

 $\mathcal{H}_{ij} = -\left[\frac{K_1}{\left(\delta_{\sigma_i\sigma_j} + \delta_{\tau_i\tau_j} + \delta_{\eta_i\eta_j}\right)} + \frac{K_2}{\left(\delta_{\sigma_i\sigma_j}\delta_{\tau_i\tau_j} + \delta_{\tau_i\tau_j}\delta_{\eta_i\eta_j} + \delta_{\sigma_i\sigma_j}\delta_{\eta,\eta'}\right)} + \frac{K_3}{\delta_{\sigma_i\sigma_j}\delta_{\tau_i\tau_j}\delta_{\eta_i\eta_j}}\right]$ 



#### Introduction: Replica CFTs in 2d



$$\log Z = \lim_{M \to 0} \left( Z^{m} - 1 \right) / N$$

M : number of replicas

### Introduction: Replica CFTs in 2d



e.g., 3-state Potts model CFT with an  $S_4$ -extended symmetry  $\in$  Bootstrap targets?

#### Epsilon expansion from Ising CFT (d=2 fixed) varying the size of internal symmetry



M = 2, q > 2 is integrable and massive (Vaysburd 95)

#### Loop and spin models belong to

#### the same universality class

O(n) loop model ...Polymer (n=0), Ising (n=1), XY (n=2) as special cases Belongs to the same universality class as a spin model in which each site has n-component spin  $s_i = (s_i^{(1)}, \dots, s_i^{(n)})$  interacting with the nearest-neighbor spins:

$$Z(x,n) = \operatorname{Tr}_{s_{i}} \prod_{\langle i,j \rangle} (1 + xs_{i} \cdot s_{j})$$

$$= \int \prod_{i} \mu(s_{i}) d^{n} s_{i} \prod_{\langle i,j \rangle} (1 + xs_{i} \cdot s_{j}) \prod_{\substack{i \in J \\ i \in J \\ i \in J \\ i \in J}} \prod_{i} \mu(s_{i}) d^{n} s_{i} \prod_{\langle i,j \rangle} (1 + xs_{i} \cdot s_{j}) \prod_{\substack{i \in J \\ i \in$$

Each closed loop (~particle trajectory) has a weight n, (which makes sense for  $n \in \mathbb{R}$ ) whereas each bond (a segment of loops) has a weight x.

When  $|n| \le 2$ , the model has a critical point at  $x_c = \sqrt{2 + \sqrt{2 - n}}$ , where

$$(s_i \cdot s_j)^2 = j$$
 is irrelevant in RG

#### Disordered O(n) Loop Model on a Lattice

O(n) loop model ...Polymer (n=0), Ising (n=1), XY (n=2) as special cases Belongs to the same universality class as a spin model in which each site has n-component spin  $s_i = (s_i^{(1)}, \dots, s_i^{(n)})$  interacting with the nearest-neighbor spins:

$$\begin{split} Z(x,n) &= \operatorname{Tr}_{s_i} \prod_{\langle i,j \rangle} (1+xs_i \cdot s_j) \\ &= \int \prod_i \mu(s_i) d^n s_i \prod_{\langle i,j \rangle} (1+xs_i \cdot s_j) \prod_{\substack{ \operatorname{Tr}_{s_i} \equiv \int \prod_i \mu(s_i) d^n s_i \\ \operatorname{Tr}_s 1 = 1, \quad \operatorname{Tr}_s s \cdot s = n. \\ \operatorname{Tr}_s s = 0, \\ \end{array} \\ &= \sum_{\text{loops}} x^{\#\text{bonds}} n^{\#\text{loops}}. \\ & -\text{becomes particularly simple on the honeycomb lattice.} \end{split}$$

Each closed loop (~particle trajectory) has a weight n, (which makes sense for  $n \in \mathbb{R}$ )
 whereas each bond (a segment of loops) has a weight x.

• Models with quenched disorder:  $Z[\{x\}, n] = \text{Tr}_{s_i} \prod_{\langle i, j \rangle} (1 + x_{ij}s_i \cdot s_j)$ 

 $\mathcal{X}_{ij}$  different from link to link; independently respects some distribution function. e.g.  $P(x_{ij}) = [p\delta(x_{ij} - x_1) + (1 - p)\delta(x_{ij} - x_2)]$ . Strong and weak bonds

#### Disordered O(n) Model Formulated on a Lattice



#### Approaching the Continuum Limit of the Disordered O(n) model

Without disorder, the following relations summarize the vicinity of the critical point (=dilute phase):

