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Abstract: We develop in this paper the principles of an associative algebraic approach to
bulk logarithmic conformal field theories (LCFTs). We concentrate on the closed gl(1]1)
spin-chain and its continuum limit—the ¢ = —2 symplectic fermions theory—and rely
on two technical companion papers, Gainutdinov et al. (Nucl Phys B 871:245-288,
2013) and Gainutdinov et al. (Nucl Phys B 871:289-329, 2013). Our main result is
that the algebra of local Hamiltonians, the Jones—Temperley—Lieb algebra JT Ly, goes
over in the continuum limit to a bigger algebra than V, the product of the left and right
Virasoro algebras. This algebra, S—which we call interchiral, mixes the left and right
moving sectors, and is generated, in the symplectic fermions case, by the additional field
$(z,2) = Sap¥® (z)¥P(Z), with a symmetric form S«p and conformal weights (1, 1).
We discuss in detail how the space of states of the LCFT (technically, a Krein space)
decomposes onto representations of this algebra, and how this decomposition is related
with properties of the finite spin-chain. We show that there is a complete correspondence
between algebraic properties of finite periodic spin chains and the continuum limit. An
important technical aspect of our analysis involves the fundamental new observation
that the action of JT L in the g[(1|1) spin chain is in fact isomorphic to an enveloping
algebra of a certain Lie algebra, itself a non semi-simple version of sp,_,. The semi-
simple part of JT Ly is represented by Uspy_,, providing a beautiful example of a
classical Howe duality, for which we have a non semi-simple version in the full J7 Ly
image represented in the spin-chain. On the continuum side, simple modules over S are
identified with “fundamental” representations of sp..

1. Introduction

Our understanding of logarithmic conformal field theory (LCFT) has greatly improved
recently thanks to a renewed focus on purely algebraic features and in particular a
systematic study of Virasoro indecomposable modules.
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Most of the developments have concerned boundary LCFTs, where two lines of
attack have been pursued. The first one is rather abstract, and follows the pioneering
work of Rohsiepe [1] and Gaberdiel [2], where, in particular, fusion is interpreted as
the tensor product of the symmetry algebra [3-5]. The other [6,7] is somehow more
concrete, in that it relies on lattice regularizations, and exploits the (not entirely un-
derstood) similarity [8] between the properties of lattice models and their conformally
invariant continuum limits. The models involved in this second approach provide [9]
representations of associative algebras such as the Temperley—Lieb algebra. It turns out
that the representation theory of these algebras is, in a certain (categorical, see Sect. 2.4)
sense [10], similar to the one of chiral algebras in LCFT. The structure of indecompos-
able modules and fusion rules can then be predicted from the analysis of the scaling
limit of the lattice models [6,7,11]. The results are in perfect agreement (so far) with the
conclusions of the first approach based on (considerably more involved) calculations in
the Virasoro algebra [4,12].

To be now a little more precise, the general philosophy of the lattice approach in the
boundary case relies on the analysis of the microscopic model as a bi-module over two
algebras. In physical terms, one of these algebras is generated by the local hamiltonian
density, and the other is the ‘symmetry’ commuting with the hamiltonian densities.
More precisely, the types of models we are interested in carry alternating fundamental
representations of a super Lie algebra, and admit a single invariant nearest neighbor
coupling, the ‘super equivalent’ of the Heisenberg interaction H; ~ 3’,- . S’Hl. The
different H;’s turn out to obey some non-trivial algebraic relations, so that the models
provide a representation of a certain abstract algebra A—the ordinary and boundary
Temperley-Lieb algebras for instance.

Meanwhile, the local Hamiltonians are invariant under the super Lie algebra. In
fact, they typically are invariant under a bigger algebra which is, in technical terms,
the centralizer of A. We recall here that the centralizer 34 of an associative algebra A
acting on a representation space V is the algebra of all intertwining operators End4 (V),
i.e., 34 is the algebra of the maximum dimension such that [34, A] = 0. For the open
case of finite gl(m|n)-symmetric spin chains, this centralizer was dubbed A,,|, in [10],
where it was shown to be Morita equivalent to Ugs€(2) with q+ q~! = m — n, actually
to the corresponding finite-dimensional g-Schur algebra. Usually, the representation
theory of this centralizer—typically a quantum group or an algebra Morita equivalent to
one—is easier to study than the representation theory of A or its scaling limit, a chiral
algebra. In general, all these algebras are not semi-simple, and give rise to complicated
indecomposable modules. The point is, in part, that these modules have, even for finite
spin chains, properties that are closely related with those of the associated LCFT.

While the key observation in [6, 10] about the similarity between the algebraic proper-
ties of the lattice models and their logarithmic continuum limit is not entirely understood,
it can be then interpreted in some cases at least in terms of quantum groups. Recent stud-
ies of centralizers of chiral algebras (Virasoro and W-algebras) in continuum logarithmic
models have indeed unraveled a remarkable equivalence [13—15] between the represen-
tation theory and the fusion rules of the chiral algebras and certain quantum groups. It is
exactly the same quantum groups that appear as centralizers in the lattice models, hence
providing the link between finite size and scaling limit properties.

Turning now to bulk LCFTs, progress has been more modest. The problem is that,
on the more abstract side, one now expects indecomposability under the left and right
actions of the Virasoro algebras, leading to potentially very complicated modules, which
have proven too hard to study so far, except in some special cases. These include bulk
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logarithmic theories [16,17] with W-algebra symmetries [18,19], and WZW models on
supergroups which, albeit very simple as far as LCFTs go, provide interesting lessons
on the coupling of left and right sectors [20,21]. On the more concrete side, while it
is possible to define and study lattice models whose continuum limit is a (bulk) LCFT,
the underlying structures are also very difficult to get: symmetries are smaller, and the
lattice algebras have much more complicated representation theory. Nevertheless, it
looks possible to generalize the approach in [7,10] thanks to recent results about the
centralizer 377 of the Jones—Temperley—Lieb (JTL) algebra J T L y acting on periodic
super-symmetric spin chains with N tensorands/sites. This paper presents our first results
in this direction for the gl(1|1) case. It is based on two technical companion papers. In
the first one [22], we focussed on the symmetries of the spin chain, that is, the centralizer,
in the alternating product of the gl(1]|1) fundamental representation and its dual, of the
JTL algebra. We proved that this centralizer is only a subalgebra of Ugs€(2) at q = i
that we dubbed U gddsé(2). We then analyzed the continuum limit N — oo of the JTL
algebra: using general arguments about the regularization of the stress-energy tensor, we
identified families of JTL elements going over to the Virasoro generators L, and L,. We
also discussed the well known s€(2) symmetry of symplectic fermions from the lattice
point of view, and showed that this symmetry, albeit present in the continuum limit, does
not have a simple, useful analog on the lattice. In our second paper [23], we analyzed
the decomposition of the spin chain over the JTL algebra J7 Ly, and obtained the full
decomposition as a bimodule over U gddsE(Z) and JT L y.

