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A purposeful reminder on RG basics

O(n) model:

Perturbation theory for the effective scale-dependent parameters  g, m2, ...
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Figure 1.1: The 1-loop �-function (1.22).

The renormalization group asks: How does the renormalized gr change under a change of L. This answer
is obtained by putting together our above equations:
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This function, plotted on figure 1.1, has the following properties:
(i) a Gaussian (non-interacting) fixed point with �(0) = 0.

(i) a non-trivial fixed point with �(g⇤) = 0 for

g⇤ =

2⇡2

9

✏ . (1.23)gstar

(ii) for 0 < gr < g⇤ the function is positive, thus gr increases.

(ii) for gr > g⇤ the function is negative, thus gr decreases.
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The fixed point with gr = 0 is unstable, i.e. a small value of gr grows. On the other hand, the fixed point
at g⇤ is attractive from both sides. Thus it governs the physics at large scales. We also call it the IR fixed
point. Last, but no least, it is important to note that the non-trivial fixed point g⇤ is of order ✏. Thus it is
accessible perturbatively (in a perturbation expansion in ✏). This is crucial, as it makes this ✏ expansion
such a powerful tool. What we cannot really show here is that properties of the theory calculated at this
fixed point are universal, i.e. do not depend on microscopic details of the theory. A hint comes from the
observation that for ✏ > 0, the limit of a ! 0 could be taken in the above calculations from the very
beginning. This does not work in the critical dimension d = 4, in which the diagram (1.14) becomes
⇠ ln(L/a), thus depends on both the UV (small distance) and IR (large distance) cutoffs.

A related question, or concern, one may have is that the expression (1.16) does not diverge in the limit
of ✏ ! 0: Indeed

lim

✏!0

1

✏
(L✏ � a✏) = ln

✓
L

a

◆
, (1.24)

and this is finite. So where is the divergence? Scale invariance appears in the thermodynamic limit, i.e.
when L/a ! 1, making the r.h.s. diverge. Physically, an infinite number of degrees of freedom work
together collectively. Technically, this is reflected in the RG program, as the convergence to the fixed point
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β ϵ = 4 − d

𝒮[ ⃗ϕ ] = ∫x

1
2

[∇ ⃗ϕ (x)]2 +
m2

2
⃗ϕ (x)2 +

g
4

[ ⃗ϕ (x)2]2

(1) turns this into an   -expansion 

(1)

ϵ
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The RG trajectory in d = 3

• the theory on the trajectory is not conformally invariant. 
• the trajectory moves through the forbidden region.   

g = g*

g ≈ 0.2g*



Asymptotic Series: A toy example

ℐ(g) := ∫
∞

−∞

dx

2π
e−x2/2−gx4 =

∞

∑
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(4n)!
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24n
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Asymptotic behaviour can be obtained from saddle point

Borel transform

ℐB(t) :=
∞

∑
n=0

an(−t)n

n!

ℐ(g)
(n!)2

ℜ(t)

ℑ(t)ℐB(t)

Inverse Borel transform: ℐ(g) = ∫
∞

0
dt e−tℐB(tg) . Field theory: works the same:


 saddle point is a function      ϕ(x)



ℜ(t)

ℑ(t)ℐB(t)

???

∞ gc

ℐB(t)

• Padé-resummation (“Padé-Borel”): unreliable due to spurious poles on the axis 


• conformal transformation maps      to     , s.t. integral is inside range of convergence. 
Standard method, works well.  

• estimate     self-consistently (Kompaniets-Wiese 2019)


• Kompaniets-Panzer 2017: allow for several free parameters, and look for least 
sensitive point. Currently best method for error bars, computationally expensive.

gc

• Meijer-G resummation: fit          with hypergeometric function, yields a Meijer-G function 

for inverse Borel-transform. May have spurious poles on the axis.  
H. Mera, T. G. Pedersen and B.K. Nikolic, Phys. Rev. D 97 (2018) 105027.

Inverse Borel transform: ℐ(g) = ∫
∞

0
dt e−tℐB(tg) .

Conclusion: If well done, resummation quality almost as for “normal” series. 

Phys. Rev. E 101 (2019) 012104, arXiv:1908.07502

Phys. Rev. D 96 (2017) 036016, arXiv:1705.06483.



An example from A. Aharony’s talk:

Padé
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df n SC KP17 simulation
LERW −2 1.6243(10) 1.623(6) 1.62400(5) [45]
SAW 0 1.7027(10) 1.7025(7) 1.701847(2) [24]
Ising 1 1.7353(10) 1.7352(6) 1.7349(65) [46]
XY 2 1.7644(10) 1.7642(3) 1.7655(20) [46, 47]

FIG. 2. Fractal dimensions of lines in dimension d = 3. Two
expansions are shown: Direct (in red) and expansion for 1/df (blue).
The table compares our values to results from the literature.

(ii) self-avoiding polymers: n = 0. Here df ≡ 1/ν.
(iii) Ising model: n = 1.
(iv) XY model: n = 2.
Simulations for the Ising and XY models are performed

on the lattice [49,50] by considering the high-temperature
expansion, which allows the authors to distinguish between
propagator lines and loops, similarly to our discussion of the
perturbative expansion (32).

In all cases, the agreement of our RG results with simula-
tions in d = 3 is excellent, firmly establishing that the appro-
priate operator was identified. In dimension d = 2 (shown on
Fig. 3), different resummation procedures (see below) yield
different results, showing that extrapolations down to d = 2
are difficult. This can be understood from the nonanalytic
behavior of the exact result close to n = ±2. It is even more
pronounced for the exponent ν (see Fig. 11), which diverges
with a square-root singularity at n = 2. We will come back to
this issue in Sec. VI.

The remainder of this article is organized as follows: In
Sec. II we give the explicit result for the new RG function γẼ .

df n SC KP17 CFT
LERW −2 1.244(6) 1.188(55) 5/4 = 1.25

SAW 0 1.354(5) 1.350(8) 4/3 ≃ 1.333

Ising 1 1.416(1) 1.413(7) 11/8 = 1.375

XY 2 1.482(1) 1.480(4) 3/2 = 1.5

FIG. 3. The fractal dimension of lines in dimension d = 2, as
extracted from field theory (colored), and compared to exact results
(black dashed line). The different curves are from resummation of
df (blue), d−1

f (red), d2
f (cyan), and d−2

f (green). The table compares
the result of our different schemes, with the direct expansion of df

used for SC. Note that the error given is the error of the expansion
in one scheme. Comparing different expansion schemes, we estimate
the overall error to be of order 0.05.

Section III introduces a self-consistent resummation proce-
dure as a (fast) alternative to the elaborate scheme of Ref. [10].
In the next two sections we discuss in more detail the dimen-
sion of curves and their relation to the crossover exponent
(Sec. IV) and loop-erased random walks (Sec. V). Section VI
tests the ϵ expansion against analytic results in dimension
d = 2, allowing us to identify the most suitable variables for
the resummation procedure. This allows us to give in Sec. VII
improved predictions for all relevant exponents in dimension
d = 3. Section VIII makes the connection to known results
from the large-n expansion, which serves as a nontrivial test
of our results. We conclude in Sec. IX.

II. THE RG FUNCTION γẼ

The RG function γẼ to 6-loop order, evaluated at the fixed
point, reads (with d = 4 − ϵ)

γẼ = − 2ϵ

n + 8
+ ϵ2

[
(n2 − 4n − 36)

(n + 8)3

]
+ ϵ3

[
24(5n + 22)ζ3

(n + 8)4
+ n4 + 45n3 + 190n2 − 144n − 1568

2(n + 8)5

]

+ ϵ4
[

− 80(2n2 + 55n + 186)ζ5

(n + 8)5
+ 18(5n + 22)ζ4

(n + 8)4
− (n5 + 16n4 + 808n3 + 3624n2 − 6240n − 30528)ζ3

2(n + 8)6

+ 2n6 + 135n5 + 3672n4 + 26568n3 + 87528n2 + 123264n + 6016
8(n + 8)7

]

+ ϵ5
[

882(14n2 + 189n + 526)ζ7

(n + 8)6
− 100(2n2 + 55n + 186)ζ6

(n + 8)5
− 4(5n4 + 6n3 + 3444n2 + 26824n + 46752)ζ 2

3

(n + 8)7

012104-4

analytic result in d=2

singularity

Resummation may be problematic due to analytic structure 

d = 3 d = 2



Redundant operators and rearrangement of states at the 
RG fixed point

δS[ϕ]
δϕ(x)

= − ∇2ϕ(x) + gϕ3(x) = 0

the path integral 𝒵 = ∏
x

dϕ(x) e−𝒮[ϕ]

is invariant under ϕ(x) → ϕ(x) + δϕ(x)

the additional term in       must vanish𝒵

more general transformations ϕ(x) → ϕ(x) + f(ϕ)δϕ(x)

   (Jacobian vanishes in dimensional regularisation, and cancels in expectations.) 

f(ϕ)
δS[ϕ]
δϕ(x)

= f(ϕ)[ − ∇2ϕ(x) + gϕ3(x)] = 0

rearrangement of states.⟹

Redundant operators (F. Wegner J. Physics C7 (1974) 2098)



Models with long-ranged elasticity, and spectrum rearrangement

𝒮[ϕ] = ∫x

cLR

2
ϕ(x)( − ∇2)α

2ϕ(x) +
cSR

2
[∇ϕ(x)]2 +

m2

2
ϕ(x)2 +

g
4

ϕ(x)4

long-ranged elasticity Δσ =
d − α

2

∂ℓcLR = 0
∂ℓcSR = α − 2 + η(g)