٦

b

$$\begin{split} &\prod_{\langle i,j\rangle} (1+ts_i \cdot s_j) \sim \exp\left[\beta \sum_{\langle i,j\rangle} s_i \cdot s_j\right] \rightarrow \exp\left[-S_{\rm CFT} + m \int d^2 x \ \mathcal{E}(x)\right], \qquad m = (T-T_c)/T_c \\ & \text{bond } s_i \cdot s_j \rightarrow \mathcal{E}(x) \quad \text{energy operator;} \quad \text{spin } s_i \rightarrow \sigma(x) \quad \text{spin operator} \\ & \text{Disordered models} \\ & \text{The bond-strength distribution is assumed to} \\ & \overline{M(x)m(y)} = g_0^2 \ \delta(x-y); \quad P(m(x)) = e^{-\frac{1}{2g_0}(m(x)-m_0)^2 + \cdots} \\ & Z^M = \operatorname{Tr}_{s_i^{(a)}} \exp\left[-\sum_{a=1}^M H_0^{(a)} - \int m(z) \sum_{a=1}^M \mathcal{E}^a(x) d^2 x\right] \\ & \overline{Z^M} = \int \prod_x dm(x) P(m(x)) \ Z^M. \end{split}$$

We have the following effective Hamiltonian; note that this contains composite operators.  $\overline{Z^M} = \operatorname{Tr}_{s_i^{(a)}} e^{-\mathcal{H}_{eff}},$ г  $k \neg$ 

$$\mathcal{H}_{eff} = \sum_{a=1}^{M} H_0^{(a)} + \int d^2x \left[ m_0 \sum_{a=1}^{M} \mathcal{E}^a(x) - g_0 \sum_{a,b=1}^{M} \mathcal{E}^a(x) \mathcal{E}^b(x) - \sum_{k=3}^{\infty} \frac{\xi_k}{k!} \left( \sum_{a=1}^{M} \mathcal{E}^a(x) \right)^k \right]$$

Energy/spin operator are identified with certain Kac primary fields; Correlation fns. of these are expressed in terms of vertex operators.

The identification of continuum fields (Dotsenko-Fateev84, Batchelor89):

$$\begin{cases} s_i \cdot s_j \to \mathcal{E}(x) \longrightarrow V_{\alpha_{1,3}}(x) \\ s_i \longrightarrow \sigma(x) \longrightarrow V_{\alpha_{p-1,p}}(x) \\ \alpha_{1/2,0} = \alpha_{p-1,p} \end{cases} \left( p = \frac{1/2}{1 - (\alpha_{-}(n))^2} \right) \quad V_{\alpha}(x) \equiv e^{i\alpha\varphi(x)} \checkmark$$

The charge for the Kac primary  $\phi_{r,s}$  is  $\alpha_{r,s} \equiv \frac{1}{2}(1-r)\alpha_+ + \frac{1}{2}(1-s)\alpha_-$ , where  $\alpha_{\pm} = \alpha_{\pm}(n)$  are

determined s.t.  $\alpha_+ \alpha_- = -1$  and  $n = -2\cos(\pi/\alpha_-^2)$ 



#### Continuum Limit of the Disordered O(n) model

$$Z^{M} = \operatorname{Tr}_{s_{i}^{(a)}} \exp\left[-\sum_{a=1}^{M} H_{CFT}^{(a)} - \int m(x) \sum_{a=1}^{M} \mathcal{E}^{a}(x) d^{2}x\right] \qquad \operatorname{Bond} \ s_{i} \cdot s_{j} \to \mathcal{E}(x) \ \operatorname{energy}_{operator}$$
$$\overline{Z^{M}} = \int \prod_{x} dm(x) P(m(x)) \ Z^{M}. \qquad \overline{m(x)m(y)} = g_{0}^{2} \ \delta(x-y);$$

 ${igstarrow}$  By taking advantage of the identification  ${\cal E} o \phi_{1,3}$  primary field in the O(n) CFT, and



one obtains the following effective Hamiltonian:

#### Conformal perturbation theory

Epsilon-expansion around the Ising model (n=1)



#### Interpretation of the first two terms in the OPE



The OPE structure constant encodes selection rules:

(1)  $C_{\mathcal{E}\mathcal{E}}^{\mathcal{E}} = 0$  at n = 1; the Ising model is invariant under the Kramars-Wannier duality.

(2)  $C_{\mathcal{E}\mathcal{E}}^{\mathcal{E}} \to \infty$  as  $n \to 1$ ; in the self-avoiding walk (SAW), the segments of loops strongly repel each other so that the process  $\mathcal{E} \cdot \mathcal{E} \to I$  is suppressed.

