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Using the conformal invariance, the RG fixed points for many two-dimensional 
critical systems are now well-understood (BPZ 1984).  

However, the fixed points for disordered systems, even in two-dimensions, are 
poorly-understood. 

Lack of the unitarity ==> Needs deeper understanding of “symmetry”.
Effective symmetries of disordered systems: the Replica or SUSY(supergroup).

Introduction: Replica CFTs in 2d

Non-unitary CFTs for Unitary Minimal CFTs
3-state Potts, Ising… disordered systems

M : number of replicas



Using the conformal invariance, the RG fixed points for many two-dimensional 
critical systems are now well-understood (BPZ 1984).  

However, the fixed points for disordered systems, even in two-dimensions, are 
poorly-understood. 

Lack of the unitarity ==> Needs deeper understanding of “symmetry”.
Effective symmetries of disordered systems: the Replica or SUSY(supergroup).

Outstanding unsolved problems:
Disordered CFTs @ 𝑀𝑀 → 0 (Non-unitary) -------interesting though difficult in many ways
CFTs for M-coupled q-state Potts models (Unitary) with 𝑀𝑀 = 3,4,5,⋯

Introduction: Replica CFTs in 2d

Non-unitary CFTs for Unitary Minimal CFTs
3-state Potts, Ising… disordered systems

e.g., 3-state Potts model CFT with an 𝑆𝑆4-extended symmetry ∈ Bootstrap targets?

𝑞𝑞 = 3,4



Epsilon expansion from Ising CFT (d=2 fixed)
varying the size of internal symmetry

𝛽𝛽 𝑔𝑔 = 𝜖𝜖𝜖𝜖 + 𝑀𝑀 − 2 𝑔𝑔2 + 𝑂𝑂(𝑔𝑔3)

𝑔𝑔∗ =
𝜖𝜖

2 −𝑀𝑀
+ 𝑂𝑂(𝜖𝜖2)

Small deviation from the Ising model: 𝜖𝜖 ∝ (1 − 𝑛𝑛) or 𝑞𝑞 − 2
RG beta function 𝛽𝛽 𝑔𝑔 = 𝜖𝜖𝜖𝜖 + 𝑀𝑀 − 2 + 𝐶𝐶2 (𝜖𝜖) 𝑔𝑔2 + 𝑂𝑂(𝑔𝑔3) (schematic)

𝐶𝐶 𝜖𝜖 = 𝐶𝐶𝜀𝜀𝜀𝜀𝜀𝜀 𝜖𝜖 vanishes for the 2d Potts 
critical points (self-duality)

IR fixed point is located at

In 2d, the Ising model saturates the Harris criterion. 
The random-bond Ising model (RBIM) plays a pivotal role.

Randomness is relevant if

2Δ𝜀𝜀 = 2 (marginal)

(𝑞𝑞 − 2)–expansion

A.W.W. Ludwig, Nucl. Phys. B285 (1987) 97.

𝜖𝜖 ∝ 2 − 2Δ𝜀𝜀 > 0
Ising model = “O(𝑛𝑛 = 1) model” = “𝑞𝑞 = 2-state Potts model”

Disordered CFTs @𝑀𝑀 → 0 (Non-unitary) 

M-coupled q-state Potts models 
(Unitary) with 𝑀𝑀 = 3,4,5,⋯

𝑀𝑀 = 2,𝑞𝑞 > 2 is integrable and massive (Vaysburd 95) 



Loop and spin models belong to 
the same universality class

O(n) loop model …Polymer（n=0）, Ising（n=1）, XY（n=2） as special cases
Belongs to the same universality class as a spin model in which each site has

-component spin interacting with the nearest-neighbor spins: 

Each closed loop (~particle trajectory) has a weight      ,  (which makes sense for              )                                            
whereas each bond (a segment of loops) has a weight      .