Equipped with these results, we can now explore to what extent the remarkable
properties observed in the open case [10] carry over to the bulk case. Our conclusion
is that the algebraic properties of the finite periodic spin chain and the bulk LCFT are
again very similar. The crucial new ingredient is that the JTL algebra goes over, in the
continuum limit, to a bigger operator algebra than V, the product of the left and right
Virasoro algebras. This algebra—which we call interchiral, mixes the left and right
moving sectors, and is generated, in the symplectic fermions case, by the additional
field

S(2,2) = Sup¥*@VP @), Sn=Sn1=1, Si1=52=0, (1.1)

with conformal weights (1, 1). More formally, we construct an inductive system of
JT Ly algebras, together with their spin-chain representations, and identify the inductive
limit with an infinite-dimensional operator algebra S generated by the modes of the
field S(z, z). Most of the present work is devoted to explicitly identifying this interchiral
algebra S, studying its properties, and using it to provide a new analysis of the symplectic
fermions LCFT. We believe that the concept of interchiral algebra will prove fundamental
in the analysis of more complicated cases—in particular those at central charge ¢ = 0—
as will be discussed in forthcoming work.

The paper is organized as follows. We start in Sect. 2 by a reminder of the main
algebraic features, both on the lattice and in the scaling limit, for the open gl(1]1)
spin chain (and its gl(n|n) generalizations). In Sect. 3 we similarly remind the reader
of the main algebraic properties of the closed gl(1|1) spin chain. The latter involves
now a ‘periodic’ version of the Temperley—Lieb algebra which we call, following [10],
the Jones—Temperley—Lieb algebra J T Ly, and the symmetry algebra U gdds€(2) which
is, up to some trivial elements, its centralizer 3 ;7 . The structure of the corresponding
bimodule is recalled in Fig. 3. We also mention briefly the antiperiodic spin chain [where
the gl(1|1) symmetry is broken], where one now deals with a twisted version J TL?V"’ of
the Jones—Temperley—Lieb algebra, while the centralizer is just Us£(2) algebra. Section
4 is the first containing new results. We discuss there how, remarkably, the image of the
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JT Ly in the gl(1]1) spin chains is in fact isomorphic to (the image of) the enveloping
algebra of a certain non-semisimple Lie algebra containing sp _, as its maximal semi-
simple subalgebra. The semi-simple part of JT Ly (that is, after quotienting by the
radical) is represented by Uspy_,, providing a beautiful example of a classical Howe
duality [24], for which we have a non semi-simple version in the full JT Ly case. The
main goal of the rest of this paper is to understand the scaling limit of J7 Ly defined
as a particular inductive limit N — oo of algebras. To do this, we start in Sect. 5 by
discussing the scaling limit of the g[(1|1) spin chain, in particular the inductive limit of
JT Ly as algebras of bilinears in fermion modes—Sects. 5.1, 5.2 and, of the centralizer
and the bimodule structure in Sect. 5.3. In Sect. 5.4, we describe the Virasoro algebra
content of the inductive limits of simple J7 Ly-modules that appear in the periodic
gl(1]1) model. While on the finite lattice with N sites the simples are just fundamental
representations of spy_»,, in the limit simple modules over the scaling limit of JT Ly
are identified with appropriate simple sp,,-modules. In Sect. 5.5, we also describe the
scaling limit of the anti-periodic gl(1|1) spin chains.

We then turn to Sect. 6 where we identify the scaling limit of the JT L algebras as
the interchiral algebra. This identification requires making contact with several physics
concepts and introduction of completions of the inductive-limit algebras in Sect. 6.2.
While the Sects. 4 and 5 are mathematically the most important of this paper—they
contain our main theorems equipped with proofs—the Sect. 6 is conceptually the most
important from a physics point of view and relies on results provided with only ideas of
a proof or conjectures which we are not proving in the present paper. Accordingly, Sect.
6 is less rigorous, and can be considered as the “physics part” of this paper.

The idea of the interchiral algebra is that, for general models, the scaling limit of
JT Ly will contain, in addition to the chiral and anti-chiral Virasoro algebras, the modes
of non chiral fields, such as the degenerate conformal field @ ; x @3 ;. In the particular
case of symplectic fermions, this field becomes the interchiral field S(z, 7) from (1.1),
and the scaling limit of J7 Ly, which we discuss in Sect. 5 from the point of view of
bilinears in fermion modes, can also be identified using bilinears in fermionic fields,
which are discussed in Sect. 6.1. The interchiral algebra proper is introduced in Sect.
6.3 where it is denoted by S. Sect. 6.5 extends the discussion to the antiperiodic model
or the so-called “twisted sector”. In Sect. 6.6 we discuss modules over the interchiral
algebra in the LCFT and their relation with J7T Ly modules on the lattice. Of particu-
lar importance is our discussion of the vacuum module over the interchiral algebra in
Sects. 6.6.1 and 6.6.2. In Sect. 6.7 we discuss indecomposable modules over S and their
relation with the symplectic fermion theory. This involves an analysis of the space of
states of this theory as a module over the left-right Virasoro algebra V(2) (which we
believe is new) in Sect. 6.7.1. We then show that this analysis agrees with the scaling
limit of the bimodule over JT Ly and 3,77 . A few conclusions—and pointers to sub-
sequent developments—are given in the conclusion. Finally, several technical aspects
are addressed in five appendices. In particular, our inductive limits constructions are in
Appendix C.

1.1. Notations. To help the reader navigate through this long paper, we provide a partial
list of notations (consistent with all other papers in the series)

TLy the (ordinary) Temperley—Lieb algebra,
Ty the periodic Temperley—Lieb algebra with the translation u, or the
algebra of affine diagrams,
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JTLy
3JTL
Ng[
Pgl

e f
51,]

Xl,n
Pl,n

H+

H-

the Jones—Temperley—Lieb algebra,

the centralizer of JT Ly,

the spin-chain representation of J 7T Ly,

the spin-chain representation of the quantum group Ugs£(2),

the Lusztig’s divided powers in Uqs£(2),

the elementary matrix with exactly one nonzero entry, which is 1
in the (i, j) position,

the simple U;s£(2)-modules,

the projective U;s€(2)-modules,

the simple Ul.(’ddsﬂ(Z)— and 377 -modules,

the indecomposable summands in spin-chain decomposition over
the centralizer 377,

the standard modules over T Ly,

the projective modules over T Ly,

the simple modules over J T L y for which we also use the notation
@9,

the standard modules over JT Ly,

the indecomposable summands in spin-chain decomposition over
JT Ly,

a Lie algebra introduced in Sect. 4.3.1,

a central extension of Gy,

the Lie algebra of infinite matrices with finite number of non-zero
elements, see Sect. 5.1.2,

a central extension of the Lie algebra gl,

the symplectic Lie algebra of infinite matrices,

a Lie algebra of infinite matrices—the scaling limit of &) —
introduced in Sect. 5.1.3,

a Lie algebra of local operators introduced in Sect. 6.1.3,

the interchiral algebra, see Sect. 6.3,

the left Virasoro algebra with ¢ = -2,

the product of the left and right Virasoro algebras,

the simple Virasoro modules,

the staggered Virasoro modules,

a module over UG, which is obtained in the scaling limit of the
JTL modules ’E’j,(fl).f” s

a module over U S, which is obtained in the scaling limit of the
JTL modules P s

the bosonic space of states in symplectic fermion theory,

the fermionic space of states in symplectic fermion theory.

All the algebras in this paper are associative and defined over the field C of complex

numbers.

