, Υ(x) = Γ(1− x) cos(πx/2)
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Fractional Yamabe equation (II)

(−4)
d
2−∆φγ(∆φ)(x)−∆φ = kγ(∆φ)(x)−d+∆φ

This corresponds to making the so-called fractional
Q-curvature constant

Not discussed in the following:
For any d , Cardy’s results for the half-space are retrieved
[John Cardy. Conformal invariance and surface critical behavior. Nuclear
Physics B, 1984]
In the d = 2 case the structure of correlators is reproduced

[Giacomo Gori and Andrea Trombettoni. Geometry of bounded critical
phenomena. JSTAT, 2020]
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Fractional Laplacian

(−4)s is a non-local operator
It has many definitions, which are equivalent in Rd

(−4)sf (x) =

∫
f̃ (k)eikx |k |2sddk

(−4)sf (x) = cd ,s

∫
f (x)− f (y)

|x − y |d+2s ddy

[Mateusz Kwaśnicki, Ten equivalent definitions of the fractional laplace operator.

Fractional Calculus and Applied Analysis, 2017]

... however, they are not equivalent in bounded domains
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Fractional Laplacian as an extension problem

We want to compute (−4)1/2f (x), for x ∈ Ω

Define a d + 1−dimensional space Θ = Ω× R+ by adding
an auxiliary coordinate y , so that for y = 0 we recover Ω

Define a harmonic function u on Θ, with f as its boundary
condition
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Fractional Laplacian as an extension problem

4(d+1)u(x , y) = 4(d) + ∂2
y u = 0, u(x ,0) = f (x)

Then,

(−4)1/2f (x) = −∂yu(x ,0)

Because

(−4)1/2(−4)1/2f (x) = ∂2
y u(x ,0) = −4(d) u(x ,0) = −4(d) f (x)

(−4)1/2 is a Dirichlet to Neumann operator
[Luis Caffarelli and Luis Silvestre. An extension problem related to the fractional
laplacian. Comm. in PDE, 2007]
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Fractional Laplacian in bounded domains

The bounded space Ω has metric g
Define g+ on Θ such that g+ ≈ g/y2 as y → 0
Solve the eigenvalue problem for U ∈ Θ{

(−4g+)U = ∆ϕ(d −∆ϕ)U
U = y∆ϕFI + yd−∆ϕFO

4g+ is the Laplace-Beltrami operator for the metric g+

4g+U =
1√
|g+|

∂i

(√
|g+|g ij

+∂j

)
If limy→0 FI = fI , limy→0 FO = fO,

(−4)
d
2−∆ϕ fI = k fO

[C. Robin Graham and Maciej Zworski. Scattering matrix in conformal geometry.
Inventiones Mathematicae, 2003]
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Integer vs fractional Yamabe

(−4)sγ(∆φ)(x)−∆φ = kγ(∆φ)(x)−2s−∆φ

Currently there is no way to obtain the fractional solution
perturbatively, when s is close to 1

For the 3d Ising
model, s = 1 − η

2 ≈
0.98
The fractional Yamabe
profile is not that
different: is it worth
the hassle? −1.0 −0.5 0.0 0.5 1.0

x

0.50

0.51

0.52

0.53

0.54

∆
φ

γ(∆φ)(x)− γ(∆φ=1/2)(x)

0

0.0005

0.0010

0.0015

0.0020

We can test the conjecture and the difference between the two
with the 3d Ising and XY models
[Giacomo Gori and Andrea Trombettoni. Geometry of bounded critical phenomena.
JSTAT, 2020]
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Simulation of the Ising model

Universality allows the choice of a more convenient model
in the Ising class
We use the improved Blume-Capel model

βH = −β
∑
〈ij〉

sisj + D
∑

i

s2
i , si = ±1,0

βc = 0.387721735(25), D = 0.655

[Martin Hasenbusch. Finite size scaling study of lattice models in the
three-dimensional ising universality class. PRB, 2010]
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Testing the conjecture: 3d Ising

The lattice is a L× 6L× 6L slab, with L = 24, . . . ,192
The data for different sizes collapse to

〈φ(x)〉 = α

[
Lγ
(

x
1 + a/L

)]−∆φ

where a is the extrapolation length
[H. W. Diehl. The Theory of boundary critical phenomena. Int. J. Mod. Phys.,

1997]

∆φ can be obtained as a fit parameter, by choosing

γ = γ∆φ
, (or, as a check γ = γInteger Yamabe)
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Ising magnetization profile
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[Giacomo Gori and Andrea Trombettoni. Geometry of bounded critical phenomena.
JSTAT, 2020]
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∆φ comparison

Linear size L ∆φ FYE profile fit ∆φ YE profile fit
32 0.52287(24) 0.52570(17)
48 0.51955(21) 0.52200(15)
64 0.51812(13) 0.52038(7)
96 0.51812(7) 0.51983(3)
128 0.51811(5) 0.51931(3)
192 0.518150(22) 0.518923(15)

∆FYE
φ = 0.518142(8)

∆Bootstrap
φ = 0.5181489(10), ∆MC

φ = 0.51801(35)

[Filip Kos, David Poland, David Simmons-Duffin, and Alessandro Vichi. Precision
islands in the Ising and O(N) models. JHEP, 2016]
[Alan M. Ferrenberg, Jiahao Xu, and David P. Landau. Pushing the limits of Monte
Carlo simulations for the three-dimensional Ising model. PRE, 2018]
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Simulation of the XY model

We again choose a model with vacancies
Additionally, rather than spins ∈ [0,2π), we use the
N−state clock model, with N = 8

H = −
∑
〈ij〉

µiµj cos(θi − θj)− D
∑

i

µ2
i , βC = 0.5637963

µi = 1, θi =
2π
N

pi , pi ∈ {1, · · · ,N}, or µi = 0

[Martin Hasenbusch. Monte Carlo study of an improved clock model in three
dimensions. PRB, 2019]
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XY magnetization profile
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∆FYE
φ = 0.5192(2)

∆Bootstrap
φ = 0.519088(22), ∆MC

φ = 0.519050(40)

[Alessandro Galvani, Giacomo Gori, and Andrea Trombettoni, to be submitted]

[S.M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-Duffin, N. Su, and A. Vichi.