#### Conformal perturbation theory

Epsilon-expansion around the Ising model (n=1)

$$\overline{Z^{M}} = \operatorname{Tr}_{s_{i}^{(a)}} \exp \left[-\sum_{a=1}^{M} H_{0}^{a} - m_{0} \int \sum_{a=1}^{M} \mathcal{E}^{a}(x) d^{2}x + g_{0} \int \sum_{a\neq b}^{M} \mathcal{E}^{a}(x) \mathcal{E}^{b}(x) d^{2}x \right]$$

$$H_{0} = \sum_{a=1}^{M} H_{0}^{a}, \quad H_{int} = \int \sum_{a\neq b}^{M} \mathcal{E}^{a}(x) \mathcal{E}^{b}(x) d^{2}x \quad \text{Interlayer-coupling btw replicas}$$

$$e \propto 1 - n, \quad \beta(g) = \frac{dg}{d\ln(r)} = 8cg + 2\pi \left[2(M-2) + (C_{\mathcal{E}\mathcal{E}}^{\mathcal{E}})^{2}\right] g^{2}.$$

$$f \text{ (closed loops)}$$

$$f \text{ (closed loops)}$$

$$e = \frac{1}{12}$$

$$0 \quad n_{c} = 0.261 \dots \quad 1 \quad n$$

$$g \text{ (closed loops)}$$

$$C_{\mathcal{E}\mathcal{E}}^{\mathcal{E}}(\rho)^{2} = \left[2(1 - 2\rho)^{2} \frac{\gamma^{\frac{3}{2}}(\rho)}{\gamma^{2}(2\rho)} \frac{\gamma^{\frac{1}{2}}(2 - 3\rho)}{\gamma^{(3 - 4\rho)}}\right]^{2}, \quad 12^{2} \cdot 0.01305 \cdot \epsilon^{2}. \text{ n=1: Kramars-Wannier duality a pole at } \epsilon = 1/12 \quad n=0: Infinite repusions$$

$$One-loop RG shows: non-trivial f.p. for  $n_{c} < n < 1$  and strongly coupled phase for  $n < n_{c}$$$

#### Diagrams at two-loop order



#### Spin Scaling Dimensions at the Non-trivial Fixed Point



#### Number-theoretic character of the spin dimensions



These curious numbers characterize the two universal family of the disordered models (manifestation of internal symmetries?)

## C-theorem and (non-)unitary systems

★ C-theorem (valid for unitary models):
$$C(m) = 1 - \frac{6}{m(m+1)} (m \ge 3)$$
Landau-Ginzburg formulation of the minimal models
$$f(m) = 1 - \frac{6}{m(m+1)} (m \ge 3)$$

$$Landau-Ginzburg formulation of the minimal models
$$f(m) = \frac{1}{m(m+1)(m+2)} > 0$$
Ising model:  $m = 3, C = \frac{1}{2}$ , Tricritical Ising:  $m = 4, C = \frac{7}{10}$ 

$$\vec{\beta} \sim -\nabla C$$
Concretely, along the RG flow,
$$\frac{1}{2}\beta^{i}\frac{\partial}{\partial g^{i}}C = -\frac{3}{4}(2\pi)^{2}(g_{ij}\beta^{i}\beta^{j})$$
degree of broken conformal symmetry
$$f(m) = \frac{1}{m(m+1)(m+2)} > 0$$
In non-unitary systems, their "Zamolodchikov-metric" are not necessarily positive definite!
In fact, in the replica limit (M->0), the metric has a negative eigenvalue in the direction of the randomness.
$$G_{ij} = (z\bar{z})^{2} \langle \Phi_{i}(z,\bar{z})\Phi_{j}(0,0) \rangle \Big|_{z\bar{z}=1} \sim 2M(M-1).$$
★ RG flow is uphill in the randomness direction!
Figure of broken conformal symmetry for the randomness coupling:  $\Phi = \mathcal{H}_{int} = \sum_{a\neq b}^{M} \mathcal{E}^{(a)}(x)\mathcal{E}^{(b)}(x)$$$

#### Finite-size-scaling of the averaged free energies from Random Transfer Matrices

$$Z [\{x\}, n] = \operatorname{Tr}_{s_i} \prod_{\substack{\langle i,j \rangle \\ \langle i,j \rangle}} (1 + x_{ij}s_i \cdot s_j)$$

$$P(x_{ij}) = [p\delta(x_{ij} - x_1) + (1 - p)\delta(x_{ij} - x_2)].$$
Temperature :  $t = 2x_c/(x_1 + x_2)$  ( $p = 1/2$   
Randomness:  $s^2 = x_2/x_1$   
[Pure critical point:  $(t, s) = (1, 1)$ ]
Averaged over  $10^3$  cylinders

The C-function can be extracted as the effective central charge using the finitesize scaling of the free energy for the cylinder of perimeter L:

$$C \leftrightarrow C_{\text{eff}} \qquad \overline{f(L)} = \overline{f(\infty)} - \frac{2}{\sqrt{3}} \frac{\pi C_{\text{eff}}}{6L^2} + \mathcal{O}\left(\frac{1}{L^4}\right)$$
$$\frac{1}{2}\beta^i \frac{\partial}{\partial g^i} C = -\frac{3}{4} (2\pi)^2 \mathcal{G}_{ij} \beta^i \beta^j. \qquad C_{\text{eff}} = \frac{\partial}{\partial M}\Big|_{M=0} c_M$$
$$\vec{\beta}: \text{ RG flow}$$