2. A Reminder of the Open Case

2.1. The open gl(1|1) super-spin chain. The open gl(1|1) super-spin chain [10,22] is a
tensor product representation Hy = ®§V=1(C2 of the Temperley—Lieb (TL) algebra of
zero fugacity parameter m. We recall that the ordinary TL algebra denoted by T L y (m)
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is generated by e;, with 1 < j < N — 1, and has the defining relations

2 _ .
e; =mej,
ejejriej = ej, (2.1)

ejer =eej (j#k, k+1),

where m is a real parameter.

The representation space H y consists of N = 2L tensorands labelled j =1, ..., 2L
with the fundamental representation of g[(1|1) on even sites and its dual on odd sites. The
representation of each TL generator ¢ is given by projectors on the gl(1|1)-invariant in
the product of two neighbour tensorands

e?:(ﬁ+ﬁﬂxﬁ4fﬁa 1<j<2L-1, (2.2)

where we use a free fermion representation based on operators f; and f ]I acting non-
trivially only on jth tensorand and obeying

Ui Fy =0, U] 1y =00 (S5 i = (=185, (2.3)

where the minus sign for an odd j is due to presence of the dual representations of
gl(1]|1). The generators e? ! provide then a representation of 7'Ly; (m = 0) which is
known to be faithful.

The representation space Hyy is equipped with an inner product (-, -) such that
(fjx,y) = (x, f;y) for any x, y € Hor. We stress that the inner product is indefinite
because of the sign factors in the relations (2.3). The Hamiltonian operator

with the ‘hamiltonian densities’ e?[ defined in (2.2), is self-adjoint Hop, = HJP_ with

respect to this inner product (actually, each e? Yisa self-adjoint operator). Its eigenvalues
are real and the eigenvectors can easily be computed. Because of the indefinite inner
product, the self-adjoint Hamiltonian can have non-trivial Jordan cells and here it is
indeed the case—the Jordan cells are of rank two [7].

The open gl(1]1) spin-chain exhibits a large symmetry algebra dubbed .41 in [10].
This algebra is the centralizer 31 of 7Ly (0) and is generated by the identity and the
five generators

Foy= > fi. Fy= > f] (2.4)
1<j<N 1<j<N
Foy= D fifis Fhy= D0 fifl, N= > 0l @s)
1=j<j’=N 1<j<j'=N I<j=N

We note that the formulas give, after trivial redefinitions, a representation of the
(Lusztig) quantum group Uqs€(2) at ¢ = i. The fermionic generators above, those
with the subscript ‘(1)’, are from the nilpotent part and the bosonic ones form the
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A TL
4 o
3 °
2
1 o
U,sl, (A,)
0 >
0 1 2 3 4

Fig. 1. The structure of the open gl(1|1) spin-chain (i.e., n = 1) for N = 8 sites, as a representation of the
product 7Ly X U;s£(2). Some nodes occur twice and have been separated slightly for clarity

s£(2) subalgebra in Uqs£(2). It will be convenient in what follows to introduce slightly
modified generators! of U, qs€(2)

N
h= D V=5 e=a' X fisl f=a X fife

Jj=1 I<ji<j2=N I<ji<jp=N
(2.6)
N N
K=(-1)™ E=> K F=q'> /i @7
j=1 =1
obeying in particular
KEK™! = —E, KFK™! = —F, E2=F>=0, (2.8)
[h,e] =e, [h, f] = —f, le, f] = 2h, (2.9)

see more details in [22]. The s£(2) Cartan generator h is related to the total-spin operator
S% in the XX language, or the Fermion number N as

Jh=S=N-L. (2.10)

For our alternating chain, the values of S* are integer since the number of sites is even,
and thus h takes integer or half integer values.

2.2. Bimodule on a finite lattice. The decomposition of the open spin-chain as a bimod-
ule over the pair (7 Ly, Ajj1) of mutual centralizers is shown on Fig. 1 for the N = 8

T we dispense with the more correct notation pgy used in [22].
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A Virasoro .
.
L]
* b
3 °
2
1 °
U,sl, ()
0 >
0 1 2 3 LA

Fig. 2. Space of states of the continuum theory as a representation of V(2) X U;s€(2). The vertical labels
n=1,2,... areforthe Virasoro V(2) irreducible representations of the conformal weights A, | = n(n—1)/2

case and borrowed from [7]. The label j in the horizontal direction corresponds to the
double value of the s€(2) spin n—the highest weight of an s£(2)-module. Each node
with a Cartesian coordinate (j, k) in the bimodule diagram corresponds to a simple sub-
quotient over the tensor product 7 Ly X U;s€(2) of the commuting algebras and arrows
show the action of both the algebras—the Temperley—Lieb 7Ly acts in the vertical
direction (preserving the coordinate j), while U;s¢(2) acts in the horizontal way. Inde-
composable projective T L y-modules Py can be recovered by ignoring all the horizontal
arrows, while tilting U;s£(2)-modules Py ; (these are also projective [15]) are obtained
by ignoring all the vertical arrows. For more details, see [7,23].

2.3. Bimodule in the continuum limit. The crucial observation of [7] is that an identical
bimodule structure, extending to arbitrarily high values of the s€(2) spin n = j/2, is
present in the continuum limit. This is illustrated on Fig. 2, where the same comments as
in the finite chain apply exactly, with the replacement of 7T'L by the Virasoro algebra
at central charge ¢ = —2 denoted by V(2).

It is useful here to comment Fig. 2 further. In the boundary symplectic fermion
theory, the space of states decomposes as a direct sum of bosonic " and fermionic H~
sectors mixed by the fermionic part of the gl(1]1) algebra. We remind that the symplectic
fermions form an s¢(2) doublet [25] and the fermionic part of the gl(1|1) is formed by
the two zero modes of the fermions. Each of the sectors is further decomposed as a direct
sum of modules over the product s£(2) X V(2) of the two commuting algebras, s£(2)
and Virasoro, as (see also [26])

H =P CRPuwiit. H = P CiBPus. .11)

neNp neN—%

where C,, denotes a (2n + 1)-dimensional s£(2)-module of the (iso)spin n, and Virasoro
modules P, | are the so-called staggered modules introduced in [1]. Note that we use
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the term ‘isospin’ for s€(2)-modules on the CFT side in order to distinguish them from
ones on the lattice, where the highest weight of an s¢(2)-module we call in general by
‘spin’. In the open case, the Usf(2) symmetry of the symplectic fermion theory [25]
and the Us£(2) part of the full quantum group Ugs€(2) are actually coincident but this
will not be true in the non-chiral case. Recall again that the value of S* for the highest
weight at (isospin) n is j = 2n, the horizontal label used in Fig. 2.

The staggered V(2)-modules are indecomposable and have the following subquotient
structure

Xons1,1

SN

Pons1,1 = Xon 1 Xons2,1 (2.12)

NS

Xone1

where X»,41,1 is the irreducible V(2)-module with the conformal dimension Aj,41,1 =
n(2n + 1), with a non-negative integer or half-integer n. We note that a south-east arrow
represents an action of negative Virasoro modes while a south-west arrow represent pos-
tive modes action. In the diagram (2.12), the staggered module is a ‘glueing’/extension
of two indecomposable Kac modules which are highest-weight modules. The one in
the top composed of A%,41,1 and A%,42,1 is the quotient of the Verma module with the
weight Ag,41,1 by the singular vector at the level 2n + 1, and the second Kac module in
the bottom composed of x>, 1 and X2,41,1 is a similar quotient (at the level 2n) of the
Verma module with the weight Ay, .