RG-flow

short-ranged elasticity renormalises

∂ℓcSR < 0
∂ℓcSR > 0 SR

LR

d=3

Spectrum Rearrangement
⟹

different redundant  
operator

upon reaching Ising

Expansion around Ising: Behan, Rastelli, Rychkov, Zan, arXiv:1703.05325

(2-loop)



Experimental Realisation of LR elasticity
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VII. THE SIMPLEST CONFORMALLY INVARIANT 1D
SYSTEM

The idea came to me from the Calogero-Sutherland model
[1]. Denote the position on the circle as

z
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The Calogero-Sutherland model is a QM model with Hamil-
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So can we do it classically? Let’s just use the second term.
At short distances, it is proportional to 1/(✓

i

� ✓

j

)

2, known
as kernel for long-ranged elasticity [2], Eq. (18). On the other
hand the latter is the solution of the Laplace equation in the
bulk, restricted to the boundary. So let us define a Gaussian
free �(z) field in the bulk, with action
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Define a field living on the boundary, chosen here to be the
circle (which b.t.w. is the conformal map of the half-plane
problem!)
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By construction, it is Gaussian, thus satisfies Wick’s theorem,
which allows us to calculate all its correlation functions. We
claim that
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is a primary field with dimension �O = 1. (The 1/i is there
to compensate for the i from the inner derivative.) To prove
this, we need to check that its correlation function is of the
form (13):
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Thus

O(✓) = primary with �O = 1. (25)

VIII. TRANSFORMATION OF DERIVATIVES OF
PRIMARY OPERATORS

Taking a derivative of the first line of Eq. (13) yields
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Thus only for � = 0 the transformation law of the derivative
is identical to the transformation law of the operator itself,
with an adjusted � ! � + 1. This applies to the Gaussian
free field, s.t. @� is primary.
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FIG. 3. The wetting geometry.
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Applications

Field Theory for Charge Density Waves (CDW)
• semi-conductor devices may have an instability for a periodic modulation of the
charge density �! CDW
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propagator line in the Ising modeln = 1

n = 2

n =�2 A(0) = ˜A(0)

2

propagator line in the XY model

3

-2 2 4 6 8
n

1.55

df

d
f

n SC KP17 simulation
LERW �2 1.6243(10) 1.623(6) 1.62400(5) [45]
SAW 0 1.7027(10) 1.7025(7) 1.701847(2) [24]
Ising 1 1.7353(10) 1.7352(6) 1.7349(65) [46]
XY 2 1.7644(10) 1.7642(3) 1.7655(20) [46, 47]

FIG. 2. Fractal dimensions of lines in dimension d = 3. Two expan-
sions are shown: direct (in red) and expansion for 1/d

f

(blue). The
table compares our values to results from the literature.

All contributions up to 1-loop order are drawn: On the
first line is the free-theory contribution. The insertion ofR
y

P
i

1
2�

2
i

(y) gives the length (in time) of the free propagator.
On the second line are the first type of 1-loop contributions,
with the insertion of

R
y

P
i

1
2�

2
i

(y) twice in an outer line, once
in a loop. On the third and fourth line are the remaining 1-loop
contributions, with the red loop counting a factor of n. This
stems from our graphical convention to note the (~�2)2-vertex
as

�
~�2
�2

= ; (33)

contracting the two right-most lines leads to a free summationP
i

, i.e. a factor of n indicated in red above.
These perturbative corrections are in one-to-one correspon-

dence to diagrams in the high-temperature lattice expansion,
where in appropriate units g is set to 1. Both expansions yield
the total length of all lines, be it propagator or loop.

As the insertion of 1
2

R
y

P
i

�2
i

(y) can be generated by de-
riving the action (7) w.r.t. the mass, the fractal dimension of
all lines is related to ⌫ as in Eq. (21) via

dtotf =
1

⌫
= 2 + �1(g⇤)� ⌘ . (34)

We are now in a position to evaluate the fractal dimension of
the blue line, also termed propagator line or backbone, i.e. ex-
cluding loops: This is achieved by inserting an operator pro-
portional to Ẽ

ij

. To be specific, we consider the insertion of

Ẽ :=
1

2

Z

y

�2
1(y)� �2

2(y) . (35)

This is, with a normalization convenient for our calculations,
the integrated form of Ẽ11 � Ẽ22 defined in Eq. (29). When
evaluated in a line with index “1” (the correlation function of
h�1�1i), i.e. in the blue line in Eq. (32) which is connected
to the two external points, the result is the same as for the
insertion (31). On the other hand, when inserted into a loop
(drawn in red), where the sum over indices is unrestricted, it
vanishes.

Let us some background information: In the O(n)-model,
the number of components n is a priori a positive integer, but
can analytically be continued to arbitrary n. Two non-positive
values of n merit special attention: n = 0 corresponds to
self-avoiding polymers, as shown by De Gennes [42]. Here
the propagator line (in blue) is interpreted as the self-avoiding
polymer, and the red loops are absent. Focusing on lattice
configurations with one self-intersection, the choice of g = 1
cancels the free-theory result, giving total weight 0 for self-
intersecting paths – as expected. The second case of interest
is n = �2, and corresponds to loop-erased random walks
[43, 44]. Here all perturbative terms ⇠ g cancel, as the prop-
agator of a loop-erased random walk is identical to that of a
random walk. To our advantage, we can equivalently use the
cancelation of the first two lines (as for self-avoiding poly-
mers). Then the random walk is redrawn in a way making vis-
ible the loop-erased random walk (in blue) and the erased loop
(in red), allowing to extract the fractal dimension of the loop-
erased random walk via the operator Ẽ as given in Eq. (35).
For details, we refer to Refs. [43, 44].

The operator Ẽ can be renormalized multiplicatively, by
considering the insertion

�S = �
ZẼ
2

Z

y

�2
0,1(y)� �2

0,2(y) , (36)

where �0,i denotes the i-th component of the bare field �0. As
a result, the fractal dimension of the propagator (or backbone)
line is given by

df = 2 + �Ẽ(g⇤)� ⌘ , (37)

�Ẽ := µ
@

@µ
ln(ZẼ) = �(g)

@

@g
ln(ZẼ(g)) . (38)

The explicit result to 6-loop order is given below in Eq. (41).
In the literature [11, 43, 48–50] one also finds the ratio

�c(n) := ⌫df ⌘ df
dtotf

⌘ 2 + �Ẽ(g⇤)� ⌘

2 + �1(g⇤)� ⌘
. (39)

It is known as crossover exponent, since it describes the
crossover from a broken symmetry O(k), k < n, to O(n).
We will review this in section IV below. Since for n = 0
all loops are absent, the two fractal dimensions coincide. For
positive n, the fractal formed by backbone plus loops is larger
than the backbone, and we expect dtotf > df . Translated to
�c(n) this implies

�c(0) = 1 , �0
c(n) > 0 . (40)

The last relation, which is stronger than dtotf > df is expected
since the derivative w.r.t. n counts loops which are added to
the fractal when increasing n, which should be positive.
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Loop-erased random walks from field theory
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A loop is a path ! = (!1, . . . , !n�1, !n = !1) where
the first and last points are identical, and all other vertices
distinct, so it cannot be decomposed into smaller loops.
Loops obtained from each other via cyclic permutations are
considered identical.

A collection of disjoint loops is a set L =

{C1, C2, . . .} of mutually non-intersecting loops. We
denote the set of all such collections by L.

To formulate the theorem, fix a self-avoiding31 path
�. Define the set L� to consist of all collections of
disjoint loops in which no loop intersects �. Then Viennot’s
theorem can be written as (|L| being the number of loops)

A(�) := q(�)

X

L2L
�

(�1)

|L| Y

C2L

q(C) = P(�) ⇥ Z, (803)

P(�) =

X

!:L(!)=�

q(!), (804)

Z =

X

L2L
(�1)

|L| Y

C2L

q(C). (805)

On the l.h.s. one sums over the ensemble of collections
of loops which do not intersect �, giving each collection
a weight (�1)

|L| Q
C2L q(C). The r.h.s. contains two

factors. The first, P(�), is the weight to find the LERW
path �, our object of interest. The second is the partition
function Z . Conditioning the walk to stop at x, this relation
can be read as P(�) = A(�)/Z .

To prove Eq. (803) consider a pair {!, L} constructed
as follows: Take a path ! such that L(!) = � and an
arbitrary collection L of disjoint loops. Our goal is to
construct another pair {!0, L0} by transferring a loop from
L to ! or vice versa, depending on where the loop originally
was. For example,

+

!

L

!0

L0
= 0. (806)

In the first drawing, the left loop is part of !, whereas in
the second one it is part of L0. These terms cancel, as
(�1)

|L|
= �(�1)

|L0|, and all other factors are identical.
After each such pair is canceled, we are left with the terms
in which it is impossible to transfer a loop from ! to L or
vice versa. These are exactly the terms in the l.h.s of Eq.
(803).

For this procedure to work we need to ensure that
we cannot obtain the same pair {!0, L0} starting form two
different pairs {!, L}. In order to achieve this, we use the
following prescription. Start walking along !, until

(i) we reach a vertex !i that belongs to some C = (!i =

c1, c2 . . . , cm = !i) 2 L, or
31Warning: a self-avoiding path is a cominatorial object. The loop-erased
random walk is one possible distribution on the set of self-avoiding paths.
It should not be confused with the self-avoiding walk or self-avoiding
polymer, a distinct distribution on the same set of self-avoiding paths.

(ii) we reach a vertex !i that does not belong to any C,
but that we have already seen before, i.e., !j = !i for
j < i.