 $L \sim 10$  periodic



#### The multicritical point S is strongly-coupled



#### Spin Scaling Dimension of the weakly-coupled FP $\, {f R} \,$



#### Spin Scaling Dimension of the weakly-coupled FP $\, {f R} \,$



#### Spin Scaling Dimension of the weakly-coupled FP $\, {f R} \,$



#### S at n = 1 is in the Nishimori universality class



#### S at n = 1 is in the Nishimori universality class



#### S at n = 1 is in the Nishimori universality class

At n=1, S has the central charge  $c=0.4612\pm0.0004$  , which lies inside the error bar of  $c = 0.464 \pm 0.004$ (A.Honecker et al., 01PRL) found for the Nishimori point in the  $\pm J$  random-bond Ising (Edwards-Anderson) model for spin glasses. There, the symmetry  $\pm J$  leads to the local  $\mathbb{Z}_2$  gauge invariance or supersymmetry osp(2m+1|2m). H. Nishimori, Prog. Theor. Phys. 66, 1169 (1981). I.A. Gruzberg, A.W.W. Ludwig, and N. Read, PRB 63 (2001) 104422 T1.2 Para 0.8  $\overline{\langle S(x_1)S(x_2)\rangle^n} \propto |x_1-x_2|^{-\eta_n}$ 1 0.7 0.8 0.6 Nishimori  $\eta_1 = \eta_2 = 0.1848 \pm 0.0003,$ 0.6 [<S(0)S(x)><sup>n</sup>] Ferro line 0.4 0.5  $\eta_3 = \eta_4 = 0.2552 \pm 0.0009,$ 0.2  $\eta_5 = \eta_6 = 0.3004 \pm 0.0013,$ 0.4 0.05 0.1 0.15 0.2 0.25 0  $\eta_7 = \eta_8 = 0.3341 \pm 0.0016.$ (Square Lattice) 0.3 5 7 10 15 20  $sin(\pi x/L) L$ M. Picco, A. Honecker, and P. Pujol, J. Stat. Mech. (2006) P09006. A. Honecker, M. Picco, and P. Pujol, PRL 87 (2001) 047201. (Merz-Chalker 2002, parabolic spectrum of (dual) disorder operator moments)

#### New exact approach from S-matrix: Disordered O(n) model as an example G.Delfino, Eur. Phys. J. B 94 (2021) 65 Particles, conformal invariance and criticality in pure and disordered systems G.Delfino and N. Lamsen, JHEP 04 (2018) 077, J. Stat. Mech. (2019) 024001 Interlayer bi bi bi bi bi $a_i$ $a_i$ $b_i$ bi $a_i$ $a_i$ coupling $b_i$ $b_i$ $b_i$ $a_i$ $a_i$ $a_i$ $a_i$ $a_i$ $a_i$ $a_i$ $a_i$ $S_1$ $S_3$ $S_{4}$ $S_6$ $\rho_1^2 + \rho_2^2 = 1$ $\sum_{e \ f} S_{ab}^{ef} \left[ S_{ef}^{cd} \right]^* = \delta_{ac} \delta_{bd}$ $S_1 = S_3^* \equiv \rho_1 e^{i\phi},$ $\rho_1 \rho_2 \cos \phi = 0.$ $S_2 = S_2^* \equiv \rho_2,$ $n\rho_1^2 + n(M-1)\rho_4^2 + 2\rho_1\rho_2\cos\phi + 2\rho_1^2\cos 2\phi = 0$ $\rho_4^2 + \rho_5^2 = 1,$ $S_4 = S_6^* \equiv \rho_4 e^{i\theta},$ $\rho_4 \rho_5 \cos \theta = 0$ , $S_5 = S_5^* \equiv \rho_5 \,.$ $2n\rho_1\rho_4\cos(\phi-\theta) + n(M-2)\rho_4^2 + 2\rho_2\rho_4\cos\theta + 2\rho_1\rho_4\cos(\phi+\theta) = 0$ $\begin{bmatrix} n_c \approx 0.5 \text{ (transfer matrix)} \\ n_c \approx 0.26 \text{ (one-loop RG)} \end{bmatrix}$ $n_c = \sqrt{2} - 1 \approx 0.41$ (exact) ⊢ c<sub>8</sub> (strong coupling FP) c<sub>n</sub> (pure dilute FP) cn (pure dense FP IR FPs S $ho_4$ Modified from the original c = 0.4612(4)Z $rac{Z}{S}$ **Disorder modulus** - infinite disorder $\rho_1 = \rho_4 = 1, \quad \rho_2 = 0, \quad \cos \phi = -\frac{1}{\sqrt{2}}, \quad \cos \theta = -\frac{n^2 + 2n - 1}{\sqrt{2}(n^2 + 1)}$ 0.8 п 0.6 R 8 0.4 $\rho_1 = 1, \quad \rho_2 = \cos \theta = 0, \quad \cos \phi = -\frac{1}{n+1}, \quad \rho_4 = \frac{1-n}{1+n} \sqrt{\frac{n+2}{n}}$ 0.2 $\boldsymbol{P}$ 3.0 n 0.5 1.0 2.5 1.5 2.0 c = 0.5g = 0