The different terms in H* and H~ from (2.11) are in turn connected by the action
of gl(1|1), resulting into the diagram on Fig. 2, where each node is a product of an
irreducible V(2)-module and an irreducible s¢(2)-module of dimension j + 1. We see
that the symmetry algebra in this CFT, the centralizer of V(2), is the semi-direct product
of the fermionic part of gl(1|1) and the enveloping algebra U s£(2). This centralizer turns
out to coincide with (a representation of) the quantum group Uqs€(2) at q = i, which
we also denote by .41, as on a finite spin-chain.

2.4. A note on other spin-chains. Note that while we discuss only gl(1|1) spin-chains
here, a diagram identical to Fig. 2 describes the continuum limit of alternating gl(n|n)
spin-chains. We recall that these spin-chains are defined in a similar fashion by intro-
ducing projections on gl(n|n)-invariants [27]. They give also faithful representations of
T L n(0) where the horizontal action in the bimodule diagram is due to the symmetry
algebra being now Ay, an algebra which is Morita equivalent to Ay; [10].

A similar analysis for other cases—representations of 7'L y (m) for other values of
m—such as the alternating gl(2|1) spin-chain or the XXZ spin-chains with Ugs€(2)
symmetry at different roots of unity show that the lattice bimodule structure can be used
along the same lines to infer properties of all known boundary logarithmic CFTs. In
particular, the staggered Virasoro modules for different central charges abstractly dis-
cussed in [3] or [4] can quickly be recovered in this fashion, at least their subquotient
structure can be deduced from the bimodules. This opens in particular the way to measur-
ing [28,29] indecomposability parameters (also called 8 invariants [12]) characterising
Virasoro-module structure completely, or to computing fusion rules using an induction
procedure [7,10,30].

These similarities in subquotient structures and fusion rules indicate an equivalence
between corresponding tensor categories. Braided tensor structure or fusion data on the



44 A. M. Gainutdinov, N. Read, H. Saleur

lattice part is given by an induction bi-functor associated with two lattices of arbitrary
sizes joined to each other. Rigorously, this bi-functor gives a braided tensor structure only
in the infinite size limit, where a construction of inductive limits of the finite categories
of modules over the Temperley—Lieb algebras is required. We note that a systematic
way to construct these limits is based on the spin-chain bimodules. Then, the inductive
limits should be compared with braided tensor categories of modules over the Virasoro
algebras. We believe that a direct construction of centralizers of the Virasoro algeras in
the LCFTs would give the desired equivalence.

This equivalence can be established by direct calculation in the case of symplectic
fermions, where the continuum limit can be explicitly carried out (for steps in this direc-
tion, see [22]). For other cases however, such a calculation seems completely out of reach
since models are only Bethe ansatz solvable, and precious little is known about their
continuum limits, apart from critical exponents and some indecomposable modules.
The equivalence thus remains a very reasonable conjecture, which will take consid-
erably more work—in particular, in defining the continuum or scaling limit—before
being rigorously established. It can nevertheless be easily understood if one recognizes
the similar role played by the quantum group Uqs£(2) both on the lattice and in the
continuum [15,31].

Meanwhile, our strategy consists in postulating that similar equivalences between
the lattice and continuum models are present in the bulk, or non-chiral, case as well. We
shall then study the case of closed gl(1]1) spin-chains in detail, to draw lessons that we
will then apply to more complicated—and physically interesting—models.

3. A Reminder of the Algebraic Aspects in the Closed Case

3.1. The Jones—Temperley—Lieb algebra JT L (0). A closed periodic spin-chain can
be obtained by adding a last generator e,%,[ defined using formula (2.2) but this time
identifying the labels modulo N, in particular fy.+1 = fi, fl-\{-/+1 = flT:

e = (fw + PO+ . 3.1)

The generators e? [, with 1 < j < N, satisfy the same relations (2.1) but now the indices
are interpreted modulo N.

The relations (2.1) (defined modulo N) define an infinite dimensional associative
algebra denoted in our companion papers by T'L, [32,33]. The algebra T L%, is known
in the physics literature as the periodic Temperley—Lieb algebra [34,35]. In fact, the
formulas for the generators in (2.2) and (3.1) lead to many more relations; as a result, the
periodic gl(1]1) spin-chain provides a non-faithful representation of 7'L%,. Moreover,
it provides a non-faithful representation of a finite-dimensional quotient—called the
Jones—Temperley—Lieb algebra JT Ly (m = 0)—of a slightly bigger algebra enlarging
T LY, by a translation operator u?, see e.g. [23, Sec. 2.1]. We denote this representation
in what follows by g : JT Ly (0) — Endc(Hnw).

To define the algebra JT Ly, (m) (the following description is taken almost verbatim
from [10]), we first introduce an operator > (with inverse #~2) which translates any state
to the right by two sites (so as to be consistent with the distinction of two types of sites
carrying dual representations). We thus have uzeju_z = ¢j42 and we also impose the
relation u> = 1. We then define abstractly an algebra of diagrams as is customary for the
ordinary Temperley—Lieb (TL) algebra, but this time on an annulus (or finite cylinder),
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in which a general basis element corresponds to a diagram of 2L sites on the inner,
and 2L on the outer boundary; the sites are connected in pairs, but only configurations
that can be represented using lines inside the annulus that do not cross are allowed.
Multiplication is defined in a natural way on these diagrams, by joining an inner to an
outer annulus, and removing the interior sites. We emphasize that whenever a closed
loop is produced when diagrams are multiplied together, this loop must be replaced by a
numerical factor m (as for the TL algebra), even for loops that wind around the annulus,
as well as for those that are homotopic to a point. We also impose that non-isotopic
(in the annulus) diagrams connecting the same sites are identified. Then, the resulting
algebra is finite-dimensional and is generated by the elements ¢; and u?, and they obey
the relations (2.1) defined modulo N, which however are not a complete set of defining
relations. We note that the numerical factor m for winding loops is not a consequence
of the stated relations, but a separate assumption.

In what follows, we consider only the case m = 0 and use the notation JT Ly =
JT Ln(0).

The Hamiltonian operator Hpe,. in the periodic case will be denoted simply by H
and is given by

H==-> ¢ (3.2)

J=1

This operator is also self-adjoint H = H' with respect to the inner product, as in the
open case described above. Its eigenvalues are also real and the eigenvectors can easily be
computed. As a consequence of the indefinite inner product, the self-adjoint Hamiltonian
has non-trivial Jordan cells of rank-two [22], see also Sect. 5.1 below.

3.2. The centralizer 3y of JT Ly. In the closed case, while the gl(1|1) symmetry
generated by F{y), F(Tl), and N remains, the bosonic s¢(2) generators F(2) and F(Tz)

defined in (2.5) do not commute with the action of JT Ly [22]. What remains of Ajj;
or Uqs£(2) is only the fermionic generators

F(2n+1) = Z fj]ij"‘ijnH’

I<ji<j2<
< Jjon+1 Z2L

n=>0, 3.3)
T _ Tt i
F(2n+1) = Z fjlsz"'sznu’

I<ji<je<
< jon+1 <2L

which, together with the bosonic operators N and F2;,) and F/ (TZ 1)» generate the centralizer
371 of the representation of JT Ly .