In the first case, we transfer C to !, i.e.,

!0
= (!1, . . . , !i, c2, . . . , cm�1, !i, . . . , !n),

L0
= L \ {C}. (807)

In the second case, we apply the one-loop erasure to !, and
transfer the erased loop to L,

!0
= (!1, . . . , !j , !i+1, . . . , !n),

L0
= L [ {(!j , !j+1, . . . , !i = !j)}. (808)

Note that disjointness of the loop collections is preserved
under the transfer, and that the loop erasure of !0 remains
�. This completes the proof. For examples see [280].

A lattice action with two complex fermions and one
complex boson. Our goal is to write a lattice action which
generates A(�), the l.h.s. of Eq. (803). This can be achieved
with an action based on one pair of complex conjugate
fermionic fields. While this theory sums over all paths �,
yielding back the random-walk propagator, it contains no
information on the erasure. In order to answer whether
the resulting loop-erased path passes through a given point
y it is necessary to use more fields. The simplest such
setting consists of two pairs of complex conjugate fermionic
fields (�1, �⇤

1), and (�2, �⇤
2), as well as a pair of complex

conjugate bosonic fields (�3, �⇤
3). When appearing in a

loop, the latter cancels one of the fermions.
We define the action as

�⇤
(y)�(x) :=

3
X

i=1

�⇤
i (y)�i(x) , (809)

e�S
=

Y

x

e

�r
x

�⇤(x)�(x)
h

1 +

X

y

�xy�⇤
(y)�(x)

i

. (810)

The path integral is defined by integrating over the nf = 2

families of fermionic fields, (�⇤
i , �i), i = 1, 2, and nb = 1

family of bosonic fields, i = 3. For �xy = 0, we obtain

Z0 =

Y

x

rnf�nb
x =

Y

x

rx. (811)

Define (normalized) expectation values hO(�⇤, �)i w.r.t.
the action (810) and the (normalized) partition function Z
as

hO(�⇤, �)i :=

1

Z0

Z

D[�]D[�⇤
] e

�S O(�⇤, �), (812)

Z := h1i . (813)

Calculating Z by expansion in �xy is best done graphically:
Due to the square bracket in Eq. (810), at each x one can
place exactly one outgoing arrow to one of the neighbors
y, with color i, or no arrow. Summing over all possible
colorings and all graphs, we obtain Z as given in Eq. (805).

Multiply with
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For this procedure to work we need to ensure that
we cannot obtain the same pair {!0, L0} starting form two
different pairs {!, L}. In order to achieve this, we use the
following prescription. Start walking along !, until

(i) we reach a vertex !i that belongs to some C = (!i =

c1, c2 . . . , cm = !i) 2 L, or
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(ii) we reach a vertex !i that does not belong to any C,
but that we have already seen before, i.e., !j = !i for
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In the first case, we transfer C to !, i.e.,
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In the second case, we apply the one-loop erasure to !, and
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Note that disjointness of the loop collections is preserved
under the transfer, and that the loop erasure of !0 remains
�. This completes the proof. For examples see [280].

A lattice action with two complex fermions and one
complex boson. Our goal is to write a lattice action which
generates A(�), the l.h.s. of Eq. (803). This can be achieved
with an action based on one pair of complex conjugate
fermionic fields. While this theory sums over all paths �,
yielding back the random-walk propagator, it contains no
information on the erasure. In order to answer whether
the resulting loop-erased path passes through a given point
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For this procedure to work we need to ensure that
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The path integral is defined by integrating over the nf = 2

families of fermionic fields, (�⇤
i , �i), i = 1, 2, and nb = 1

family of bosonic fields, i = 3. For �xy = 0, we obtain

Z0 =

Y
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rnf�nb
x =
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rx. (811)

Define (normalized) expectation values hO(�⇤, �)i w.r.t.
the action (810) and the (normalized) partition function Z
as

hO(�⇤, �)i :=

1

Z0

Z

D[�]D[�⇤
] e

�S O(�⇤, �), (812)

Z := h1i . (813)

Calculating Z by expansion in �xy is best done graphically:
Due to the square bracket in Eq. (810), at each x one can
place exactly one outgoing arrow to one of the neighbors
y, with color i, or no arrow. Summing over all possible
colorings and all graphs, we obtain Z as given in Eq. (805).
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A loop is a path ! = (!1, . . . , !n�1, !n = !1) where
the first and last points are identical, and all other vertices
distinct, so it cannot be decomposed into smaller loops.
Loops obtained from each other via cyclic permutations are
considered identical.

A collection of disjoint loops is a set L =

{C1, C2, . . .} of mutually non-intersecting loops. We
denote the set of all such collections by L.

To formulate the theorem, fix a self-avoiding31 path
�. Define the set L� to consist of all collections of
disjoint loops in which no loop intersects �. Then Viennot’s
theorem can be written as (|L| being the number of loops)

A(�) := q(�)

X

L2L
�

(�1)

|L| Y

C2L

q(C) = P(�) ⇥ Z, (803)

P(�) =
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q(!), (804)

Z =
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q(C). (805)

On the l.h.s. one sums over the ensemble of collections
of loops which do not intersect �, giving each collection
a weight (�1)

|L| Q
C2L q(C). The r.h.s. contains two

factors. The first, P(�), is the weight to find the LERW
path �, our object of interest. The second is the partition
function Z . Conditioning the walk to stop at x, this relation
can be read as P(�) = A(�)/Z .

To prove Eq. (803) consider a pair {!, L} constructed
as follows: Take a path ! such that L(!) = � and an
arbitrary collection L of disjoint loops. Our goal is to
construct another pair {!0, L0} by transferring a loop from
L to ! or vice versa, depending on where the loop originally
was. For example,

+

!

L

!0

L0
= 0. (806)

In the first drawing, the left loop is part of !, whereas in
the second one it is part of L0. These terms cancel, as
(�1)

|L|
= �(�1)

|L0|, and all other factors are identical.
After each such pair is canceled, we are left with the terms
in which it is impossible to transfer a loop from ! to L or
vice versa. These are exactly the terms in the l.h.s of Eq.
(803).

For this procedure to work we need to ensure that
we cannot obtain the same pair {!0, L0} starting form two
different pairs {!, L}. In order to achieve this, we use the
following prescription. Start walking along !, until

(i) we reach a vertex !i that belongs to some C = (!i =

c1, c2 . . . , cm = !i) 2 L, or
31Warning: a self-avoiding path is a cominatorial object. The loop-erased
random walk is one possible distribution on the set of self-avoiding paths.
It should not be confused with the self-avoiding walk or self-avoiding
polymer, a distinct distribution on the same set of self-avoiding paths.

(ii) we reach a vertex !i that does not belong to any C,
but that we have already seen before, i.e., !j = !i for
j < i.

In the first case, we transfer C to !, i.e.,

!0
= (!1, . . . , !i, c2, . . . , cm�1, !i, . . . , !n),

L0
= L \ {C}. (807)

In the second case, we apply the one-loop erasure to !, and
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= L [ {(!j , !j+1, . . . , !i = !j)}. (808)

Note that disjointness of the loop collections is preserved
under the transfer, and that the loop erasure of !0 remains
�. This completes the proof. For examples see [280].

A lattice action with two complex fermions and one
complex boson. Our goal is to write a lattice action which
generates A(�), the l.h.s. of Eq. (803). This can be achieved
with an action based on one pair of complex conjugate
fermionic fields. While this theory sums over all paths �,
yielding back the random-walk propagator, it contains no
information on the erasure. In order to answer whether
the resulting loop-erased path passes through a given point
y it is necessary to use more fields. The simplest such
setting consists of two pairs of complex conjugate fermionic
fields (�1, �⇤

1), and (�2, �⇤
2), as well as a pair of complex

conjugate bosonic fields (�3, �⇤
3). When appearing in a

loop, the latter cancels one of the fermions.
We define the action as
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The path integral is defined by integrating over the nf = 2

families of fermionic fields, (�⇤
i , �i), i = 1, 2, and nb = 1

family of bosonic fields, i = 3. For �xy = 0, we obtain
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Define (normalized) expectation values hO(�⇤, �)i w.r.t.
the action (810) and the (normalized) partition function Z
as

hO(�⇤, �)i :=
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Calculating Z by expansion in �xy is best done graphically:
Due to the square bracket in Eq. (810), at each x one can
place exactly one outgoing arrow to one of the neighbors
y, with color i, or no arrow. Summing over all possible
colorings and all graphs, we obtain Z as given in Eq. (805).
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factors. The first, P(�), is the weight to find the LERW
path �, our object of interest. The second is the partition
function Z . Conditioning the walk to stop at x, this relation
can be read as P(�) = A(�)/Z .

To prove Eq. (803) consider a pair {!, L} constructed
as follows: Take a path ! such that L(!) = � and an
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was. For example,
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In the first drawing, the left loop is part of !, whereas in
the second one it is part of L0. These terms cancel, as
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|L0|, and all other factors are identical.
After each such pair is canceled, we are left with the terms
in which it is impossible to transfer a loop from ! to L or
vice versa. These are exactly the terms in the l.h.s of Eq.
(803).

For this procedure to work we need to ensure that
we cannot obtain the same pair {!0, L0} starting form two
different pairs {!, L}. In order to achieve this, we use the
following prescription. Start walking along !, until

(i) we reach a vertex !i that belongs to some C = (!i =
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random walk is one possible distribution on the set of self-avoiding paths.
It should not be confused with the self-avoiding walk or self-avoiding
polymer, a distinct distribution on the same set of self-avoiding paths.

(ii) we reach a vertex !i that does not belong to any C,
but that we have already seen before, i.e., !j = !i for
j < i.

