How can the perturbative renormalization group help the bootstrap, and what are interesting questions for the bootstrap?

BootStat 2021
http://www.phys.ens.fr/~wiese/

A purposeful reminder on RG basics

$O(n)$ model: $\quad \mathcal{S}[\vec{\phi}]=\int_{x} \frac{1}{2}[\nabla \vec{\phi}(x)]^{2}+\frac{m^{2}}{2} \vec{\phi}(x)^{2}+\frac{g}{4}\left[\vec{\phi}(x)^{2}\right]^{2}$
Perturbation theory for the effective scale-dependent parameters g, m^{2}, \ldots

$$
\begin{align*}
& \beta \text {-function }(\epsilon=4-d) \\
& \beta(g):=\partial_{\ell} g \equiv=-\frac{\mu \mathrm{d}}{\mathrm{~d} \mu} g=\varepsilon g-a_{1} g^{2}+a_{2} g^{3}+\ldots \\
& \beta(g)
\end{align*}
$$

 Most relevant scalars ($n=1$): $\sigma \equiv \phi, \varepsilon \equiv \phi^{2}$

$$
\Delta_{\sigma}=\Delta_{\sigma}\left(g^{*}\right), \quad \Delta_{\varepsilon}=\Delta_{\varepsilon}\left(g^{*}\right)
$$

(1) turns this into an ϵ-expansion

The RG trajectory in $d=3$

- the theory on the trajectory is not conformally invariant.
- the trajectory moves through the forbidden region.

Asymptotic Series: A toy example

$$
\mathscr{I}(g):=\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2-g x^{4}}=\sum_{n=0}^{\infty} a_{n}(-g)^{n}, \quad a_{n}=\frac{(4 n)!}{2^{2 n}(2 n)!n!} \simeq \frac{2^{4 n}}{\sqrt{2} \pi n} \times n!
$$

Asymptotic behaviour can be obtained from saddle point

$$
a_{n}=\frac{2}{n!} \int_{0}^{\infty} \frac{\mathrm{d} x}{\sqrt{2 \pi}}\left(x^{4}\right)^{n} \mathrm{e}^{-x^{2} / 2}=\frac{2}{n!} \int_{0}^{\infty} \frac{\mathrm{d} x}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2+4 n \ln x}=\frac{2 \sqrt{n}}{n!} \int_{0}^{\infty} \frac{\mathrm{d} x}{\sqrt{2 \pi}} \mathrm{e}^{-n\left[x^{2} / 2-4 \ln x\right]+2 n \ln (n)}
$$

Inverse Borel transform: $\quad \mathscr{J}(g)=\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-t} \mathscr{J}_{\mathrm{B}}(t g)$.
Field theory: works the same: saddle point is a function $\phi(x)$
$\mathscr{J}_{\mathrm{B}}(t) \quad \mathfrak{F}(t) \uparrow \quad$ Inverse Borel transform: $\quad \mathscr{I}(g)=\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-t} \mathscr{J}_{\mathrm{B}}(t g)$.

- Padé-resummation ("Padé-Borel"): unreliable due to spurious poles on the axis
- conformal transformation maps ∞ to g_{c}, s.t. integral is inside range of convergence. Standard method, works well.
- estimate g_{c} self-consistently (Kompaniets-Wiese 2019) Phys. Rev. E 101 (2019) 012104, axiv:1908.07502
- Kompaniets-Panzer 2017: allow for several free parameters, and look for least Phys. Rev. D 96 (2017) 036016, arXiv:1705.06483. sensitive point. Currently best method for error bars, computationally expensive.
- Meijer-G resummation: fit $\mathscr{I}_{\mathrm{B}}(t)$ with hypergeometric function, yields a Meijer-G function H. Mera, T. G. Pedersen and B.K. Nikolic, Phys. Rev. D 97 (2018) 105027. for inverse Borel-transform. May have spurious poles on the axis.

Conclusion: If well done, resummation quality almost as for "normal" series.