For further reference, we recall another and more convenient for us description of
the centralizer in terms of standard Ugs£(2) generators. We introduce the generators

2 2
EmzemEK2+1, Fnzf"FK;l, m.n >0, (3.4)

which are represented on the spin-chain following the expressions (2.6) and (2.7). They
generate a subalgebra in Ugs€(2) which we denote as Ugddsﬁ(Z), see [22, Dfn. 3.3.1].

This subalgebra has the basis E, F,, h*K!, withn, m,k > 0and 0 <[ < 3. The positive


AG
Texte surligné 


46 A. M. Gainutdinov, N. Read, H. Saleur

Borel subalgebra is generated by h and E,, while the negative subalgebra—by h and F,,,
forn > 0.

The result [22, Thm. 3.3.3] is then that the centralizer 3 ;71 of the (representation gl
of) JT Ly on the alternating periodic gl(1]|1) spin-chain H>y is the algebra generated
by (the representation of) U, gddsﬁ (2) and f£, L. The correspondence with the fermionic

expressions (3.3) is F,, ~ Fon+1), En ~ F(+2n+1)’ and N ~ h, etc. For more details,
see [22, Sec. 3.3.4].
The representation theory of Ugddsﬁ(Z) was studied in our second paper [23] of

this series. The indecomposable Ugddsﬁ(Z) modules T,, with integer 1 < n < L,
which appear in the decomposition of H»;, as direct summands are restrictions to the
subalgebra U%%s5¢(2) of the well known projective covers Py, over Ugst(2). They
are all indecomposable, with dimension 4n, the same as the dimension of P ,. Their
subquotient structure is given also in [23, Sec. 3.3].

3.3. Bimodule over JT Ly and 3 7. Recall that the representation gl of JTLy is
non-faithful (faithfulness aspects will be discussed in more detail in our next paper [36]).
There is thus no evident direct way to get a decomposition of the periodic gl(1|1) spin-
chain like in the open (faithful) case. For example, the general theory [37] of projective
modules over a cellular algebra [which includes T Ly (m) and JT Ly (m) algebras],
which can be applied for a faithful representation [36], is not directly useful here. Instead,
an indirect strategy is needed, which was discussed in detail in [23, Sec. 5.2], and which
we do not recall in detail here, concentrating only on the essential aspects.

We first give a diagram describing the subquotient structure of the bimodule H5;, over
the pair (JT Ly, 37L)- The two commuting actions are presented in Fig. 3 where we
show a direct sum of indecomposable spin-chain modules P j over JT Ly, and simple

subquotients over J T Ly will be denoted below by (d ‘0] | ). The direct sum is depicted as a

(horizontal) sequence of diagrams for P jfrom j = —L ontheleftto j = L on the right.
Each node in the diagram is a simple subquotient over the product JT Ly X U gdds£(2).

The action of JT Ly is depicted by vertical arrows while the action of U gdds€(2) is
shown by dotted horizontal lines connecting different J T L y-modules.

In the diagram on Fig. 3, the first horizontal layer (at the bottom) contains the space
of ground states and it consists of four nodes, which are simple J7T L y-modules (d?),
and dotted arrows mixing them. These nodes and arrows describe the indecomposable
U gddsé(Z)-module T;. The second layer contains eight nodes corresponding to (dg) and
the dotted arrows contribute to the indecomposable module T,, etc. We emphasize that
we do not draw long-range arrows representing action of the generators F-o and E.
in modules T~ in order to simplify diagrams but the arrows can be easily recovered
using the subquotient structure of T, given in [23, Sec. 3.3]—for example, the second
layer of the bimodule contains in addition four long arrows going from the node ¢ at
j = F1 to the node e at j = %2, and from the node e at j = =£2 to the node & at
Jj = F1. With this comment about arrows in mind, the reader can compare complexity
of this bimodule with the open-case bimodule in Fig. 1.

As a JT L y-module, the Hy has a decomposition

L1
HNlyrry = @ PiXX;@PLRXL, (3.5)
Jj=—L+1
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JT LN

Fig. 3. Bimodule over the pair (JT Ly, Ua’ddsﬁ(Z)) of commuting algebras. The action of JT L is depicted
by vertical arrows while the action of U, gddsli(2) is shown by dotted horizontal lines. Each label j in the

horizontal axis corresponds to the sector for S and the label runs from —L on the left to j = L on the right.
Each vertical tower at a label j is the diagram for P;. The first horizontal layer at the bottom contains four

nodes (d?) and dotted arrows mixing them compose the Ugddsﬁ(Z)—module Ty. The second layer contains

eight nodes (dg ) and the dotted arrows depict the action in the indecomposable module T», etc. We suppress
long-range arrows representing action of the generators F-( and E~ in order to simplify diagrams. For
example, the second layer of the bimodule contains in addition four long arrows going from the node ¢ at
Jj = FI1 to the node e at j = £2, and from the node e at j = £2 to the node ¢ at j = 1. We also note that
@’s have only incoming arrows and their union is the socle (maximum semisimple submodule or the bottom
level) of the bimodule; further, the union of e’s is the socle of the quotient by the socle—the middle level,
while the ¢’s have only outgoing arrows and their union is the top level

where N = 2L, X; is the one-dimensional (with $* = j) and X, is the two-dimensional
simple 3,71 -modules (the representation theory of the centralizer 3,7 is descnbed
in [23, Sec. 3]), and fPL is the one-dimensional J T L, -module with the action of u

(—1E~11. For any sector with non-zero j = S¢, the subquotient structure for P i 1s

given in Fig. 4, on the right, while the tower for TPO is presented on the left. All the
towers are ended by the pair of simple subquotients (dg). We note that the two simple
subquotients at each level of the ladders are isomorphic. The Hamiltonian H from (3.2)
acts by Jordan blocks of rank 2 on each pair of isomorphic simple subquotients with one
at the top (having only outgoing arrows) and the second subquotient in the socle of the
module (having only ingoing arrows). The Jordan block structure is due to presence of
zero fermionic modes in the Hamiltonian as it is observed in [22], see also Sect. 4.1.2.

We note that the JT L y-modules P j in Fig. 3 are drawn in opposite direction ‘from
bottom to top’ comparing to diagrams in Fig. 4, in order to the space of ground states to
be in the bottom of the diagram.