When , the model has a critical point at 𝑥𝑥𝑐𝑐 = 2 + 2 − 𝑛𝑛, where

--becomes particularly simple on the honeycomb lattice.

is irrelevant in RG



Disordered O(n) Loop Model on a Lattice

O(n) loop model …Polymer（n=0）, Ising（n=1）, XY（n=2） as special cases
Belongs to the same universality class as a spin model in which each site has

-component spin interacting with the nearest-neighbor spins: 

--becomes particularly simple on the honeycomb lattice.

Models with quenched disorder:

different from link to link; independently respects some distribution function.

e.g.
Strong and weak bonds

Each closed loop (~particle trajectory) has a weight      ,  (which makes sense for              )                                            
whereas each bond (a segment of loops) has a weight      .



Disordered O(n) Model Formulated on a Lattice

Models with quenched disorder:

Replica 
trick

different from link to link; independently respects some distribution function.

e.g.

Coupled vertically but 
horizontally homogeneous

Weak and strong bonds



Approaching the Continuum Limit of the Disordered O(n) model

Without disorder, the following relations summarize the vicinity of the critical point (=dilute phase):

Disordered models
The bond-strength distribution is assumed to 
be short-ranged and approximately Gaussian:

We have the following effective Hamiltonian; note that this contains composite operators.

bond spinenergy operator; spin operator



Energy/spin operator are identified with certain Kac primary fields;
Correlation fns. of these are expressed in terms of vertex operators.

(Oriented-)Loop rep. Coulomb gas

Lattice O(n) model Continuum（ＣＦＴ）

Coarse graining the height fn.

Gaussian free field

The identification of continuum fields (Dotsenko-Fateev84, Batchelor89): 

vertex operator operators

The charge for the Kac primary         is 

determined s.t.

where                              are

Discrete height fn.

and

𝛼𝛼 ⁄1 2, 0 = 𝛼𝛼𝑝𝑝−1, 𝑝𝑝



Continuum Limit of the Disordered O(n) model

one obtains the following effective Hamiltonian: 

Bond energy
operator

O(n) model

By taking advantage of the identification primary field in the O(n) CFT, and

Irrelevant

Slightly 
relevant

Relevant

Scaling dim.

the fusion rule：



Conformal perturbation theory
Epsilon-expansion around the Ising model (n=1)

Interlayer-coupling 
btw replicas

Coupled vertically but 
horizontally homogeneous



The OPE structure constant encodes selection rules:

(1)               at 𝑛𝑛 = 1; the Ising model is invariant under the Kramars-Wannier duality.

(2)        ∞ as 𝑛𝑛 → 1; in the self-avoiding walk (SAW), the segments of loops strongly 
repel each other so that the process                           is suppressed. 

Interpretation of the first two terms in the OPE

= + + ...

Contributes to the free energy

Shifts T_c



Conformal perturbation theory
Epsilon-expansion around the Ising model (n=1)

Interlayer-coupling 
btw replicas

n=1: Kramars-Wannier duality

n=0: Infinite repulsions

One-loop RG shows: non-trivial f.p. for                       and strongly coupled phase for             .  

disorder 
strength

♯（closed loops）
<< ♯（inter-layer

hopping）



Diagrams at two-loop order

Recall that the interaction is the coupling btw replicas:

Beta-function, renormalization constants

β-function

Boxes are 
four-point 

functions

The insertions of the interaction are 
restricted on the disk of radius r.  



Ising model

Self-avoiding  walk (polymer)

Disordered

Pure

About  +8% shift in 
the spin dimension
at the polymer point .

Spin Scaling Dimensions at the Non-trivial Fixed Point 



Body-centered cubic  lattice

Bcc Disordered O(n)  model

Face-centered cubic  lattice

Fcc random-bond q-state Potts model

Number-theoretic character of the spin dimensions 

Number of Returns to the Origin
for the Random Walkers on the
BCC and FCC Lattices in an Infinite Time.

These curious numbers characterize the two universal family of the disordered models
(manifestation of internal symmetries?)