#### Epsilon expansion from Ising CFT (d=2 fixed) varying the size of internal symmetry



#### M-coupled q-state Potts models with $M=3,4,5,\cdots$

$$H = \sum_{\langle ij \rangle} \mathcal{H}_{ij} \qquad \qquad \mathcal{H}_{ij} = -\sum_{m=1}^{M} K_m \sum_{1 \leq \mu_1 < \dots < \mu_m \leq M} \prod_{l=1}^{m} \delta_{\sigma_i^{(\mu_l)} \sigma_j^{(\mu_l)}}$$

M=3 coupled q-state Potts model

Dotsenko-Jacobsen-Lewis-Picco, Nucl. Phys. B 546 (1999) 505. "Coupled Potts models: Self-duality and fixed point structure"

$$\mathcal{H}_{ij} = -\left[\frac{K_1\left(\delta_{\sigma_i\sigma_j} + \delta_{\tau_i\tau_j} + \delta_{\eta_i\eta_j}\right) + \frac{K_2\left(\delta_{\sigma_i\sigma_j}\delta_{\tau_i\tau_j} + \delta_{\tau_i\tau_j}\delta_{\eta_i\eta_j} + \delta_{\sigma_i\sigma_j}\delta_{\eta,\eta'}\right) + \frac{K_3\delta_{\sigma_i\sigma_j}\delta_{\tau_i\tau_j}\delta_{\eta_i\eta_j}}{\left(\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i\sigma_j}\delta_{\sigma_i$$

(1)  $K_1 \neq 0, K_2 = K_3 = 0$ : 3-decoupled q-state Potts FP  $c_{\text{pure}}$  $c_{\rm FP}$ 1.50002.001.5000(2)  $K_1 = K_2 = 0, K_3 \neq 0$ : Single  $q^3$ -state Potts FP ("massive" if  $q^3 > 4$ ) 2.251.76271.7620(3)  $K_1 \neq 0, K_2 \neq 0, K_3 \neq 0$ : Non-trivial FP (S<sub>3</sub>-extended q-state Potts CFT) 1.99752.501.99312.20892.752.1976 $\alpha_{+}^{2} = \frac{4}{3} - \epsilon$   $\sqrt{q} = 2\cos\frac{\pi}{p+1}, \alpha_{+}^{2} = \frac{p+1}{p}$ 3.00 2.40002.3808 $\epsilon = 2/15$  for q = 3 state Potts model 3.252.57342.5500 $c_{decoupled} = 0.8 \times 3 = 2.4$  for (1) 2.73092.71643.50 $c_{TM} = 2.377 \pm 0.003$  $\Delta c = -24 \int_{0}^{g_*} \beta(g) \mathrm{d}g$ 3.752.87342.9054 $c_{FT} = 2.3808 + O(\epsilon^5)$ for (3)  $= -\frac{27}{8} \frac{M(M-1)}{(M-2)^2} \left( \epsilon^3 - \frac{9}{2(M-2)} \epsilon^4 \right) + \mathcal{O}\left( \epsilon^5 \right)$ 4.00 3.0000 3.3750

#### Various scaling behaviors established by Monte Carlo

M=3

Precision is not intended.



Dotsenko-Jacobsen-Lewis-Picco, Nucl. Phys. B 546 (1999) 505.