Finally, we recall some information about the simple J7 Ly modules, which we
denote in [23] by L. j.(—1)Jj+1 Or more conveniently by (d?) above. The number d? is their



48

A. M. Gainutdinov, N. Read, H. Saleur

()
(df) (df) (@, +1/ (1)
(d9) >< (d3) () (d42)
(d9) (d9) (@) (d) 1 5)
() (@) (@10 (1)

Fig. 4. The two-strands structure of the spin-chain J 7 L yy-modules P j for j = 0 on the left and j # 0 on the
right side. The towers are ended by the pair of (dg)

dimension, obtained from the dimension of the spin-chain J T L y-modules P ;j given by
PN 2L
dim?P; =d; = . (3.6)
L+j

which is just the dimension of the sector with §° = j in the related XX spin chain with
2L sites. We then have from the subquotient structure for P; in Fig. 4 that

g 2L 2L
; . =0_§:_J—J L Wi = _
dlmﬁ»j’(_l)nl —dj = '/>'( 1) d] with d] - (L+j) (L+j+ 1)’
7z

0 2L —2 2L -2
d; = ) - . ; (3.7
J L—j L—j—-2
where 0 < j < L. Note that dg = 0 and we thus have that all simple modules over
JT Ly that appear in this spin-chain are those ’E’j,(fl).f“ with 1 < j < L, see also more

details in our second paper [23].
We note also the obvious identities

which can be written as

L

L
> 4= 3=
j=1

j=-L

which give the full dimension of the gl(1]1) spin-chain indeed.

It turns out that in this very degenerate case of JT Ly representations the L (_)j+i
modules are also simple for the subalgebra T'L . Of course, the difference with the open
case is in the structure of indecomposable modules—the complexity of towers in Fig. 3
can be compared with the simpler ‘diamond’-type structure of TL modules in Fig. 1.
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3.4. The antiperiodic spin-chain. We can also consider the alternating gl(1|1) spin-
chain with antiperiodic conditions for the fermions, obtained by setting fz(z)ﬂ =— 1(T).
The generators e, for 1 < j < 2L — 1, have the same representation (2.2) while the

last generator is then given by

e = (for — fOfyy — 1) (3.8)

to be compared with (3.1). This expression provides a representation of another quo-
tient (different from J7T Ly) of the affine TL algebra: in the diagram language, non-
contractible loops now should be replaced by the weight 2 (the dimension of the fun-
damental or its dual, instead of the superdimension in the periodic case); the relation
u™ = (=1)/ is also imposed in the sector with 2j through-lines. We will call the corre-
sponding algebra J T L, see a precise definition in our second paper [23, Sec. 6.2].
‘We emphasize that this antiperiodic gl(1]|1) spin chain does not have gl(1|1) symmetry
any longer. Instead, we have [22, Thm.3.4.1] that the centralizer of J TLR’,‘) is generated

by the s£(2) generators € and f, or F(Tz) and F(7) defined in (2.5).
We then recall the bimodule structure [23, Sec. 6.2] over the pair (J TL?(,”, Ust(2)):

L

RNl riwRuse) = DL 1 BXiju (3.9)
j=0

where X; j is the j-dimensional simple Us¢(2)-moduleand £ _;); is a simple module

over JTL;‘,”. The dimension of Lj’(fl)_,- is Zd?Jrl + d? + d?+2 and is
dim £ dj —d, ° 2 (3.10)
im0 ; i =dj—djp = - . .
R VS B V)
. . . (2L
Recall that the dimension of each §* = j sector H(;; is (L+j).

4. JTL Algebra and Howe Duality

We now give an interpretation of the simple modules over JT Ly and J TLX,“ with the
dimensions (3.7) and (3.10), respectively, from the point of view of representation theory
of symplectic Lie algebras. We first recall a convenient notation for lattice fermions and
then describe the representation theory of JT Ly in the periodic and anti-periodic spin
chains in the context of (a non-semisimple version of) Howe duality.

4.1. A Lie algebra of fermion bilinears. Recall that the e; generators of the JT Ly (or
JT L) algebras in the (anti-)periodic spin-chains are linear combinations of bilinears

in the fermions f; and f /.T. For the periodic case, we have the representation

[ .
e = (fj+ fp) (] + L), 1<j=<2L,

identifying the labels modulo N, in particular fy+; = fi, and f;, = f;r (see also
expressions in (2.2) and (3.1)). For the anti-periodic model, we have a similar expres-
sion (3.8), where the fermions are anti-periodic. It turns out that the commutators of these


AG
Texte surligné 


50 A. M. Gainutdinov, N. Read, H. Saleur

combinations of bilinears can be expressed again in fermionic bilinears, and of course
belong to the JTL algebra. Therefore, they generate a finite-dimensional Lie algebra.
On the other hand, the spin-chain images of the JTL algebra contain many operators
which are not bilinears. These non-bilinear operators are generated by the Lie algebra
elements? because the e j generators belong to the Lie algebra. To say things differently,
the full image of the JTL algebra is isomorphic to an enveloping algebra of the Lie
algebra of the fermionic bilinears (of course, it is also true for the open case discussed
in Sect. 2 that the TL algebra, which is a subalgebra in the JTL algebra, is generated
by a Lie algebra of fermionic bilinears). We begin our analysis with the anti-periodic
spin-chain which is much simpler than the periodic one because of its semi-simplicity.

The centralizer of JT L\ is generated as well by special bilinears in the fermions and

these are the s¢(2) generators € and f, or F (Tz) and F2) defined in (2.5). It is a well-known
fact due to Howe [24] that, in the Clifford algebra C4r,, the centralizing algebra of this
image of Us{(2)—which is the enveloping algebra of the symplectic Lie algebra sp, as
well—is the enveloping algebra of sp,; . Note that the dimensions (3.10) of the simple
JTL’Y-modules coincide indeed with dimensions of fundamental representations of
5P, . We can thus easily get the following theorem.

Theorem 4.1.1. The image ng[(J TLY ) of the twisted Jones—Temperley—Lieb algebra
in the anti-periodic gl(1|1) spin-chain is isomorphic to the image of a representation
of the enveloping algebra Usyp,; with all simple sp,; -modules corresponding to one-
column Young diagrams.

Recall that the anti-periodic spin-chain is completely reducible as a J 7' L} -module—
see the corresponding semisimple (J T L%, Usp,)-bimodule in Sect. 3.4—and we thus
have the double-centralizing property [38, Thm. 4.1.13]. Then, the proof of Theo-
rem 4.1.1 is a simple consequence of the classical (sp(n),sp(m))-type Howe duality,
where n = 2 and m = 2L in our case.

We next describe explicitly the representation of sp,; from Theorem 4.1.1, and
introduce a more convenient fermion basis which we will use below in studying scaling
limits.

4.1.2. The Clifford algebra. The periodic spin chain admits the natural action of a Clif-

ford algebra C4; with 4L generators: x,, 1, and their adjoints x ;, n;, where we set
p=mn/Land 0 <m < L — 1. As operators, they are defined in Appendix A in (A3)
and satisfy the following anti-commutation relations

{X;’ Xp/} = {]”Tp’ np/} = SP,P” {XP’ np/} = {X;a T]S;)} — {77;’ XI(;)} = O (41)

The Hamiltonian from (3.2) can then be written [22, Sec. 4.1] in this Clifford algebra

as
T—€

— ; i T ¥ =
H=2 Z s1np()(pxp—nl‘,np)+4xono, €=7 4.2)
=€
stﬁp:e

i.e., the x ,(,T) and ng) fermions are creation and annihilation operators that generate an
eigenvector of H of the energy 2sin(p) and momentum p. We note that H is non-

diagonalizable and its off-diagonal part xg no generates Jordan cells of rank 2. The

2 Note that the translation generator u? action in our spin-chains can be essentially expressed by products

of e;’s, see more concrete statements in [22,23].
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creation operators generate all root- and eigen-vectors of H from the space of ground
states. The latter has the following structure:

¢? o ! (4.3)

Q

where the two bosonic states—the vacuum € and the state @—have S* = 0 and form
a two-dimensional Jordan cell for the lowest eigenvalue for H, while the two fermionic

states ¢ and ¢! belong to the sectors with §% = +1 and S¢ = —1, respectively. We also

showed in (4.3) the action of the quantum-group generators F ~ ng and E ~ XJ .