An example from A. Aharony's talk:

Resummation may be problematic due to analytic structure

d_{f}	n	SC	KP17	simulation
LERW	-2	$1.6243(10)$	$1.623(6)$	$1.62400(5)[45]$
SAW	0	$1.7027(10)$	$1.7025(7)$	$1.701847(2)[24]$
Ising	1	$1.7353(10)$	$1.7352(6)$	$1.7349(65)[46]$
XY	2	$1.7644(10)$	$1.7642(3)$	$1.7655(20)[46,47]$

$$
d=\mathbf{3}
$$

$d=2$

Redundant operators and rearrangement of states at the RG fixed point
the path integral $\mathscr{Z}=\prod \mathrm{d} \phi(x) e^{-\delta[\phi]}$
is invariant under $\phi(x) \xrightarrow{x} \phi(x)+\delta \phi(x)$
the additional term in \mathscr{Z} must vanish

$$
\frac{\delta S[\phi]}{\delta \phi(x)}=-\nabla^{2} \phi(x)+g \phi^{3}(x)=0
$$

more general transformations $\phi(x) \rightarrow \phi(x)+f(\phi) \delta \phi(x)$
(Jacobian vanishes in dimensional regularisation, and cancels in expectations.)

$$
f(\phi) \frac{\delta S[\phi]}{\delta \phi(x)}=f(\phi)\left[-\nabla^{2} \phi(x)+g \phi^{3}(x)\right]=0
$$

Redundant operators (F. Wegner J. Physics C7 (1974) 2098)
\Longrightarrow rearrangement of states.

Models with long-ranged elasticity, and spectrum rearrangement

Spectrum Rearrangement upon reaching Ising

Experimental Realisation of LR elasticity

$\mathcal{H}_{\text {boson }}=\frac{1}{8 \pi} \int \mathrm{~d}^{2} \vec{z}[\nabla \Phi(\vec{z})]^{2}$.
$\left\langle\Phi(\vec{z}) \Phi\left(\vec{z}^{\prime}\right)\right\rangle=-\ln \left|\vec{z}-\vec{z}^{\prime}\right|^{2}$
Restrict to the circle $|\vec{z}|=1$

$$
\phi(\theta):=\Phi\left(\mathrm{e}^{i \theta}\right) \Longrightarrow \mathcal{O}(\theta):=\frac{1}{i} \phi^{\prime}(\theta)
$$

$$
\left\langle\mathcal{O}(\theta) \mathcal{O}\left(\theta^{\prime}\right)\right\rangle=\frac{1}{2 \sin ^{2}\left(\frac{\theta-\theta^{\prime}}{2}\right)} \Longrightarrow \mathcal{O}(\theta)=\text { primary with } \Delta_{\mathcal{O}}=1
$$

Warning: Gaussian free field (or its derivative) on the circle are not conformally invariant.

Curve-detecting operator for the $O(n)$ model

Curve-detecting operator for the $O(n)$ model

$$
\begin{gathered}
\mathcal{O}_{i j}=\phi_{i} \phi_{j}-\frac{1}{n} \delta_{i j} \sum_{i=1}^{n} \phi_{i}^{2} \\
\text { Applications }
\end{gathered}
$$

$n=-2 \quad$ loop erased random walks (LERW)
$n=0 \quad$ self-avoiding polymers/walks (SAW)
$n=1 \quad$ propagator line in the Ising model
$n=2 \quad$ propagator line in the XY model

d_{f}	n	SC 6 loops KP17		simulation
LERW	-2	$1.6243(10)$	$1.623(6)$	$1.62400(5)[45]$
SAW	0	$1.7027(10)$	$1.7025(7)$	$1.701847(2)[24]$
Ising	1	$1.7353(10)$	$1.7352(6)$	$1.7349(65)[46]$
XY	2	$1.7644(10)$	$1.7642(3)$	$1.7655(20)[46,47]$

Loop-erased Random Walks (LERW)

- random walk
- erase a loop as soon as it is formed
- remains: loop-erased random walk (LERW)
$\boldsymbol{R}_{\mathrm{g}}=$ radius of gyration
$R_{\mathrm{g}}=N^{1 / 2}=l^{1 / z}$
$z=$ fractal dimension of LERW

$$
\begin{array}{ll}
z=5 / 4 & (d=2) \\
z=1.624 \ldots & (d=3)
\end{array}
$$

Loop-erased random walks from field theory
$\mathcal{P}(\gamma)=\sum_{\omega: \mathcal{L}(\omega)=\gamma} q(\omega)={ }_{a}^{c} \rightarrow+\sqrt{b}+\cdots+\ldots$
Multiply with $\mathcal{Z}=1-\bigcirc=$ fermion partition function, gives