In the first case, we transfer C to !, i.e.,
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= (!1, . . . , !i, c2, . . . , cm�1, !i, . . . , !n),

L0
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In the second case, we apply the one-loop erasure to !, and
transfer the erased loop to L,

!0
= (!1, . . . , !j , !i+1, . . . , !n),

L0
= L [ {(!j , !j+1, . . . , !i = !j)}. (808)

Note that disjointness of the loop collections is preserved
under the transfer, and that the loop erasure of !0 remains
�. This completes the proof. For examples see [280].

A lattice action with two complex fermions and one
complex boson. Our goal is to write a lattice action which
generates A(�), the l.h.s. of Eq. (803). This can be achieved
with an action based on one pair of complex conjugate
fermionic fields. While this theory sums over all paths �,
yielding back the random-walk propagator, it contains no
information on the erasure. In order to answer whether
the resulting loop-erased path passes through a given point
y it is necessary to use more fields. The simplest such
setting consists of two pairs of complex conjugate fermionic
fields (�1, �⇤

1), and (�2, �⇤
2), as well as a pair of complex

conjugate bosonic fields (�3, �⇤
3). When appearing in a

loop, the latter cancels one of the fermions.
We define the action as
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The path integral is defined by integrating over the nf = 2

families of fermionic fields, (�⇤
i , �i), i = 1, 2, and nb = 1

family of bosonic fields, i = 3. For �xy = 0, we obtain
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Define (normalized) expectation values hO(�⇤, �)i w.r.t.
the action (810) and the (normalized) partition function Z
as

hO(�⇤, �)i :=
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Z := h1i . (813)

Calculating Z by expansion in �xy is best done graphically:
Due to the square bracket in Eq. (810), at each x one can
place exactly one outgoing arrow to one of the neighbors
y, with color i, or no arrow. Summing over all possible
colorings and all graphs, we obtain Z as given in Eq. (805).
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A loop is a path ! = (!1, . . . , !n�1, !n = !1) where
the first and last points are identical, and all other vertices
distinct, so it cannot be decomposed into smaller loops.
Loops obtained from each other via cyclic permutations are
considered identical.

A collection of disjoint loops is a set L =

{C1, C2, . . .} of mutually non-intersecting loops. We
denote the set of all such collections by L.

To formulate the theorem, fix a self-avoiding31 path
�. Define the set L� to consist of all collections of
disjoint loops in which no loop intersects �. Then Viennot’s
theorem can be written as (|L| being the number of loops)

A(�) := q(�)
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On the l.h.s. one sums over the ensemble of collections
of loops which do not intersect �, giving each collection
a weight (�1)

|L| Q
C2L q(C). The r.h.s. contains two

factors. The first, P(�), is the weight to find the LERW
path �, our object of interest. The second is the partition
function Z . Conditioning the walk to stop at x, this relation
can be read as P(�) = A(�)/Z .

To prove Eq. (803) consider a pair {!, L} constructed
as follows: Take a path ! such that L(!) = � and an
arbitrary collection L of disjoint loops. Our goal is to
construct another pair {!0, L0} by transferring a loop from
L to ! or vice versa, depending on where the loop originally
was. For example,

+

!

L

!0

L0
= 0. (806)

In the first drawing, the left loop is part of !, whereas in
the second one it is part of L0. These terms cancel, as
(�1)

|L|
= �(�1)

|L0|, and all other factors are identical.
After each such pair is canceled, we are left with the terms
in which it is impossible to transfer a loop from ! to L or
vice versa. These are exactly the terms in the l.h.s of Eq.
(803).

For this procedure to work we need to ensure that
we cannot obtain the same pair {!0, L0} starting form two
different pairs {!, L}. In order to achieve this, we use the
following prescription. Start walking along !, until

(i) we reach a vertex !i that belongs to some C = (!i =

c1, c2 . . . , cm = !i) 2 L, or
31Warning: a self-avoiding path is a cominatorial object. The loop-erased
random walk is one possible distribution on the set of self-avoiding paths.
It should not be confused with the self-avoiding walk or self-avoiding
polymer, a distinct distribution on the same set of self-avoiding paths.

(ii) we reach a vertex !i that does not belong to any C,
but that we have already seen before, i.e., !j = !i for
j < i.

In the first case, we transfer C to !, i.e.,

!0
= (!1, . . . , !i, c2, . . . , cm�1, !i, . . . , !n),

L0
= L \ {C}. (807)

In the second case, we apply the one-loop erasure to !, and
transfer the erased loop to L,

!0
= (!1, . . . , !j , !i+1, . . . , !n),

L0
= L [ {(!j , !j+1, . . . , !i = !j)}. (808)

Note that disjointness of the loop collections is preserved
under the transfer, and that the loop erasure of !0 remains
�. This completes the proof. For examples see [280].

A lattice action with two complex fermions and one
complex boson. Our goal is to write a lattice action which
generates A(�), the l.h.s. of Eq. (803). This can be achieved
with an action based on one pair of complex conjugate
fermionic fields. While this theory sums over all paths �,
yielding back the random-walk propagator, it contains no
information on the erasure. In order to answer whether
the resulting loop-erased path passes through a given point
y it is necessary to use more fields. The simplest such
setting consists of two pairs of complex conjugate fermionic
fields (�1, �⇤

1), and (�2, �⇤
2), as well as a pair of complex

conjugate bosonic fields (�3, �⇤
3). When appearing in a

loop, the latter cancels one of the fermions.
We define the action as
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The path integral is defined by integrating over the nf = 2

families of fermionic fields, (�⇤
i , �i), i = 1, 2, and nb = 1

family of bosonic fields, i = 3. For �xy = 0, we obtain

Z0 =
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x =
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Define (normalized) expectation values hO(�⇤, �)i w.r.t.
the action (810) and the (normalized) partition function Z
as

hO(�⇤, �)i :=

1

Z0

Z

D[�]D[�⇤
] e

�S O(�⇤, �), (812)

Z := h1i . (813)

Calculating Z by expansion in �xy is best done graphically:
Due to the square bracket in Eq. (810), at each x one can
place exactly one outgoing arrow to one of the neighbors
y, with color i, or no arrow. Summing over all possible
colorings and all graphs, we obtain Z as given in Eq. (805).
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in which it is impossible to transfer a loop from ! to L or
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(803).

For this procedure to work we need to ensure that
we cannot obtain the same pair {!0, L0} starting form two
different pairs {!, L}. In order to achieve this, we use the
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(i) we reach a vertex !i that belongs to some C = (!i =
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Note that disjointness of the loop collections is preserved
under the transfer, and that the loop erasure of !0 remains
�. This completes the proof. For examples see [280].

A lattice action with two complex fermions and one
complex boson. Our goal is to write a lattice action which
generates A(�), the l.h.s. of Eq. (803). This can be achieved
with an action based on one pair of complex conjugate
fermionic fields. While this theory sums over all paths �,
yielding back the random-walk propagator, it contains no
information on the erasure. In order to answer whether
the resulting loop-erased path passes through a given point
y it is necessary to use more fields. The simplest such
setting consists of two pairs of complex conjugate fermionic
fields (�1, �⇤
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Figure 68. An example of a diagram that contributes to U . Our
coloring conventions are blue for (�

1
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1

), green for (�
2
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2

), and red
for (�

3
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3

).

In order to assess whether a point b belongs to a loop-
erased random walk from a to c after erasure, we fix the
three vertices a, b and c and consider the observable

U(a, b, c) = �cr
2
brc h�2(c)�

⇤
2(b)�1(b)�

⇤
1(a)i , (814)

defined in Eq. (812).
The graphs that contribute consist of a self-avoiding

path � and a collection L of disjoint self-avoiding colored
loops such that (see Figure 68):

(i) � is a path from a to c passing through b. The edges of
� between a and b have color 1, and the edges between
b and c have color 2.

(ii) Fix C 2 L. If the color of C is 2 then it cannot
intersect �. If its color is 1 or 3, it can only intersect �
at the (final) point c.

In the latter case, the contribution to U(a, b, c) is

(�1)

#fermionic loopsq(�)
Y

C2L

q(C). (815)

We now sum over all possible colorings of the loops. Since
loops that intersect c may have either color 1 or 3, one
fermionic and one bosonic, they cancel, leaving only graphs
in which loops do not intersect �. The other loops, as
before, give a factor of �1. We have therefore established
that

U(a, b, c) =

X

�2SA(a,b,c)

q(�)
X

L2L
�

(�1)

|L| Y

C2L

q(C),

(816)

where the sum is over all self-avoiding paths from a to c
passing through b, and denoted SA(a, b, c). In view of Eq.
(803) this can be written as

U(a, b, c) =

X

�2SA(a,b,c)

A(�). (817)

It implies that our object of interest, the probability that a
LERW starting at a and ending in c passes through b is

X

�2SA(a,b,c)

P(�) =

U(a, b, c)

Z . (818)

Continuous limit of the lattice action. Let us rewrite the
action S explicitly,

S =

X

x

h

rx�
⇤
(x)�(x)�ln

⇣

1+

X

y

�xy�
⇤
(y)�(x)

⌘i

.(819)

The leading term in S reads
X

x

h

rx�
⇤
(x)�(x) �

X

y

�xy�
⇤
(y)�(x)

i

(820)

=

X

x

�⇤
(x)[m2

x � r2
� ]�(x)

m2
x = rx�

X

y

�yx, r2
��(x) =

X

y

�yx[�(y)��(x)].