All the excitations over the ground states @ and 2 are thus generated by the free
action of the fermionic creation modes which are x; and n, for p € (0, ), and ng and
Xo (see precise definitions of these operators in (A3)). The annihilation modes acts as

KR=npR = xR =mR=0, pe@n). (4.4)

For the antiperiodic spin-chains, we have also the action of a Clifford algebra with
4L generators xp, 1, and adjoint ones X;, n;, where now the momenta run over a
different set: p = (m — %)n/L and 1 < m < L. In this case, there are no zero modes,
and in particular the ground state of the Hamiltonian with anti-periodic conditions is
non-degenerate [22].

4.1.3. A special basis in (twisted) JTL algebras. We now go back to the anti-periodic
model and describe explicitly the representation of sp,; from Theorem 4.1.1. First,
recall the well known fact that the bilinears in the generators of the Clifford algebra
G4y, introduced in (4.1) that commute with the operator S* = 2h (or with the fermion
number operator) give a basis in the Lie algebra gl,; . Indeed, introducing the elementary
matrices &, , with matrix elements unity at the corresponding (2, n)th position and zero
otherwise (a standard basis in gl,; ), we can write them in terms of fermions as

Emn = X5 Xg»  EmLon = X 71g»
R A P S ) (4.5)

5L+m,n = ﬁ;; Xq» £L+m,L+n = ﬁ; F)qy
where we set p = (m — %)n/L andg = (n — %)n/L, and we used also the notation

Np = Na—p» ﬁ;, = n;_ p- One can check using the relations (4.1) that the defining
relations for gly; :

[gm,m 5/(,1] = 8n,kgm,l - 51’",15/{,}’17 1 <m,n,k,l <2L. (46)
are satisfied. We then note that the linear combinations

Am,n =) gm,n - 5L+n,L+ma Bm,n =Cm,L+n T 8n,L+ma
l<mmn<L, (47
Cm,n = 5L+m,n + 5L+n,m»

span a Lie subalgebra in gl,; isomorphic to sp,; (note that B, ,, = By, and Cp jp =
Cm.n), and these combinations commute with the action of sp, spanned by e, f, and h.
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Moreover, these combinations span the maximum Lie subalgebra in gl,; commuting
with the generators of sp,: it is straightforward to check using (2.6) and transformations
in Appendix A that the complement of the subspace sp,; in the gl,; does not commute
with the action of e and f. We then recall [24] that the generators of the Howe-dual
for the sp, are also bilinears in the fermionic operators. We thus obtain that the Lie
algebra sp,; from Theorem 4.1.1 acts as in (4.7) and its centralizer is the Usf(2) acting
by (2.6). Because of the double-centralizing property the basis elements of sp,; therefore
generate the action of the centralizer of Us¢(2) which is ng[(J TL?{," ), as was stated in
Theorem 4.1.1. We do not give here explicit expressions of ¢;’s in terms of these basis
elements of sp,; but will give some formulas below. What is important to note now is
that taking products of the sp,; basis elements we obtain a special basis in the image of
JT L'y which is used later for taking the scaling limit of the JTL algebras.

Note finally that the A, ,, generators are basis elements in the Cartan subalgebra of
spyy . Then, the simple modules L; _;y; over J TL;’,” are highest-weight representa-

tions of sp,; with the Weights3 (1, 1,...,1,0,...,0), which are sequences of length
L of consecutive 1’s and then 0’s, with j of 0’s and 0 < j < L. We thus obtain a
decomposition (3.9) of the anti-periodic spin-chain with respect to the two commuting
Lie algebras, sp, and sp,; , where the sp, representation with j boxes corresponds to
the jth fundamental (one-column) representation for sp,; .

We then extend this classical Howe duality to the non-semisimple case which corre-
sponds to the periodic model. The final result is given in Theorem 4.4 and Corollary 4.5
but first we discuss the semi-simple part of the action of the JT Ly algebra which
parallels the previous discussion.

4.2. Semisimple part of JT Ly, and Lie algebra sp,; _,. For the periodic model, we

introduce the standard basis for gl,; as in (4.5), where now 0 < m,n < L — 1 and

p =mn/L,and g = nw/L. Note once again that we have zero modes XéT) and n(()T) in

this case, with the identification ﬁ((f) = n((f). Then, the linear combinations from (4.7),
with 1 < m,n < L — 1, span a Lie subalgebra sp,; _,. Note that we do not include

zero modes because half of them do not commute with the symmetry algebra U gddsﬁ 2).
Recall that the U gddsﬁ (2) generators E,, and F,, are represented in the spin-chain by

e"E and f'F, see (3.4) and note that K> = 1 for even N. We can write [22] fermionic
expression for these generators in the y—7 notation as

T—€ m T—€ n
En = —1>S‘~/N(Z n'};x;_,,) Xq- Fn=—iﬁ(2npxn,,) no. (4.8)
pP=€

p=¢

It is then easy to check that the combinations of bilinears that give a basis in the sp,; _»
commute with this action of U Odds€(2). Moreover, we show below that the bilinears in
fermions (4.7) are the only bilinears that do not contain zero modes and belong to the
image of JT Ly under the representation 7 4. Put a bit differently, we show that the
operators Ay, , Bu.n, and C,, , generate the semisimple part of the associative algebra
ng[(J TL N), while we will see later that similar combinations containing zero modes

x(}‘ and 7o generate its Jacobson radical. Indeed, the dimensions (3.7) of the simple

3 Actually, for our choice of Cartan elements one should replace 1 by —1 in order to obtain correct weights
with respect to Ay ;.
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JT Ly -modules coincide with dimensions of fundamental representations of sp,; _,,
as in the anti-periodic case but now for a smaller symplectic Lie algebra. This observation
suggests the following lemma.

Lemma 4.2.1. The image of the representation (4.7) of the enveloping algebra Usp,; _»
is isomorphic to the quotient rrg[(J TL N) /Rad, where Rad is the Jacobson radical of
the image of the Jones—Temperley—Lieb algebra in the periodic gl(1|1) spin-chain.

Proof: We note that all simple modules L ; _yj+1 over JT Ly that appear in the spin-
chain module Hy appear also in the socle (maximum semisimple submodule) of Hy,
see Fig. 4. Then, in order to study the semisimple part of the action of JT Ly, it is
enough to consider the action restricted on the socle of H . Recall that simple modules
over JT Ly are also simple modules over its subalgebra 7Ly, see Sect. 3.3, and the
centralizer of the 7' L v action is given the Lusztig’s (restricted specialization of) Uys£(2)
at q = i [39,40]—the one with the divided powers e and f. Therefore, the centralizer of
the action restricted on the socle —the intersection of the kernels of F and E in Hy—is
given by a representation of Usp, realized by the divided powers of U;s£(2). Since the

socle is freely generated from the vacuum state €2 by the action of a Clifford algebra

C4r,—4 with 4L —4 generators XI(,T), ng), where p = mm/Land1 <m < L—1, wehave

a classical symplectic Howe duality [24] between sp, and sp,; _,. Indeed, the socle is a
multiplicity-free semisimple bimodule over JT L and Usp,, where both algebras are
represented by appropriate bilinears in the generators of C47_4. By Howe duality, we
obtain that the action of J T L y on the socle of H, and thus its semisimple part on Hy,
is generated by the sp,; _, action. 0O

In the open case, the simple modules are the same as for J 7' L y in the periodic model.
Therefore, we conclude that the semisimple part of 7' Ly, or the quotient 7' L ; /Rad by
its Jacobson radical, is also generated by an sp,_, action.