#### Spectrum of higher operators

| ΝŻ     |      |
|--------|------|
| <br>IV | — K. |
| <br>   |      |

| ,                                                                                                                                                                                                                                                                            |                                                                                                                                                                                    | -                                                                | (q-                                                | 2)-exj                               | pans                                | ion                                   |          | Т     | ran           | sfe     | r n              | nat           | rix           |                             |        |                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|-------------------------------------|---------------------------------------|----------|-------|---------------|---------|------------------|---------------|---------------|-----------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\overline{q}$                                                                                                                                                                                                                                                               | $\Delta_{\varepsilon_1\varepsilon_2+\varepsilon_2\varepsilon_3+\varepsilon_3\varepsilon_1}$                                                                                        | $\Delta_{\varepsilon_1\varepsilon_2-\varepsilon_2\varepsilon_3}$ | $\Delta_{\varepsilon_1\varepsilon_2\varepsilon_3}$ | $\Delta_{\sigma_1}$                  | $\Delta_{\sigma_1 \sigma_2}$        | $\Delta_{\sigma_1 \sigma_2 \sigma_3}$ |          | q     | $x_{H}^{(1)}$ | (8, 10) | $)  x_{H}^{(2)}$ | (6,8)         | ) $x_H^{(3)}$ | (6,8)                       |        |                                                                                                                                                                                              |
| 2.00                                                                                                                                                                                                                                                                         | 2.000                                                                                                                                                                              | 2.000                                                            | 3.000                                              | 0.12500                              | 0.2500                              | 0.3750                                |          | 2.00  | 0.1           | 25112   | 0.2              | 276866        | 6 0.4         | 71563                       |        |                                                                                                                                                                                              |
| 2.25                                                                                                                                                                                                                                                                         | 2.005                                                                                                                                                                              | 1.834                                                            | 2.837                                              | 0.12789                              | 0.2775                              | 0.4553                                |          | 2.25  | 0.1           | 27851   | 0.2              | 287143        | 3 0.5         | 00930                       |        |                                                                                                                                                                                              |
| 2.50                                                                                                                                                                                                                                                                         | 2.021                                                                                                                                                                              | 1.653                                                            | 2.664                                              | 0.12964                              | 0.2949                              | 0.5190                                |          | 2.50  | 0.1           | 29810   | 0.2              | 295985        | 5 0.5         | 29874                       |        |                                                                                                                                                                                              |
| 2.75                                                                                                                                                                                                                                                                         | 2.046                                                                                                                                                                              | 1.456                                                            | 2.479                                              | 0.12985                              | 0.3030                              | 0.5685                                |          | 2.75  | 0.1           | 31050   | 0.3              | 303470        | ) 0.5         | 58541                       |        |                                                                                                                                                                                              |
| 3.00                                                                                                                                                                                                                                                                         | 2.080                                                                                                                                                                              | 1.240                                                            | 2.280                                              | 0.12805                              | 0.3023                              | 0.6048                                |          | 3.00  | 0.1           | 31623   | 0.3              | 309661        | L 0.5         | 87025                       | 0      | 11                                                                                                                                                                                           |
| 3.25                                                                                                                                                                                                                                                                         | 2.126                                                                                                                                                                              | 0.997                                                            | 2.060                                              | 0.12353                              | 0.2921                              | 0.6283                                |          | 3.25  | 0.1           | 31577   | 0.3              | 314615        | 5 0.6         | 15388                       | Üc     | ld sector                                                                                                                                                                                    |
| 3.50                                                                                                                                                                                                                                                                         | 2.186                                                                                                                                                                              | 0.713                                                            | 1.806                                              | 0.11501                              | 0.2703                              | 0.6375                                |          | 3.50  | 0.1           | 30962   | 0.3              | 318393        | 3 0.6         | 43668                       |        |                                                                                                                                                                                              |
| 3.75                                                                                                                                                                                                                                                                         | 2.272                                                                                                                                                                              | 0.350                                                            | 1.486                                              | 0.09926                              | 0.2303                              | 0.6268                                |          | 3.75  | 0.1           | 29831   | 0.3              | 321061        | L 0.6         | 71885                       |        |                                                                                                                                                                                              |