H. Shimada, Nucl. Phys. B820 (2009) 707.

J. Cardy and J. L. Jacobsen, PRL 79 (1997) 4063.



C-theorem and (non-)unitary systems

IR

UV

ℒ = (𝜕𝜕𝜕𝜕)2+⋯+ 𝑔𝑔𝑚𝑚−1𝜑𝜑2 𝑚𝑚−1

Concretely, along the RG flow,

In non-unitary systems, their “Zamolodchikov-metric”  are not necessarily positive definite!
In fact, in the replica limit (M->0), the metric has a negative eigenvalue in the direction of the randomness.

RG flow is uphill in the randomness direction!

C-theorem (valid for unitary models）:

Landau-Ginzburg formulation of the minimal models

randomness coupling:
e.g. 
Ludwig, Ludwig-Cardy 1987, 
Fujita-Hikida-Ryu-Takayanagi 2008, H. Shimada 2009

RG flow C-function
degree of broken conformal symmetry

M : number of replicas

m-phases 
coalescence



Randomness:
Temperature :

[Pure critical point:                              ]

Finite-size-scaling of the averaged free energies from
Random Transfer Matrices

periodic

The C-function can be extracted as the effective central charge using the finite-
size scaling of the free energy for the cylinder of perimeter L: 

Averaged over         
cylinders 

(𝑝𝑝 = ⁄1 2)



Dense

Fully-packed
Pure

t

c

Pure

Random

Strong-coupling

c Z

RG landscape for the disordered O(n) model

Temperature

Random
ness

Along the ridge (critical line)

Along the pure line s=1

H.Shimada, J.L.Jacobsen, Y. Kamiya, 
J. Phys. A 47 (2014) 122001. 

Fully-packed loop model: symmetry is enhanced

c(F) = c(D)  + 1.



Field theory

Transfer Matrix

=c(R) - c(P)

Non-perturbative

Multicritical

Randomness

Randomness
The multicritical point S is strongly-coupled

The fixed point S appears to be in the non-perturbative 
regime since the Borel-Pade analysis of n=1 RG beta function 
precludes IR FPs (𝑀𝑀 < 𝑀𝑀𝑐𝑐 ∼

11
4
) with a finite coupling g>0.

M-color Gross-Neveu model at 3-loop (Gracey 91)



(Conjecture)    80 Cardy-Hamber
(Coulomb gas) 82 Nienhuis 
(CFT)              84 Dotsenko-Fateev
(Bethe ansatz) 88 Batchelor-Blote

The spin scaling dimension in the O(n) model

Spin Scaling Dimension of the weakly-coupled FP   R

Ising model

Self-avoiding  walk (polymer)

Pure



(Conjecture)    80 Cardy-Hamber
(Coulomb gas) 82 Nienhuis 
(CFT)              84 Dotsenko-Fateev
(Bethe ansatz) 88 Batchelor-Blote

The spin scaling dimension in the O(n) model

Ising model

Self-avoiding  walk (polymer)

Disorder

Pure

Non-pertubative

Spin Scaling Dimension of the weakly-coupled FP   R

In the presence of Randomness ,



In the presence of Randomness ,

(Conjecture)    80 Cardy-Hamber
(Coulomb gas) 82 Nienhuis
(CFT)              84 Dotsenko-Fateev
(Bethe ansatz) 88 Batchelor-Blote

The spin scaling dimension in the O(n) model

Ising model

Self-avoiding  walk (polymer)

Disorder

Pure

II

Non-pertubative

TM results confirm the FT predictions!

Spin Scaling Dimension of the weakly-coupled FP   R



(A.Honecker et al., 01PRL) 
At n=1, S has the central charge                                 , which lies inside the error bar of

the Nishimori point in the ±J random-bond Ising (Edwards-Anderson) model for spin glasses.
There, the symmetry ±J leads to the local gauge invariance or supersymmetry osp(2m+1|2m). 

found for  

S at               is in the Nishimori universality class 

PRB 63 (2001) 104422

(Square Lattice)

Shimada-Jacobsen-Kamiya, J. Phys. A (2014)

By considering the honeycomb loops 
as two-type domain walls, n=1 is 
dual to the Ising spin-glass on the 
triangular lattice.