The subleading term in S is
1

2

X

x

h

X

y

�xy�
⇤
(y)�(x)

i2
=

g

2

X

x

h

�⇤
(x)�(x)

i2
+ ...

g :=

h

X

y

�xy

i2
, (821)

where the dropped terms contain at least one Lattice
Laplacian r2

� . Standard arguments [2] show that the latter
are irrelevant in a RG analysis, as are higher-order terms in
the expansion of the ln in Eq. (819). Taking the continuum
limit, we arrive at the theory defined in Eq. (797), setting
there u, ũ ! 0, and identifying (

¯ i, i), i = 1, 2 there with
(�⇤

i ,�i) here, and (

˜�,�) there with (�⇤
3,�3) here.

Perturbative results. Using �4-theory at n = �2 allows
us to obtain an extremely precise estimate of the fractal
dimension z, which can be compared to an even more
precise Monte Carlo simulation,

z = 1.6243(10) (6 loops) [126], (822)
z = 1.62400(5) (Monte Carlo) [628]. (823)

The agreement is quite impressive.

8.8. Other models equivalent to loop-erased random
walks, and CDWs

There is a plethora of further relations relating CDWs or
LERWs to other critical systems, see Fig. 69. Let us
discuss at least some of them: While LERWs are non-
Markovian RWs, their traces are equivalent to those of the
Laplacian Random Walk [640, 636], which is Markovian, if
one considers the whole trace as the variable of state. It is
constructed on the lattice by solving the Laplace equation
r2

�(x) = 0 with boundary conditions �(x) = 0 on
the already constructed curve, while �(x) = 1 at the
destination of the walk, either a chosen point, or infinity.
The walk then advances from its tip x to a neighbouring
point y, with probability proportional to �(y).

In a variant of this model growth is allowed not only
from the tip, but from any point on the already constructed
object. This is known as the dielectric breakdown
model [641], the simplest model for lightning. The

lattice action

leading term
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Figure 68. An example of a diagram that contributes to U . Our
coloring conventions are blue for (�

1

, �⇤
1

), green for (�
2

, �⇤
2

), and red
for (�

3

, �⇤
3

).

In order to assess whether a point b belongs to a loop-
erased random walk from a to c after erasure, we fix the
three vertices a, b and c and consider the observable

U(a, b, c) = �cr
2
brc h�2(c)�

⇤
2(b)�1(b)�

⇤
1(a)i , (814)

defined in Eq. (812).
The graphs that contribute consist of a self-avoiding

path � and a collection L of disjoint self-avoiding colored
loops such that (see Figure 68):

(i) � is a path from a to c passing through b. The edges of
� between a and b have color 1, and the edges between
b and c have color 2.

(ii) Fix C 2 L. If the color of C is 2 then it cannot
intersect �. If its color is 1 or 3, it can only intersect �
at the (final) point c.

In the latter case, the contribution to U(a, b, c) is

(�1)

#fermionic loopsq(�)
Y

C2L

q(C). (815)

We now sum over all possible colorings of the loops. Since
loops that intersect c may have either color 1 or 3, one
fermionic and one bosonic, they cancel, leaving only graphs
in which loops do not intersect �. The other loops, as
before, give a factor of �1. We have therefore established
that

U(a, b, c) =

X

�2SA(a,b,c)

q(�)
X

L2L
�

(�1)

|L| Y

C2L

q(C),

(816)

where the sum is over all self-avoiding paths from a to c
passing through b, and denoted SA(a, b, c). In view of Eq.
(803) this can be written as

U(a, b, c) =

X

�2SA(a,b,c)

A(�). (817)

It implies that our object of interest, the probability that a
LERW starting at a and ending in c passes through b is

X

�2SA(a,b,c)

P(�) =

U(a, b, c)

Z . (818)

Continuous limit of the lattice action. Let us rewrite the
action S explicitly,

S =

X

x

h

rx�
⇤
(x)�(x)�ln

⇣

1+

X

y

�xy�
⇤
(y)�(x)

⌘i

.(819)

The leading term in S reads
X

x

h

rx�
⇤
(x)�(x) �

X

y

�xy�
⇤
(y)�(x)

i

(820)

=

X

x

�⇤
(x)[m2

x � r2
� ]�(x)

m2
x = rx�

X

y

�yx, r2
��(x) =

X

y

�yx[�(y)��(x)].

The subleading term in S is
1

2

X

x

h

X

y

�xy�
⇤
(y)�(x)

i2
=

g

2

X

x

h

�⇤
(x)�(x)

i2
+ ...

g :=

h

X

y

�xy

i2
, (821)

where the dropped terms contain at least one Lattice
Laplacian r2

� . Standard arguments [2] show that the latter
are irrelevant in a RG analysis, as are higher-order terms in
the expansion of the ln in Eq. (819). Taking the continuum
limit, we arrive at the theory defined in Eq. (797), setting
there u, ũ ! 0, and identifying (

¯ i, i), i = 1, 2 there with
(�⇤

i ,�i) here, and (

˜�,�) there with (�⇤
3,�3) here.

Perturbative results. Using �4-theory at n = �2 allows
us to obtain an extremely precise estimate of the fractal
dimension z, which can be compared to an even more
precise Monte Carlo simulation,

z = 1.6243(10) (6 loops) [126], (822)
z = 1.62400(5) (Monte Carlo) [628]. (823)

The agreement is quite impressive.

8.8. Other models equivalent to loop-erased random
walks, and CDWs

There is a plethora of further relations relating CDWs or
LERWs to other critical systems, see Fig. 69. Let us
discuss at least some of them: While LERWs are non-
Markovian RWs, their traces are equivalent to those of the
Laplacian Random Walk [640, 636], which is Markovian, if
one considers the whole trace as the variable of state. It is
constructed on the lattice by solving the Laplace equation
r2

�(x) = 0 with boundary conditions �(x) = 0 on
the already constructed curve, while �(x) = 1 at the
destination of the walk, either a chosen point, or infinity.
The walk then advances from its tip x to a neighbouring
point y, with probability proportional to �(y).

In a variant of this model growth is allowed not only
from the tip, but from any point on the already constructed
object. This is known as the dielectric breakdown
model [641], the simplest model for lightning. The
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Figure 68. An example of a diagram that contributes to U . Our
coloring conventions are blue for (�

1

, �⇤
1

), green for (�
2

, �⇤
2

), and red
for (�

3

, �⇤
3

).

In order to assess whether a point b belongs to a loop-
erased random walk from a to c after erasure, we fix the
three vertices a, b and c and consider the observable

U(a, b, c) = �cr
2
brc h�2(c)�

⇤
2(b)�1(b)�

⇤
1(a)i , (814)

defined in Eq. (812).
The graphs that contribute consist of a self-avoiding

path � and a collection L of disjoint self-avoiding colored
loops such that (see Figure 68):

(i) � is a path from a to c passing through b. The edges of
� between a and b have color 1, and the edges between
b and c have color 2.

(ii) Fix C 2 L. If the color of C is 2 then it cannot
intersect �. If its color is 1 or 3, it can only intersect �
at the (final) point c.

In the latter case, the contribution to U(a, b, c) is

(�1)

#fermionic loopsq(�)
Y

C2L

q(C). (815)

We now sum over all possible colorings of the loops. Since
loops that intersect c may have either color 1 or 3, one
fermionic and one bosonic, they cancel, leaving only graphs
in which loops do not intersect �. The other loops, as
before, give a factor of �1. We have therefore established
that

U(a, b, c) =

X

�2SA(a,b,c)

q(�)
X

L2L
�

(�1)

|L| Y

C2L

q(C),

(816)

where the sum is over all self-avoiding paths from a to c
passing through b, and denoted SA(a, b, c). In view of Eq.
(803) this can be written as

U(a, b, c) =

X

�2SA(a,b,c)

A(�). (817)

It implies that our object of interest, the probability that a
LERW starting at a and ending in c passes through b is

X

�2SA(a,b,c)

P(�) =

U(a, b, c)

Z . (818)

Continuous limit of the lattice action. Let us rewrite the
action S explicitly,

S =

X

x

h

rx�
⇤
(x)�(x)�ln

⇣

1+

X

y

�xy�
⇤
(y)�(x)

⌘i

.(819)

The leading term in S reads
X

x

h

rx�
⇤
(x)�(x) �

X

y

�xy�
⇤
(y)�(x)

i

(820)

=

X

x

�⇤
(x)[m2

x � r2
� ]�(x)

m2
x = rx�

X

y

�yx, r2
��(x) =

X

y

�yx[�(y)��(x)].

The subleading term in S is
1

2

X

x

h

X

y

�xy�
⇤
(y)�(x)

i2
=

g

2

X

x

h

�⇤
(x)�(x)

i2
+ ...

g :=

h

X

y

�xy

i2
, (821)

where the dropped terms contain at least one Lattice
Laplacian r2

� . Standard arguments [2] show that the latter
are irrelevant in a RG analysis, as are higher-order terms in
the expansion of the ln in Eq. (819). Taking the continuum
limit, we arrive at the theory defined in Eq. (797), setting
there u, ũ ! 0, and identifying (

¯ i, i), i = 1, 2 there with
(�⇤

i ,�i) here, and (

˜�,�) there with (�⇤
3,�3) here.

Perturbative results. Using �4-theory at n = �2 allows
us to obtain an extremely precise estimate of the fractal
dimension z, which can be compared to an even more
precise Monte Carlo simulation,

z = 1.6243(10) (6 loops) [126], (822)
z = 1.62400(5) (Monte Carlo) [628]. (823)

The agreement is quite impressive.