| 4.00                                                                                                                                                                                                                                                                         | 2.500                                                                                                                                                                              | -0.500                                                           | 0.750                                              | 0.04238                              | 0.0975                              | 0.5301                                | ]        | 4.00  | 0.1           | 28237   | 0.3              | 322693        | 3 0.7         | 00047                       |        | Even sector                                                                                                                                                                                  |
| $(\varepsilon_{\rm S}^2)$                                                                                                                                                                                                                                                    | $\left(arepsilon_{ m S}^2\equivarepsilon_1arepsilon_2+arepsilon_2arepsilon_3+arepsilon_3arepsilon_1,\ arepsilon_{ m A}^2\equivarepsilon_1arepsilon_2-arepsilon_2arepsilon_3 ight)$ |                                                                  |                                                    |                                      |                                     |                                       |          | Gap   | x(4)          | x(6)    | x(8)             | x(10)         | x(12)         | Extrapola                   | ation  | Operator                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                              | $\Delta_{\varepsilon^2} = 2\Delta_{\varepsilon}(\epsilon) + 3$                                                                                                                     | $6\epsilon + \frac{9}{2}\epsilon^2 + \mathcal{O}$                | $(\epsilon^3)$                                     |                                      |                                     |                                       |          | 1     | 1.694         | 1.471   | 1.385            | 1.344         | 1.322         | 1.27                        |        | $\varepsilon_1 + \varepsilon_2 + \varepsilon_3$                                                                                                                                              |
|                                                                                                                                                                                                                                                                              | $-\varepsilon_{\rm S}$ $-\varepsilon(-)$                                                                                                                                           | $2^{2}$                                                          | (3)                                                |                                      |                                     |                                       |          | 2     | 2.603         | 2.380   | 2.272            | 2.219         | 2.148         | $\approx 2.0$               | )      | $\frac{T = L_{-1}I}{\overline{T} = \overline{L} I}$                                                                                                                                          |
|                                                                                                                                                                                                                                                                              | $\Delta_{\varepsilon_{\rm A}^2} = 2\Delta_{\varepsilon}(\epsilon) - \frac{1}{2}$                                                                                                   | $\frac{1}{2}\epsilon - 9\epsilon^2 + \mathcal{O}$                | $(\epsilon^3)$                                     |                                      |                                     |                                       |          | 4     |               | 3.104   | 2.398            | 2.225         | 2.140         | $\sim 2.0$<br>$\approx 2.1$ | ,<br>L | $\frac{1 - L_{-1}1}{\varepsilon_1 \varepsilon_2 + \varepsilon_2 \varepsilon_3 + \varepsilon_3 \varepsilon_1} $                                                                               |
| $\Delta_{\varepsilon}$                                                                                                                                                                                                                                                       | $_{1\varepsilon_{2}\varepsilon_{3}} = 3\Delta_{\varepsilon}(\epsilon) - \frac{1}{2}$                                                                                               | $\frac{27}{4}\epsilon^2 + \mathcal{O}\left(\epsilon^3\right)$    |                                                    |                                      |                                     |                                       |          | 5     |               | 3.104   | 2.685            | 2.633         | 2.599         | $\approx 2.3$               | 3      | $L_{-1}(\varepsilon_1 + \varepsilon_2 + \varepsilon_3) \qquad \qquad$ |
|                                                                                                                                                                                                                                                                              | $\sim$ 27 M                                                                                                                                                                        | $-1$ $\tau^{3}$                                                  | (-4) J                                             | $\Gamma = 2 \frac{\Gamma^2}{\Gamma}$ | $\left(-\frac{2}{3}\right)\Gamma^2$ | $\left(\frac{1}{6}\right)$            |          | 6     |               | 3.626   | 3.279            | 2.785         | 2.598         | ≈ 2.3                       | 3      | $\overline{L}_{-1}(\varepsilon_1 + \varepsilon_2 + \varepsilon_3)$                                                                                                                           |
| $\Delta_{\sigma}$                                                                                                                                                                                                                                                            | $T_1 = \Delta_\sigma - \frac{1}{16} \frac{1}{(M - 1)}$                                                                                                                             | $(-2)^2 \mathcal{F} \epsilon^2 + C$                              | (ε)                                                | $^{-}\Gamma^{2}$ (                   | $-\frac{1}{3}$ ) $\Gamma^2$ (       | $(-\frac{1}{6})$                      |          | 7     |               | 3.991   | 3.279            | 2.785         | 2.598         | $\approx 2.4$               | 1      | $\varepsilon_1 \varepsilon_2 \varepsilon_3$                                                                                                                                                  |
| $\Delta_{\sigma_1 \sigma_2} = 2\Delta_{\sigma}(\epsilon) + \frac{3\epsilon}{4(M-2)} \left( 1 - \frac{3\epsilon}{M-2} \left( (M-2)\log 2 + \frac{11}{12} \right) \right) + \mathcal{O}(\epsilon^3),$                                                                          |                                                                                                                                                                                    |                                                                  |                                                    |                                      |                                     | 8                                     | <u> </u> | 3.991 | 3.289         | 3.146   | 3.066            | $\approx 3.0$ | )             | $T' = L_{-3}I$              |        |                                                                                                                                                                                              |
| $\Delta_{\sigma_{1}\sigma_{2}\sigma_{3}} = 3\Delta_{\sigma}(\epsilon) + \frac{9\epsilon}{4(M-2)} \left( 1 - \frac{3\epsilon}{M-2} \left( (M-2)\log 2 + \frac{11}{12} + \frac{\alpha}{24} \right) \right) + \mathcal{O}(\epsilon^{3})  \alpha = 33 - \frac{29\sqrt{3}\pi}{3}$ |                                                                                                                                                                                    |                                                                  |                                                    |                                      |                                     |                                       |          |       |               |         |                  |               |               |                             |        |                                                                                                                                                                                              |