Red:

Blue:



(A.Honecker et al., 01PRL) 
At n=1, S has the central charge                                 , which lies inside the error bar of

the Nishimori point in the ±J random-bond Ising (Edwards-Anderson) model for spin glasses.
There, the symmetry ±J leads to the local gauge invariance or supersymmetry osp(2m+1|2m). 

found for  

S at               is in the Nishimori universality class 

Disordered Loop Spin glassLocation of S

agrees with the multicritical pt. in the Triangular Lattice-RBIM e.g. M.Ohzeki 08～

PRB 63 (2001) 104422

Red:

Blue:

Shimada-Jacobsen-Kamiya, J. Phys. A (2014)

(±J –spin glass)

By considering the honeycomb loops 
as two-type domain walls, n=1 is 
dual to the Ising spin-glass on the 
triangular lattice.

(Square Lattice)



(A.Honecker et al., 01PRL) 
At n=1, S has the central charge                                 , which lies inside the error bar of

the Nishimori point in the ±J random-bond Ising (Edwards-Anderson) model for spin glasses.
There, the symmetry ±J leads to the local gauge invariance or supersymmetry osp(2m+1|2m). 

found for  

S at               is in the Nishimori universality class 

PRB 63 (2001) 104422

(Square Lattice)

M. Picco, A. Honecker, and P. Pujol, J. Stat. Mech. (2006) P09006.

A. Honecker, M. Picco, and P. Pujol, PRL 87 (2001) 047201. 

(Merz-Chalker 2002, parabolic spectrum of  (dual) disorder operator moments)



New exact approach from S-matrix: Disordered O(n) model as an example
G.Delfino, Eur. Phys. J. B 94 (2021) 65
Particles, conformal invariance and criticality in pure and disordered systems
G.Delfino and N. Lamsen, JHEP 04 (2018) 077, J. Stat. Mech. (2019) 024001

Interlayer
coupling

D
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or
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r 
m

od
ul

us

𝑐𝑐 = 0.4612(4)

𝑛𝑛𝑐𝑐 = 2 − 1 ≈ 0.41 (exact)

𝑐𝑐 = 0.5

𝑛𝑛𝑐𝑐 ≈ 0.5 (transfer matrix)
𝑛𝑛𝑐𝑐 ≈ 0.26 (one-loop RG) 𝑀𝑀 = 0

S

R

P

Z Z infinite disorder

IR FPs
Modified from the original



Epsilon expansion from Ising CFT (d=2 fixed)
varying the size of internal symmetry

𝛽𝛽 𝑔𝑔 = 𝜖𝜖𝜖𝜖 + 𝑀𝑀 − 2 𝑔𝑔2 + 𝑂𝑂(𝑔𝑔3)

𝑔𝑔∗ =
𝜖𝜖

2 −𝑀𝑀
+ 𝑂𝑂(𝜖𝜖2)

Small deviation from the Ising model: 𝜖𝜖 ∝ (1 − 𝑛𝑛) or 𝑞𝑞 − 2
RG beta function 𝛽𝛽 𝑔𝑔 = 𝜖𝜖𝜖𝜖 + 𝑀𝑀 − 2 + 𝐶𝐶2 (𝜖𝜖) 𝑔𝑔2 + 𝑂𝑂(𝑔𝑔3) (schematic)

𝐶𝐶 𝜖𝜖 = 𝐶𝐶𝜀𝜀𝜀𝜀𝜀𝜀 𝜖𝜖 vanishes for the 2d Potts 
critical points (self-duality)

IR fixed point is located at

In 2d, the Ising model saturates the Harris criterion. 
The random-bond Ising model (RBIM) plays a pivotal role.