8.8. Other models equivalent to loop-erased random
walks, and CDWs

There is a plethora of further relations relating CDWs or
LERWs to other critical systems, see Fig. 69. Let us
discuss at least some of them: While LERWs are non-
Markovian RWs, their traces are equivalent to those of the
Laplacian Random Walk [640, 636], which is Markovian, if
one considers the whole trace as the variable of state. It is
constructed on the lattice by solving the Laplace equation
r2

�(x) = 0 with boundary conditions �(x) = 0 on
the already constructed curve, while �(x) = 1 at the
destination of the walk, either a chosen point, or infinity.
The walk then advances from its tip x to a neighbouring
point y, with probability proportional to �(y).

In a variant of this model growth is allowed not only
from the tip, but from any point on the already constructed
object. This is known as the dielectric breakdown
model [641], the simplest model for lightning. The
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Figure 68. An example of a diagram that contributes to U . Our
coloring conventions are blue for (�

1

, �⇤
1

), green for (�
2

, �⇤
2

), and red
for (�

3

, �⇤
3

).

In order to assess whether a point b belongs to a loop-
erased random walk from a to c after erasure, we fix the
three vertices a, b and c and consider the observable

U(a, b, c) = �cr
2
brc h�2(c)�

⇤
2(b)�1(b)�

⇤
1(a)i , (814)

defined in Eq. (812).
The graphs that contribute consist of a self-avoiding

path � and a collection L of disjoint self-avoiding colored
loops such that (see Figure 68):

(i) � is a path from a to c passing through b. The edges of
� between a and b have color 1, and the edges between
b and c have color 2.

(ii) Fix C 2 L. If the color of C is 2 then it cannot
intersect �. If its color is 1 or 3, it can only intersect �
at the (final) point c.

In the latter case, the contribution to U(a, b, c) is

(�1)

#fermionic loopsq(�)
Y

C2L

q(C). (815)

We now sum over all possible colorings of the loops. Since
loops that intersect c may have either color 1 or 3, one
fermionic and one bosonic, they cancel, leaving only graphs
in which loops do not intersect �. The other loops, as
before, give a factor of �1. We have therefore established
that

U(a, b, c) =

X

�2SA(a,b,c)

q(�)
X

L2L
�

(�1)

|L| Y

C2L

q(C),

(816)

where the sum is over all self-avoiding paths from a to c
passing through b, and denoted SA(a, b, c). In view of Eq.
(803) this can be written as

U(a, b, c) =

X

�2SA(a,b,c)

A(�). (817)

It implies that our object of interest, the probability that a
LERW starting at a and ending in c passes through b is

X

�2SA(a,b,c)

P(�) =

U(a, b, c)

Z . (818)

Continuous limit of the lattice action. Let us rewrite the
action S explicitly,

S =

X

x

h

rx�
⇤
(x)�(x)�ln

⇣

1+

X

y

�xy�
⇤
(y)�(x)

⌘i

.(819)

The leading term in S reads
X

x

h

rx�
⇤
(x)�(x) �

X

y

�xy�
⇤
(y)�(x)

i

(820)

=

X

x

�⇤
(x)[m2

x � r2
� ]�(x)

m2
x = rx�

X

y

�yx, r2
��(x) =

X

y

�yx[�(y)��(x)].

The subleading term in S is
1

2

X

x

h

X

y

�xy�
⇤
(y)�(x)

i2
=

g

2

X

x

h

�⇤
(x)�(x)

i2
+ ...

g :=

h

X

y

�xy

i2
, (821)

where the dropped terms contain at least one Lattice
Laplacian r2

� . Standard arguments [2] show that the latter
are irrelevant in a RG analysis, as are higher-order terms in
the expansion of the ln in Eq. (819). Taking the continuum
limit, we arrive at the theory defined in Eq. (797), setting
there u, ũ ! 0, and identifying (

¯ i, i), i = 1, 2 there with
(�⇤

i ,�i) here, and (

˜�,�) there with (�⇤
3,�3) here.

Perturbative results. Using �4-theory at n = �2 allows
us to obtain an extremely precise estimate of the fractal
dimension z, which can be compared to an even more
precise Monte Carlo simulation,

z = 1.6243(10) (6 loops) [126], (822)
z = 1.62400(5) (Monte Carlo) [628]. (823)

The agreement is quite impressive.

8.8. Other models equivalent to loop-erased random
walks, and CDWs

There is a plethora of further relations relating CDWs or
LERWs to other critical systems, see Fig. 69. Let us
discuss at least some of them: While LERWs are non-
Markovian RWs, their traces are equivalent to those of the
Laplacian Random Walk [640, 636], which is Markovian, if
one considers the whole trace as the variable of state. It is
constructed on the lattice by solving the Laplace equation
r2

�(x) = 0 with boundary conditions �(x) = 0 on
the already constructed curve, while �(x) = 1 at the
destination of the walk, either a chosen point, or infinity.
The walk then advances from its tip x to a neighbouring
point y, with probability proportional to �(y).

In a variant of this model growth is allowed not only
from the tip, but from any point on the already constructed
object. This is known as the dielectric breakdown
model [641], the simplest model for lightning. The

subleading term
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Figure 68. An example of a diagram that contributes to U . Our
coloring conventions are blue for (�

1
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1

), green for (�
2
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2

), and red
for (�

3

, �⇤
3

).

In order to assess whether a point b belongs to a loop-
erased random walk from a to c after erasure, we fix the
three vertices a, b and c and consider the observable

U(a, b, c) = �cr
2
brc h�2(c)�

⇤
2(b)�1(b)�

⇤
1(a)i , (814)

defined in Eq. (812).
The graphs that contribute consist of a self-avoiding

path � and a collection L of disjoint self-avoiding colored
loops such that (see Figure 68):

(i) � is a path from a to c passing through b. The edges of
� between a and b have color 1, and the edges between
b and c have color 2.

(ii) Fix C 2 L. If the color of C is 2 then it cannot
intersect �. If its color is 1 or 3, it can only intersect �
at the (final) point c.

In the latter case, the contribution to U(a, b, c) is

(�1)

#fermionic loopsq(�)
Y

C2L

q(C). (815)

We now sum over all possible colorings of the loops. Since
loops that intersect c may have either color 1 or 3, one
fermionic and one bosonic, they cancel, leaving only graphs
in which loops do not intersect �. The other loops, as
before, give a factor of �1. We have therefore established
that

U(a, b, c) =

X

�2SA(a,b,c)

q(�)
X

L2L
�

(�1)

|L| Y

C2L

q(C),

(816)

where the sum is over all self-avoiding paths from a to c
passing through b, and denoted SA(a, b, c). In view of Eq.
(803) this can be written as

U(a, b, c) =

X

�2SA(a,b,c)

A(�). (817)

It implies that our object of interest, the probability that a
LERW starting at a and ending in c passes through b is

X

�2SA(a,b,c)

P(�) =

U(a, b, c)

Z . (818)

Continuous limit of the lattice action. Let us rewrite the
action S explicitly,

S =

X

x

h

rx�
⇤
(x)�(x)�ln

⇣

1+

X

y

�xy�
⇤
(y)�(x)

⌘i

.(819)

The leading term in S reads
X

x

h

rx�
⇤
(x)�(x) �

X

y

�xy�
⇤
(y)�(x)

i

(820)

=

X

x

�⇤
(x)[m2

x � r2
� ]�(x)

m2
x = rx�

X

y

�yx, r2
��(x) =

X

y

�yx[�(y)��(x)].

The subleading term in S is
1

2

X

x

h

X

y

�xy�
⇤
(y)�(x)

i2
=

g

2

X

x

h

�⇤
(x)�(x)

i2
+ ...

g :=

h

X

y

�xy

i2
, (821)

where the dropped terms contain at least one Lattice
Laplacian r2

� . Standard arguments [2] show that the latter
are irrelevant in a RG analysis, as are higher-order terms in
the expansion of the ln in Eq. (819). Taking the continuum
limit, we arrive at the theory defined in Eq. (797), setting
there u, ũ ! 0, and identifying (

¯ i, i), i = 1, 2 there with
(�⇤

i ,�i) here, and (

˜�,�) there with (�⇤
3,�3) here.

Perturbative results. Using �4-theory at n = �2 allows
us to obtain an extremely precise estimate of the fractal
dimension z, which can be compared to an even more
precise Monte Carlo simulation,

z = 1.6243(10) (6 loops) [126], (822)
z = 1.62400(5) (Monte Carlo) [628]. (823)

The agreement is quite impressive.

8.8. Other models equivalent to loop-erased random
walks, and CDWs

There is a plethora of further relations relating CDWs or
LERWs to other critical systems, see Fig. 69. Let us
discuss at least some of them: While LERWs are non-
Markovian RWs, their traces are equivalent to those of the
Laplacian Random Walk [640, 636], which is Markovian, if
one considers the whole trace as the variable of state. It is
constructed on the lattice by solving the Laplace equation
r2

�(x) = 0 with boundary conditions �(x) = 0 on
the already constructed curve, while �(x) = 1 at the
destination of the walk, either a chosen point, or infinity.
The walk then advances from its tip x to a neighbouring
point y, with probability proportional to �(y).

In a variant of this model growth is allowed not only
from the tip, but from any point on the already constructed
object. This is known as the dielectric breakdown
model [641], the simplest model for lightning. The
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Figure 68. An example of a diagram that contributes to U . Our
coloring conventions are blue for (�

1
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1

), green for (�
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2

), and red
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3
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).

In order to assess whether a point b belongs to a loop-
erased random walk from a to c after erasure, we fix the
three vertices a, b and c and consider the observable

U(a, b, c) = �cr
2
brc h�2(c)�

⇤
2(b)�1(b)�

⇤
1(a)i , (814)

defined in Eq. (812).
The graphs that contribute consist of a self-avoiding

path � and a collection L of disjoint self-avoiding colored
loops such that (see Figure 68):

(i) � is a path from a to c passing through b. The edges of
� between a and b have color 1, and the edges between
b and c have color 2.