Proven Theorem:

$$
\mathcal{P}(\gamma) \times \mathcal{Z}=\mathcal{A}(\gamma):=q(\gamma) \sum_{L \in \mathcal{L}_{\gamma}}(-1)^{|L|} \prod_{C \in L} q(C)
$$

Elements of Proof:

- bubbles of non-intersecting loops factorise
- enlarge theory from 1 fermion to 2 fermions + 1 boson to detect path passing through

From lattice action to field theory

$$
e^{-\mathcal{S}}=\prod_{x} \mathrm{e}^{-r_{x} \phi^{*}(x) \phi(x)}\left[1+\sum_{y} \beta_{x y} \phi^{*}(y) \phi(x)\right], \quad \phi^{*}(y) \phi(x):=\sum_{i=1}^{3} \phi_{i}^{*}(y) \phi_{i}(x)
$$

lattice action

$$
\phi_{1}, \phi_{2}=\text { fermions }
$$

$$
\mathcal{S}=\sum_{x}\left[r_{x} \phi^{*}(x) \phi(x)-\ln \left(1+\sum_{y} \beta_{x y} \phi^{*}(y) \phi(x)\right)\right]
$$

$$
\phi_{3}=\text { boson }
$$

leading term

$$
\begin{aligned}
& \sum_{x}\left[r_{x} \phi^{*}(x) \phi(x)-\sum_{y} \beta_{x y} \phi^{*}(y) \phi(x)\right]=\sum_{x} \phi^{*}(x)\left[m_{x}^{2}-\nabla_{\beta}^{2}\right] \phi(x) \\
& m_{x}^{2}=r_{x}-\sum_{y} \beta_{y x}, \quad \nabla_{\beta}^{2} \phi(x)=\sum_{y} \beta_{y x}[\phi(y)-\phi(x)]
\end{aligned}
$$

subleading term

$$
\frac{1}{2} \sum_{x}\left[\sum_{y} \beta_{x y} \phi^{*}(y) \phi(x)\right]^{2}=\frac{g}{2} \sum_{x}\left[\phi^{*}(x) \phi(x)\right]^{2}+\ldots, \quad g:=\left[\sum_{y} \beta_{x y}\right]^{2}
$$

$=$ action of ϕ^{4}-theory: 2 fermions and 1 boson, or -1 complex boson OR -2 real bosons

O(-2)

"almost" free theory $\Delta_{\sigma}=\frac{d-2}{2}, \Delta_{\epsilon}=d-2$

$$
\begin{align*}
\Delta_{\mathcal{O}_{i j}} & =1.37600(5), \quad \mathcal{O}_{i j}=\phi_{i} \phi_{j}-\frac{1}{n} \delta_{i j} \sum_{i=1}^{n} \phi_{i}^{2} \\
\Delta_{\epsilon^{\prime}} & =3.82(1) \tag{1}
\end{align*}
$$

one family of fermions is free \rightarrow (1)
does not talk about LERW observable: need 2 complex fermions + 1 complex boson

[1] K.J. Wiese and A.A. Fedorenko, Field theories for loop-erased random walks, Nucl. Phys. B 946 (2019) 114696, arXiv:1802.08830.
[2] A. Shapira and K.J. Wiese, An exact mapping between loop-erased random walks and an interacting field theory with two fermions and one boson, SciPost Phys. 9 (2020) 063, arXiv:2006.07899.
[3] T. Helmuth and A. Shapira, Loop-erased random walk as a spin system observable, J. Stat. Phys. 181 (2020) 1306-1322, arXiv:2003.10928.
[4] R.W. Kenyon and D.B. Wilson, Spanning trees of graphs on surfaces and the intensity of loop-erased random walk on planar graphs, J. Amer. Math. Soc. 28 (2015) 985-1030, arXiv:1107.3377.
[5] G.F. Lawler, The Laplacian-b random walk and the Schramm-Loewner evolution, Illinois J. Math. 50 (2006) 701-746.
[6] P.W. Kasteleyn, in F. Harary, editor, Graph Theory and Theoretical Physics, Academic Press, London and New York, 1967.
[7] S.N. Majumdar and D. Dhar, Equivalence between the Abelian sandpile model and the $q \rightarrow 0$ limit of the Potts-model, Physica A 185 (1992) 129-145.
[8] O. Narayan and A.A. Middleton, Avalanches and the renormalization-group for pinned charge-density waves, Phys. Rev. B 49 (1994) 244-256.
[9] A.A. Fedorenko, P. Le Doussal and K.J. Wiese, Field theory conjecture for loop-erased random walks, J. Stat. Phys. 133 (2008) 805-812, arXiv:0803.2357.