Dotsenko-Jacobsen-Lewis-Picco, Nucl. Phys. B 546 (1999) 505.

#### RG flow on the self-dual manifold of couplings

- J. L. Jacobsen, Phys. Rev. E62 (2000) 1. "Duality relations for M coupled Potts models"
- •Established explicit duality transformations. The self-dual manifold has dimension [M/2].
- Found the non-trivial FP using the C-function landscape obtained by the transfer matrix (TM).



#### Conclusion and outlooks

- ◆ In 2d, the RG flow in the *M*-replicated O(n) models and Potts models with the bond-bond interaction can be explored with the (1-n)-expansion and (q-2)-expansion, respectively. This is true both for  $M \rightarrow 0$  (non-unitary) and M = 3, 4, 5, ... (unitary).
- ◆ For  $M \to 0$ , the symmetry enhancement at the non-perturbative fixed point (∃oneparameter extension of the Nishimori universality class at n = 1 or q = 2) is outstanding and suitable for a supergroup bootstrap of the spectrum with  $C_{\text{eff}} = \frac{\partial}{\partial M} \Big|_{M=0} c_M \approx 0.4612(4)$ .
- S-matrix method can yield exact results (e.g.  $n_c = \sqrt{2} 1$  for M = 0).
- CFTs for S<sub>M</sub>-symmetry extended q-state Potts model. (Dotsenko-Jacobsen-Lewis-Picco 99~)

Spectrum has been studied in (q-2)-expansion. Detailed numerical results are available, in particular, for M = 3. For large M, the interlayer coupling becomes weak (1/M-expansion). In the  $M \rightarrow +\infty$  limit,  $\Delta c_{FT} = \frac{-1}{125} = -0.008$  at q = 3 ( $\Delta c_{FT} = \frac{-1}{8}$  at q = 4) is infinitesimally small compared with  $Mc_q$ .

# Backup Slides

#### Appendix:

#### Phase Transition in a Random System (Experiment)

- Adsorption of the Hydrogen atoms on the Ni(111) surface; order-disorder transition
- Some of sites are occupied by the Oxygen atoms.
- The universality of the Random-bond 4-state Potts model



|                    | Expe            | riment            | Theory |                  |  |  |  |  |
|--------------------|-----------------|-------------------|--------|------------------|--|--|--|--|
|                    | Pure            | Impure            | Ising  | Four-state Potts |  |  |  |  |
| $\overline{\beta}$ | 0.11±0.01       | $0.135 \pm 0.01$  | 0.125  | 0.083            |  |  |  |  |
| γ                  | $1.2{\pm}0.1$   | $1.68 {\pm} 0.15$ | 1.75   | 1.167            |  |  |  |  |
| $\dot{\nu}$        | $0.68 \pm 0.05$ | $1.03 {\pm} 0.08$ | 1.0    | 0.667            |  |  |  |  |
|                    |                 |                   |        |                  |  |  |  |  |

#### two-loop β-function Example: $A_{3,1}(r,\epsilon) = 4(M-2)(M-3) \qquad \Big/ \qquad \langle \mathcal{E}(x)\mathcal{E}(y)\rangle_0 \langle \mathcal{E}(y)\mathcal{E}(z)\rangle_0 d^2z d^2y$ |y-x|, |z-x| < r $= 8\pi (M-2)(M-3) \int \left(\frac{dy}{y^{1+16\epsilon}}\right) \int |z|^{-2+8\epsilon} |z-1|^{-2+8\epsilon} d^2z$ $= 16\pi^{2}(M-2)(M-3)\left(\frac{r^{8\epsilon}}{64\epsilon^{2}}\right).$ $A_{3,2}(r,\tilde{\epsilon}) = 4(M-2) \qquad \left\langle \mathcal{E}(x)\mathcal{E}(y)\mathcal{E}(z)\mathcal{E}(\infty) \right\rangle_0 \langle \mathcal{E}(y)\mathcal{E}(z) \rangle_0 d^2y d^2z \right\rangle_0 d^2y d^2z$ |y-x|, |z-x| < r $= 4(M-2)\mathcal{N}\int \langle V_{\bar{13}}(0)V_{13}(y)V_{13}(z)V_{13}(\infty)V_{\alpha_{-}}(u)V_{\alpha_{-}}(v)\rangle_{0}$ |y-x|, |z-x| < r $\times \langle V_{13}(y)V_{13}(z)\rangle_0 d^2y d^2z d^2u d^2v$ $= 8\pi (M-2) \mathcal{N} \int \left(\frac{dy}{y^{1+16\epsilon}}\right) \times$ Six-fold multiple integrals $\int |z|^{-4\alpha_{\overline{13}}\alpha_{13}} |z-1|^{+4\alpha_{13}^2 - 4\alpha_{\overline{13}}\alpha_{13}} |u-v|^{4\alpha_-^2}$ $|u|^{4\alpha_{\overline{13}}\alpha_{-}}|u-1|^{4\alpha_{13}\alpha_{-}}|u-z|^{4\alpha_{13}\alpha_{-}}$ $|v|^{4\alpha_{\overline{13}}\alpha_{-}}|v-1|^{4\alpha_{13}\alpha_{-}}|v-z|^{4\alpha_{13}\alpha_{-}}d^{2}zd^{2}ud^{2}v$ $\infty$