Randomness is relevant if

2Δ𝜀𝜀 = 2 (marginal)

(𝑞𝑞 − 2)–expansion

A.W.W. Ludwig, Nucl. Phys. B285 (1987) 97.

𝜖𝜖 ∝ 2 − 2Δ𝜀𝜀 > 0
Ising model = “O(𝑛𝑛 = 1) model” = “𝑞𝑞 = 2-state Potts model”

Disordered CFTs @𝑀𝑀 → 0 (Non-unitary) 

M-coupled q-state Potts models 
(Unitary) with 𝑀𝑀 = 3,4,5,⋯

𝑀𝑀 = 2,𝑞𝑞 > 2 is integrable and massive (Vaysburd 95) 



M=3 coupled q-state Potts model Dotsenko-Jacobsen-Lewis-Picco, Nucl. Phys. B 546 (1999) 505. 
“Coupled Potts models: Self-duality and fixed point structure”

𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.8 × 3 = 2.4 for (1)
𝑐𝑐𝑇𝑇𝑇𝑇 = 2.377 ± 0.003
𝑐𝑐𝐹𝐹𝐹𝐹 = 2.3808 + 𝑂𝑂(𝜖𝜖5) for (3)

𝜖𝜖 = 2/15 for 𝑞𝑞 = 3 state Potts model

M-coupled q-state Potts models with 𝑀𝑀=3,4,5,⋯

𝛼𝛼+2 = 4
3
− 𝜖𝜖 𝑞𝑞 = 2 cos

𝜋𝜋
𝑝𝑝 + 1

,𝛼𝛼+2 =
𝑝𝑝 + 1
𝑝𝑝



Various scaling behaviors established by Monte Carlo
Precision is not intended.

Dotsenko-Jacobsen-Lewis-Picco, Nucl. Phys. B 546 (1999) 505. 
For results on more operators:

M=3



Dotsenko-Jacobsen-Lewis-Picco, Nucl. Phys. B 546 (1999) 505. 

M=3

q=3

(q-2)-expansion Transfer matrix

Spectrum of higher operators

Odd sector

Even sector



RG flow on the self-dual manifold of couplings

J. L. Jacobsen, Phys. Rev. E62 (2000) 1. “Duality relations for M coupled Potts models”

・Established explicit duality transformations. The self-dual manifold has dimension [M/2].
・Found the non-trivial FP using the C-function landscape obtained by the transfer matrix (TM). 

In
te

rl
ay

er
 co

up
lin

g

M=4 decoupled 3-state Potts FP

34-state Potts FP

𝑆𝑆4-extended 3-state Potts FP

This finite-size correction (4%) is not an issue when 
studying the difference Δ𝑐𝑐𝑇𝑇𝑇𝑇 of the central charge
if it is assumed to affect all the FPs almost equally.

Δ𝑐𝑐𝐹𝐹𝐹𝐹 = −0.0168 +𝑂𝑂(𝜖𝜖5)
Δ𝑐𝑐𝑇𝑇𝑇𝑇 ≈ −0.02～ − 0.01

𝑐𝑐decoupled; TM = 3.072 is smaller than
𝑐𝑐decoupled;exact = 0.8 × 4 = 3.2 by 4%

( 3, 3)



In 2d, the RG flow in the 𝑀𝑀-replicated O(n) models and Potts models with the bond-bond 
interaction can be explored with the (1-n)-expansion and (q-2)-expansion, respectively. 
This is true both for 𝑀𝑀 → 0 (non-unitary) and 𝑀𝑀 = 3, 4, 5, … (unitary).  

For 𝑀𝑀 → 0, the symmetry enhancement at the non-perturbative fixed point (∃one-
parameter extension of the Nishimori universality class at 𝑛𝑛 = 1 or 𝑞𝑞 = 2) is outstanding 
and suitable for a supergroup bootstrap of the spectrum with                                    .