Field Theory for Charge Density Waves (CDW)

- semi-conductor devices may have an instability for a periodic modulation of the charge density \longrightarrow CDW

$$
\mathscr{H}[u]:=\int_{x} \frac{1}{2}[\nabla u(x)]^{2}+\frac{m^{2}}{2}[u(x)-w]^{2}+V(x,(u(x))
$$

- disorder force correlator \uparrow disorder

$$
\overline{\partial_{u} V(x, u) \partial_{u^{\prime}} V\left(x^{\prime}, u^{\prime}\right)}=\delta^{d}\left(x-x^{\prime}\right) \Delta\left(u-u^{\prime}\right)
$$

- renormalizes under RG

$$
-\frac{m \mathrm{~d}}{\mathrm{~d} m} \Delta(u)=(\varepsilon-2 \zeta) \Delta(u)+\zeta u \Delta^{\prime}(u)-\partial_{u}^{2}\left[\frac{1}{2} \Delta(u)^{2}-\Delta(u) \Delta(0)\right]
$$

CDW: $\zeta=0$ and periodic fixed point $\Delta(u)$, which is piecewise

Charge Density Waves (CDW) $\rightarrow \phi^{4}$-theory at $N=-1$

Action at depinning

$$
\mathcal{S}^{\mathrm{CDW}}=\int_{x, t} \tilde{u}(x, t)\left(\partial_{t}-\nabla^{2}+m^{2}\right) u(x, t)-\frac{1}{2} \int_{x, t, t^{\prime}} \tilde{u}(x, t) \tilde{u}\left(x, t^{\prime}\right) \Delta\left(u(x, t)-u\left(x, t^{\prime}\right)\right) .
$$

FRG fixed point function for CDWs at depinning

$$
\Delta(u)=\Delta(0)-\frac{g}{2} u(1-u)
$$

Keep only leading term $\sim g u^{2} / 2$ difference $\phi(x)$ between 2 copies

$$
\mathcal{S}_{\text {simp }}^{\mathrm{CDW}}:=\int_{x, t} \tilde{u}(x, t)\left(\partial_{t}-\nabla^{2}+m^{2}\right) u(x, t)-\frac{g}{4} \int_{x, t, t^{\prime}} \tilde{u}(x, t) \tilde{u}\left(x, t^{\prime}\right)\left[u(x, t)-u\left(x, t^{\prime}\right)\right]^{2}
$$

Redo with Supersymmetry

$$
\begin{aligned}
& \mathcal{S}=\int_{x} \tilde{\phi}(x)\left(-\nabla^{2}+m^{2}\right) \phi(x)+\tilde{u}(x)\left(-\nabla^{2}+m^{2}\right) u(x)+\sum_{a=1}^{2} \bar{\psi}_{a}(x)\left(-\nabla^{2}+m^{2}\right) \psi_{a}(x) \\
&+\frac{g}{2} \tilde{u}(x) \phi(x)\left[\bar{\psi}_{2}(x) \psi_{2}(x)-\bar{\psi}_{1}(x) \psi_{1}(x)\right]-\frac{g}{8} \tilde{u}(x)^{2} \phi(x)^{2} \longleftarrow \text { decouple } \\
&+\frac{g}{2}\left[\tilde{\phi}(x) \phi(x)+\bar{\psi}_{1}(x) \psi_{1}(x)+\bar{\psi}_{2}(x) \psi_{2}(x)\right]^{2} .
\end{aligned}
$$

Conclusions

$O(n)$ model at $n=-2$
= loop-erased random walks
= CDWs at depinning
= Abelian sandpiles
... more interesting physics hiding there ...