Carving out OPE space and precise O(2) model critical exponents. JHEP, 2020]

[Martin Hasenbusch. Monte Carlo study of an improved clock model in three

dimensions. PRB, 2019]
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Four-dimensional Ising model

Test the validity of the saddle-point equation at d = dc

γ(x) = ℘l(x)1/2

m(x) = αγ

(
x

1 + a/L

)−1

[Alessandro Galvani, Giacomo Gori, and Andrea Trombettoni. Magnetization profiles at
the upper critical dimension as solutions of the integer Yamabe problem,
arXiv:2103.12449]
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Collapse of the Ising correlation functions

To test the hypothesis for two-point correlations, we can
plot 〈φ(x)φ(y)〉

〈φ(x)〉〈φ(y)〉 for the Ising model as a function of the
Q-hyperbolic distance and the euclidean distance
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Collapse of the XY correlation functions

The same can be done for the XY model
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Percolation

Percolation is the simplest statistical model
Geometrical in nature, with fractals emerging at the critical
point
Simulations are quick due to lack of weights and
acceptance probabilities
Has nontrivial critical exponents for 2 ≤ d < 6

From the nice page (mostly curated by R. Ziff)
en.wikipedia.org/wiki/Percolation_critical_exponents
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Continuum percolation

Discrete lattice percolation
is not the best choice for
obtaining profiles

Continuum percolation is in
the same universality class
Ideally suited to the study
of the emergence of
continuous symmetries

[Giacomo Gori and Andrea Trombettoni. Conformal invariance in three dimensional
percolation. JSTAT, 2015]
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Continuum percolation

Spheres are randomly
placed throughout the slab
up to a critical filling
Intersecting spheres
belong to the same cluster
Fixed boundary conditions:
spheres intersecting a
boundary belong to the
boundary cluster
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Two-dimensional check

To ensure that our data analysis is sensible, we first test it
in d = 2, where ∆φ = 5/48 is known exactly
The d → 2 limit of the Yamabe equation gives the Liouville
equation:

4 log γ(x) = kγ(x)−2

Fixing the scalar curvature completely determines the
metric
Its solution can be used for any field, even though their
dimensions are entirely anomalous
Solving the Liouville equation is equivalent to finding a map
from the upper-half plane to the desired domain
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Two-dimensional order parameter profile

〈φ(x)〉 is the total area of the intersection between balls in
the large cluster and a plane through x , parallel to the
boundaries

In a slab −1 < x < 1,

γ(x) =
2
π

cos
(πx

2

)
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Obtaining ∆φ

For each L, ∆φ(L) is
extracted from the fit
∆φ(L) decreases
with L as

∆φ(L) = ∆φ +
c

Lw

20 40 60 80 100 120
L

0.104

0.105

0.106

0.107

0.108

∆
L φ

0.1041 + 0.03006 ∗ L−0.8132

Best estimate 0.1041(5)

Exact value 5/48

Finite L data

A further fit gives us ∆φ, to compare with the exact value

∆fit
φ = 0.1041(5), ∆exact

φ =
5

48
≈ 0.10417
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Three-dimensional percolation

The same procedure can be repeated in three dimensions
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∆φ for three-dimensional percolation

40 60 80 100
L

0.4750

0.4775

0.4800

0.4825

0.4850

0.4875

0.4900

0.4925

∆
L φ

0.4784 + 8.8110 ∗ L−2.0395

Best estimate 0.4784(7)

Finite L data

∆φ = 0.47846(71) → η = −0.0431(14)
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∆φ for three-dimensional percolation (II)

The points decay with a power close to 2: we can get a more
precise estimate by fixing the exponent to 2

40 60 80 100
L

0.4750
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0.4800

0.4825

0.4850

0.4875

0.4900

0.4925
∆
L φ

0.4784 + 7.6519 ∗ L−2

Best estimate 0.4784(2)

Finite L data

∆φ = 0.4784(2) → η = −0.0432(4)
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Comparison with previous results

Reference year Method η

Adler et al. 1990 Moment expansion −0.07(5)
Lorenz & Ziff 1998 MC, bond percolation −0.046(8)

Jan & Stauffer 1998 MC, site percolation −0.059(9)
Gracey 2015 4-loop RG −0.0470

This work 2021 Critical geometry −0.0432(4)
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Recap and work in progress

Uniformization hypothesis→ Yamabe equation
d = dc : Integer Yamabe equation↔ mean field
dc > d > 2 : Fractional Yamabe equation

Results in 3d
Critical order parameter profiles
Scaling dimensions:

∆Ising
φ = 0.518142(8), ∆XY

φ = 0.5192(2),

∆percolation
φ = 0.4784(2)

Ising and XY: two-point correlations satisfy the conjecture
Up next:
Correlation functions for different fields
Fractional epsilon expansion
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Thank you!
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