S-matrix method can yield exact results (e.g.  𝑛𝑛𝑐𝑐 = 2 − 1 for 𝑀𝑀 = 0).

CFTs for 𝑆𝑆𝑀𝑀-symmetry extended q-state Potts model. (Dotsenko-Jacobsen-Lewis-Picco 99～)

Spectrum has been studied in (q-2)-expansion. 
Detailed numerical results are available, in particular, for 𝑀𝑀 = 3.
For large 𝑀𝑀, the interlayer coupling becomes weak (1/𝑀𝑀-expansion). In the 𝑀𝑀 → +∞ limit, 

Δ𝑐𝑐𝐹𝐹𝐹𝐹 = −1
125

= −0.008 at 𝑞𝑞 = 3 (Δ𝑐𝑐𝐹𝐹𝐹𝐹 = −1
8

at 𝑞𝑞 = 4) is infinitesimally small compared with 𝑀𝑀𝑐𝑐𝑞𝑞.

Conclusion and outlooks



Backup Slides



Phase Transition in a Random System (Experiment)

Adsorption of the Hydrogen atoms on the Ni（111）
surface; order-disorder transition
Some of sites are occupied by the Oxygen atoms.
The universality of the Random-bond 4-state Potts model

LEED (Low Energy Electron Diffraction)

Appendix：



Example:         two-loop β-function

Six-fold multiple 
integrals 



Generalized Complex Selberg Integral…Scattering Amplitude
(decomposing one complex three-fold integrals into two real ones ) 

,
(*) (*) (*)i k

i k
J JI s s s+ −= ∑

Interchanging adjacent 
variables on the real axis 
induces a pair of phase 
factors, and hence shifts  
arguments in sin-functions.



RG landscape for the disordered O(n) model

Temperature

Random
ness

Loop model and 
Spin model are in the same
universality only when |n|<2.

n>2 loop model has a hard-hexagon 
(=3-state Potts) transition!
(W.Guo et al., PRL2000)

?

d>2, RFIM

Random-bonds amount to random fields for 3-
state Potts degrees of freedom.

The zero temperature FP Z𝟏𝟏


	RG flows in Replica Coupled CFTs
	Introduction: Replica CFTs in 2d
	Introduction: Replica CFTs in 2d
	Epsilon expansion from Ising CFT (d=2 fixed)�                 varying the size of internal symmetry
	   �    Loop and spin models belong to �                                     the same universality class
	   �          Disordered O(n) Loop Model on a Lattice 
	Disordered O(n) Model Formulated on a Lattice 
	Approaching the Continuum Limit of the Disordered O(n) model
	Energy/spin operator are identified with certain Kac primary fields;�Correlation fns. of these are expressed in terms of vertex operators.  
	Continuum Limit of the Disordered O(n) model
	Conformal perturbation theory�Epsilon-expansion around the Ising model (n=1)
	Interpretation of the first two terms in the OPE 
	Conformal perturbation theory�Epsilon-expansion around the Ising model (n=1)
	　　Diagrams at two-loop order　
	スライド番号 15
	スライド番号 16
	   �   　　　C-theorem and (non-)unitary systems
	スライド番号 18
	スライド番号 19
	スライド番号 20
	スライド番号 21
	スライド番号 22
	スライド番号 23
	スライド番号 24
	スライド番号 25
	スライド番号 26
	New exact approach from S-matrix: Disordered O(n) model as an example
	Epsilon expansion from Ising CFT (d=2 fixed)�                 varying the size of internal symmetry
	M=3 coupled q-state Potts model
	��Various scaling behaviors established by Monte Carlo
	スライド番号 31
	�����RG flow on the self-dual manifold of couplings
	Conclusion and outlooks
	スライド番号 34
	Phase Transition in a Random System (Experiment)
	　Example:         two-loop　β-function
	Generalized Complex Selberg Integral…Scattering Amplitude�(decomposing one complex three-fold integrals into two real ones             ) 
	スライド番号 38