(ii) Fix C 2 L. If the color of C is 2 then it cannot
intersect �. If its color is 1 or 3, it can only intersect �
at the (final) point c.

In the latter case, the contribution to U(a, b, c) is

(�1)

#fermionic loopsq(�)
Y

C2L

q(C). (815)

We now sum over all possible colorings of the loops. Since
loops that intersect c may have either color 1 or 3, one
fermionic and one bosonic, they cancel, leaving only graphs
in which loops do not intersect �. The other loops, as
before, give a factor of �1. We have therefore established
that

U(a, b, c) =

X

�2SA(a,b,c)

q(�)
X

L2L
�

(�1)

|L| Y

C2L

q(C),

(816)

where the sum is over all self-avoiding paths from a to c
passing through b, and denoted SA(a, b, c). In view of Eq.
(803) this can be written as

U(a, b, c) =

X

�2SA(a,b,c)

A(�). (817)

It implies that our object of interest, the probability that a
LERW starting at a and ending in c passes through b is

X

�2SA(a,b,c)

P(�) =

U(a, b, c)

Z . (818)

Continuous limit of the lattice action. Let us rewrite the
action S explicitly,

S =

X

x

h

rx�
⇤
(x)�(x)�ln

⇣

1+

X

y

�xy�
⇤
(y)�(x)

⌘i

.(819)

The leading term in S reads
X

x

h

rx�
⇤
(x)�(x) �

X

y

�xy�
⇤
(y)�(x)

i

(820)

=

X

x

�⇤
(x)[m2

x � r2
� ]�(x)

m2
x = rx�

X

y

�yx, r2
��(x) =

X

y

�yx[�(y)��(x)].

The subleading term in S is
1

2

X

x

h

X

y

�xy�
⇤
(y)�(x)

i2
=

g

2

X

x

h

�⇤
(x)�(x)

i2
+ ...

g :=

h

X

y

�xy

i2
, (821)

where the dropped terms contain at least one Lattice
Laplacian r2

� . Standard arguments [2] show that the latter
are irrelevant in a RG analysis, as are higher-order terms in
the expansion of the ln in Eq. (819). Taking the continuum
limit, we arrive at the theory defined in Eq. (797), setting
there u, ũ ! 0, and identifying (

¯ i, i), i = 1, 2 there with
(�⇤

i ,�i) here, and (

˜�,�) there with (�⇤
3,�3) here.

Perturbative results. Using �4-theory at n = �2 allows
us to obtain an extremely precise estimate of the fractal
dimension z, which can be compared to an even more
precise Monte Carlo simulation,

z = 1.6243(10) (6 loops) [126], (822)
z = 1.62400(5) (Monte Carlo) [628]. (823)

The agreement is quite impressive.

8.8. Other models equivalent to loop-erased random
walks, and CDWs

There is a plethora of further relations relating CDWs or
LERWs to other critical systems, see Fig. 69. Let us
discuss at least some of them: While LERWs are non-
Markovian RWs, their traces are equivalent to those of the
Laplacian Random Walk [640, 636], which is Markovian, if
one considers the whole trace as the variable of state. It is
constructed on the lattice by solving the Laplace equation
r2

�(x) = 0 with boundary conditions �(x) = 0 on
the already constructed curve, while �(x) = 1 at the
destination of the walk, either a chosen point, or infinity.
The walk then advances from its tip x to a neighbouring
point y, with probability proportional to �(y).

In a variant of this model growth is allowed not only
from the tip, but from any point on the already constructed
object. This is known as the dielectric breakdown
model [641], the simplest model for lightning. The

,

= action of     -theory: 2 fermions and 1 boson, 
or -1 complex boson OR -2 real bosons 

An exact mapping between loop-erased

random walks and an interacting field theory

with two fermions and one boson

Assaf Shapira

1
and Kay J

¨

org Wiese

2
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Université, Université Paris-Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75005 Paris, France.
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Abstract

We give a simplified proof for the equivalence of loop-erased random walks to a lattice
model containing two complex fermions, and one complex boson. This equivalence works
on an arbitrary directed graph. Specifying to the d-dimensional hypercubic lattice, at large
scales this theory reduces to a scalar �4-type theory with two complex fermions, and one
complex boson. While the path integral for the fermions is the Berezin integral, for the
bosonic field we can either use a complex field �(x) 2 C (standard formulation) or a
nilpotent one satisfying �(x)2 = 0. We discuss basic properties of the latter formulation,
which has distinct advantages in the lattice model.

1 Introduction

The loop-erased random walk (LERW) introduced by Lawler in [1] and further developed in
[2, 3, 4] can in two dimensions be described by Schramm-Löwner evolution (SLE) at  = 2
[5]. It corresponds to a conformal field theory with central charge c = �2. When reformulated
in terms of loops, the lattice O(n)-model can be defined for �2  n  2 [6] (see also [7], page
187). In the limit of n ! �2 it has the same conformal field theory (CFT), a relation which also
holds off criticality [8], suggesting the description by one complex fermion. The latter, however,
does not allow one to assess properties of loop-erased random walks after erasure. Recently,
it was established [9, 10] that the equivalence to the O(n) model holds in any dimension d �
2, by mapping loop-erased random walks onto the n-component �4-theory for n ! �2, or
equivalently a theory with two complex fermions, and one complex boson. This formulation
contains information about the traces of LERWs after erasure, and in particular its Hausdorff
dimension.

A rigorous proof of the equivalence between LERWs and the O(�2) model was given in
Ref. [11]. The ensuing field theory uses nilpotent bosonic fields, i.e. fields which square to zero.
Here we give a simplified proof of the equivalence. We also show that the nilpotent bosonic

1

ϕ1, ϕ2 = fermions
ϕ3 = boson
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Abstract

Eulerian Circuits

LERWLaplacian Walks

UST ASM Potts|
q!0

CDW

FRG at depinning
2 fermions + 1

boson
�4
��
n=�2

spin system with
2 fermions + 1

boson

SUSY
[1]

[2]

[3]

KW [4]
L [5]

L [6]

pert. [1]
exact [2]

MD [7]

NM conj. [8]

FLW test [9]

M [10]

Figure 1: Relations between Laplacian walks, loop-erased random walks (LERW), uniform spanning trees (UST),
Eulerian Circuits, the Abelian Sandpile Model (ASM), the Potts-model in the limit of q ! 0, charge-density waves at
depinning (CDW), mapping onto the FRG field theory at depinning, reducing to �4-theory at n = �2, and equivalent
to an interacting theory of 2 complex fermions and one complex boson.

1. Proof of the Equivalence

Sapozhnikov and Shiraishi [11] have proven that a random walk can be decomposed in any
dimension d into a loop-erased random walk intersected with the loop-soup of Lawler and Werner
[12]. This relies on the similar decomposition of a simple random walk into a LERW and a loop
soup on the lattice [13], especially section 9. As Posilicano [14] summarizes, “Loosely speaking
they show that adding the Poisson cloud of bubbles to a path is the same as adding to the path the
set of loops in a loop soup that it intersects.” The Poisson parameter is 1, i.e. random walks with
fugacity 1 per loop. In the O(n) model, such a loop soup can be represented by O(n = �2), since
for the latter interactions are effectively absent, i.e. the propagator is the propagator of a simple
random walk.

Preprint submitted to Elsevier December 9, 2020

Consider now f in the limit of � ! �1: Each factor in (C.6) will go to 1, s.t. also f goes to 1. (For the
disrcetized version, this is evident, and does not depend on the phase of �; for the continuous version one
has to work a little bit, and take the limit away from the positive real axes, where the spectrum lies.)

Now consider the differential equation (C.2) with m2 ! m2 � �, in the same limit � ! �1. In this
case, one can convince oneself that both solutions grow exponentially, and that V (x) is a small perturbation,
s.t. again g(↵,m2 � �) ! 1. Thus r(�) is a function in the complex plane which has no poles. As a
consequence, r(�) is bounded. According to Liouville’s theorem it is a constant. This constant can be
extracted from the limit of � ! 1, which shows that r(�) = 1. This concludes our proof.

A more rigorous proof can be found in [38]: The idea there is to show that @
↵

f(↵,m2
) = @

↵

g(↵,m2
)

for all ↵, as both can be written as Green functions at the given value of ↵. A proof similar to ours, using
Fredholm-determinant theory, can be found in section 7, appendix 1 of [39].
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Charge Density Waves (CDW)           -theory at N=-1�4

As a consequence, a system of Nb bosons and Nf fermions with the interaction (16) has partition
function

Zb+f
=

Z
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~
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]D[

~
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~
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]D[
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 ] e
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R
x

⇢(x)2 . (17)

More generally, the correlations h�1(y)�
⇤
1(x)i in complex N -component �4 theory can be cal-

culated from a theory with Nb bosons and Nf fermions, where N = Nb � Nf . For Nb = 0,
Nf = 1 one gets N = �1, and the interaction is [~ ⇤

(x)~ (x)]2. It vanishes due to the squares of
Grassmann variables: This theory of complex fermions,

SNf=1
Nb=0[ 

⇤, ] =

Z

x

r ⇤
(x)r (x) +m2

 

⇤
(x) (x) , (18)

is a free theory. It provides a non-perturbative proof that correlation functions of complex �4-
theory at N = �1 (n = �2 real fields) are equivalent to those of the free theory. In d = 2 this
is also known from lattice models [14]. However, it does not yield the renormalization of the
coupling g at N = �1. To obtain the latter, one has to study Nf 6= 1, and take the limit of Nf ! 1

at the end. Or one uses one family of complex bosons Nb = 1 and two families of complex
fermions Nf = 2, a formulation onto which we will map CDWs at depinning later.

Finally, care has to be taken in identifying observables in both theories: While the 2-point
functions of bosonic fields are symmetric under their exchange, those of the fermionic theory are
antisymmetric. As a consequence h�1�1i 6= 0, whereas h 1 1i = 0.

4. Equivalence between �4
-theory at N = �1 and CDWs at depinning

Charge-density waves are ground states of solids, where the charge density is varying spatially,
with a period set to 1. Coupling these elastic objects to quenched disorder leads after averaging
over disorder to the dynamic field theory [42, 43, 20, 21, 22, 44]

SCDW
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Z

x,t

ũ(x, t)(@
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�r2
+m2

)u(x, t)� 1

2

Z

x,t,t

0
ũ(x, t)ũ(x, t0)�

�
u(x, t)� u(x, t0)

�
. (19)

The function �(u) is an even function with period 1. Its renormalization can be studied using
functional RG (FRG) [20, 22, 21, 23, 24, 25, 26, 27]. The analysis of the FRG flow for the
function �(u) shows that the fixed point has the form

�(u) = �(0)� g

2

u(1� u) . (20)

In the absence of higher-order terms in u, the RG flow closes in the space of polynomials of degree
2, and for the quadratic term one is left with the renormalization of a single coupling constant g.
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The function �(u) is an even function with period 1. Its renormalization can be studied using
functional RG (FRG) [20, 22, 21, 23, 24, 25, 26, 27]. The analysis of the FRG flow for the
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In the absence of higher-order terms in u, the RG flow closes in the space of polynomials of degree
2, and for the quadratic term one is left with the renormalization of a single coupling constant g.
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Action at depinning 

Keep only leading term ~ g u2/2
Thus, as long as one is not interested in 2-point correlation functions, or avalanches, the fixed-point
function can be replaced by �(u) ! g

2u
2 , which generates the simpler field theory,

SCDW
simp :=
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Let us define a further variant which retains from �

�
u(x, t0)�u(x, t)

�
only the term u(x, t)u(x, t0),

SSAW
:=
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Perturbation expansion in this theory looks exactly like the one in Eq. (4), with a different propa-
gator to be compared with Eq. (3),

R(k, t) := hũ(k, 0)u(�k, t)i = ⇥(t) e�t(k2+m

2) . (23)

In this theory closed loops have weight zero, as they are acausal in Itô discretization. If one can
integrate freely over all times, diagrams in the dynamic theory reduce to those in the complex
scalar theory. Thus the theory defined by Eq. (22) can be mapped onto the action (4) with n =

N = 0, i.e. a self-avoiding walk. This is well-known due to de Gennes [1].
We now show that the action (21) has the same effective coupling as the action (4) at N = �1.

We first remark that the renormalized coupling is extracted from diagrams with times on which
they depend taken far apart. An example is given by the first diagram in Eq. (24) below. To show
the equivalence, we start by drawing all diagrams present in the SAW-theory (22), complementing
them by the missing diagrams originating from the additional vertices of (21) as compared to (22).
These missing diagrams, a.k.a. children, can be generated from the diagrams for SAWs by moving
one arrow from one side of the vertex into which it enters to the other side,

�! � . (24)

We then extract contributions to the effective coupling; this is cleverly done by remarking that (i)
the form of the effective interaction is proportional to the second line of Eq. (21), and (ii) it is
extracted by retaining only terms of the form present in Eq. (22). This implies that the second
diagram in Eq. (24) does not contribute. Indeed it comes with two other ones,

� +

1

2

+

1

2

. (25)

After time-integration, the two fields at the left-most vertex cancel, thus the above sum vanishes.
The next diagram

(26)

has two children,

� � ! 0 . (27)
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difference  
between  
2 copies

vanish. The same argument can be done by moving the time derivative to the field ũ. These op-
erations restrict the class of diagrams. Graphically, inserting

R
x,t

ũ(x, t)u̇(x, t) corresponds again
to inserting a point into diagrams correcting expectations of ũ(x, t)u(x0, t0). The final step of the
proof is to realize that this is equivalent to insertions of the crossover operator �1(y)�

⇤
2(y) in the

theory (4).
Finally note that the absence of a renormalization of �r2

+m2 in Eqs. (19) and (21) implied
by the statistical tilt symmetry is equivalent to the absence of a renormalization of the theory (18).

5. A non-perturbative proof for the equivalance of �4
-theory at N = �1 and CDWs

The method introduced in [45, 46] allows one to write the disorder average of any observable
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ũ
a

(x)
�H[u

a

]

�u
a

(x)
+

¯ 
a

(x)
�2H[u

a

]

�u
a

(x)�u
a

(y)
 
a

(y)

�
. (32)

The integral over ũ
a

ensures that u
a

is at a minimum. ¯ 
a

and  
a

are fermionic degrees of freedom
(Grassmann variables), which compensate for the functional determinant appearing in the integra-
tion over u, yielding a partition function Z = 1. Averaging over disorder gives an effective action
[47]
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ũ
a

(x)�
�
u
a

(x)� u
b

(x)
�
ũ
b

(x)� ũ
a

(x)�0�u
a

(x)� u
b

(x)
�
¯ 
b

(x) 
b

(x)

� 1

2

¯ 
a

(x) 
a

(x)�00�u
a

(x)� u
b

(x)
�
¯ 
b

(x) 
b

(x)
i
. (33)

The function �(u) is the same as in Eq. (19). Note that we allow for an arbitrary number of
replicas r. In the work [45] the focus was on r = 1, which does not allow to extract the second
cumulant of the disorder, i.e. its correlations. To do the latter, one needs at least r = 2 copies, to
which we specify now. We introduce center-of-mass coordinates,

u1(x) = u(x) +
1

2

�(x) , u2(x) = u(x)� 1

2

�(x) , (34)

ũ1(x) =
1

2

ũ(x) + ˜�(x) , ũ2(x) =
1

2

ũ(x)� ˜�(x) . (35)
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Redo with Supersymmetry

The action (33) can then be written as

S =

Z

x

˜�(x)(�r2
+m2

)�(x) + ũ(x)(�r2
+m2

)u(x) +
2X

a=1

¯ 
a

(x)(�r2
+m2

) 
a

(x)

+

˜�(x)2
h
�

�
�(x)

�
��(0)

i
� 1

4

ũ(x)2
h
�

�
�(x)

�
+�(0)

i

+

1

2

ũ(x)�0��(x)
�h

¯ 2(x) 2(x)� ¯ 1(x) 1(x)
i

+

˜�(x)�0��(x)
�h

¯ 2(x) 2(x) + ¯ 1(x) 1(x)
i

+

¯ 2(x) 2(x) ¯ 1(x) 1(x)�
00��(x)

�
. (36)

As in the derivation of the action (21) replacing �(u) ! g

2u
2, the action (36) takes the form

S =

Z

x

˜�(x)(�r2
+m2

)�(x) + ũ(x)(�r2
+m2

)u(x) +
2X

a=1

¯ 
a

(x)(�r2
+m2

) 
a

(x)

+

g

2

ũ(x)�(x)
h
¯ 2(x) 2(x)� ¯ 1(x) 1(x)

i
� g

8

ũ(x)2�(x)2

+

g

2

h
˜�(x)�(x) + ¯ 1(x) 1(x) + ¯ 2(x) 2(x)

i2
. (37)

Note that only ũ(x), but not the center-of-mass position u(x) appear in the interaction. While u(x)
may have non-trivial expectations, it does not contribute to the renormalization of g, and the latter
can be obtained by dropping the third line of Eq. (37). What remains is a �4-type theory as in
Eq. (17), with one complex boson, and two complex fermions. It can equivalently be viewed as
complex �4-theory at N = �1, or real �4-theory at n = �2.

What is yet missing is information about the exponent z. One can use the operator O defined in
Eqs. (8) or (9), replacing �

i

by  
i

, and �

⇤
i

by ¯ 
i

. Another possibility is to introduce time, adding
a time argument to all fields, and replacing �r2

+ m2 by @
t

� r2
+ m2. The interaction part,

i.e. the last line of Eq. (37), then becomes bilocal in time, i.e. the time integral appears inside the
square bracket. The tricky part is to ensure that time-integrated vacuum bubbles retain their static
expectations. This can be done by specifying an initial condition, once again adding the action
(37) where all fields are evaluated at some initial time t0. This implies that

R(k; t0, t) =
D
�(�k, t0)˜�(k, t)

E
=

⌦
 
i

(�k, t0) ¯ 
i

(k, t)
↵
= ⇥(t0 � t)e�(k2+m

2)(t0�t)
+

�
t,t0�t0,t0
k2

+m2
.

(38)
The �-functions are to be understood s.t.

Z

t

R(k1, t, t)...R(k
n

, t, t) =
1

(k2
1 +m2

)...(k2
n

+m2
)

. (39)

We explicitly checked to 3-loop order that terms proportional to @
t

receive the same renormaliza-
tion as at depinning. Furthermore we can analyze the renormalization of ˜�(x, t)@

t

�(x, t) as an
insertion. Contributing diagrams carry two external fields, one ˜�, and one �. Passing the time

11

decouple

multiplet out of 1 boson + 2 fermions = -1 boson



Conclusions
O(n) model at n = -2 
= loop-erased random walks 
= CDWs at depinning 
= Abelian sandpiles

… more interesting physics hiding there …