Using Lemma 4.2.1 and a correspondence between weights in the symplectic Howe
duality [24,41], we obtain the following corollary.

Corollary 4.2.2. The simple modules Lj’(_l)jﬂ, with 1 < j < L, over JT Ly (or
T Lyy,) are simple modules over the enveloping algebra for sp,; _». The dimensions (3.7)
of all these simple modules correspond to all highest-weight representations of sp,; _»
of theweights (1, 1,...,1,0,...,0), which are sequences of length L — 1 of consecutive
1’s and then O’s, with j — 1 of 0’s.

We note once again that the generators A, ,, now with 1 <n < L — 1, span a basis
in the Cartan subalgebra of the sp,; _,. The diagonal part of the Hamiltonian H has a
very simple expression in terms of these generators:

L—1
H=2>"sin(p) Anm+4&.L. (4.9)

m=1

This allows us to describe JT L simple modules as highest-weight representations of
spP,; _» where highest-weight vectors play the role of charged vacua for the Hamiltonian.
The vacuum state 2 in the space of ground states coincides with the highest-weight vector
of the unique sp,; _, module of the weight (1, 1, ..., 1, 1), the next one corresponds to
the weight (1, 1, ..., 1, 0), etc.
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4.3. The image of JT Ly as a Lie algebra representation. We introduce now special
elements in J7T Ly which span a subspace of all elements in J7T L that are bilinear in
the x-n fermions. We begin with the definition of the Lie algebra Gy .

Definition 4.3.1. We define the Lie algebra Gy to be generated by Ay, n, Bim.ns Cnn
from (4.7) and the elementary matrices &o.,, £0.1. €0,L4n> Em.L, and Epym 1., Where
1 <m,n < L — 1. This Lie algebra can be schematically depicted by matrices of the
form (in the standard basis of gl,; )

O0x ... x

X
X

»Am‘n Bm,n

Gn: (4.10)

Cm N

[N eNeNoleNo Nl
=)
=)

X X X ©OX X X X
=)
=)

where the crosses x stand for the corresponding elements & ,,, £0.1., £0.L+n> Em. L, and
ELvm,L-

Note that G is a non-semisimple Lie algebra and admits sp,; _, spanned by A, »,

B ns and Cp, ,, as a Lie subalgebra. The dimension of Gy is
dimGNzw_L 4.11)

where we recall that B- and C-blocks are symmetric matrices. The Lie radical of Gy is
generated by £, £0.1, €0, L+ns Em. L, and Ep4 1 : these are the generators corresponding
the the crosses x in (4.10).

We next show that the representation of this Lie algebra of fermionic bilinears in the
periodic spin-chain generates the image of JT Ly, proving the following theorem.

Theorem 4.4. The image of the representation (4.5)—(4.7) of the enveloping algebra
UGy is equal to the image ﬂg[(J TL N) of the Jones—Temperley—Lieb algebra in the
periodic gl(1|1) spin-chain.

Proof. We first prove that the centralizer of the UGy action is given by 3,7, —the
centralizer of ng[(J TL N). Recall that 3,7 is described in Sect. 3.2. By a direct com-
putation, we see that the image of the representation (4.5)—(4.7) of the enveloping algebra
UGy commutes with the UgddsZ(Z) action given in (4.8). We then show that the gen-

erators of Gy are the only bilinears in the x -7 fermions that commute with U gddsﬁ(Z).
Let us for this introduce bilinears as in (4.7) but with the opposite sign and denote them
by A}, . B}, .. and C;, ,, respectively. Together with the bilinears &, o and & ,, they
belong to the complement of the vector space Sy. We then compute commutators of
all these bilinears which are not in & with the generator E;. It turns out that all these
commutators are non-zero and linearly independent bilinears. So, there are no linear
combinations among A, ., B, .. C;, ., En0, and &L, that would commute with E;.
This proves the statement that Sy is the maximum Lie subalgebra of bilinears (in the
x -1 fermionic operators) which commute with U, Odds£(2). We then note that the image
of JT Ly is generated by ¢;’s which are also bilinears in the x-n and they commute

with Ugddsé(Z). This image is thus contained in the image of UGSy and both algebras
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have the common centralizer 37 (itis easy to check that &y also commutes with the
fL and el).

To finish our proof, we need to show that the image of UGSy is not bigger than the
image of JT Ly. To show this, we use a representation-theoretic approach. We recall
the subquotient structure for each §* = & sector P; considered as a module over the
centralizer of 3 ;71 which is isomorphic by the definition to the algebra End 37L (Hwn).

The centralizer obviously contains ng[(J TL N) and, following the previous paragraph,
the image of U Gy as well. The opposite inclusion is not true as was shown in our second
paper [23, Sec. 5] and we thus can not rest on a double-centralizing argument.

The subquotient structure can be obtained using intertwining operators respecting
37 action. These are described in Thm. 3.4.4 in [23]. The only difference from the
diagrams for JT Ly in Fig. 4 is that there are additional (‘long’) arrows mapping a
top subquotient (d?) (having only outgoing arrows) to (d,?) in the socle (having only
ingoing arrows) whenver | j —k| > 4 is an even number. We note these long arrows are not
composites of any short arrows mapping from the top to the middle level,* and from the
middle to the socle. It turns out that &G i generators correspond only to these short arrows
and not to the long ones, and therefore there is no element from G y represented by a long
arrow. This can be shown using a direct calculation with the fermionic expressions (4.5)—
(4.7). Due to Lemma 4.2.1, we need to analyze only the radical of Gy generated by
Eons E0.05 0.14ns Em. L, and Er4, 1. These are represented by bilinears in the Clifford
algebra C47 generators. As was noted before, N — 2 creation modes X;>0 and 70
generate the bottom level—the intersection of the kernels of F and E in H y—from the
vacuum state €2, and also the top level from one cyclic vector @ which is involved with 2
into a Jordan cell for the Hamiltonian H. Among the Clifford algebra generators, there
are two—zero modes 7o and Xg —proportional to F and EK™!, respectively. These are
the only generators mapping vectors from the top level to the middle level, and from the
middle to the bottom level. Among the generators in the radical of Gy, there is only
one, & 1., which is the product of the two zero modes. The product maps the top to the
bottom but commutes with the J7 L action and thus maps a top subquotient (dﬁ.)) only

to the bottom (d?). All other generators of the radical are bilinears in fermions containing
only one of the zero modes and they thus map only by one level down. Therefore, they
correspond to the short arrows in the diagram in Fig. 4. We conclude that the action of
UGSy can not correspond to long arrows connecting the top and the bottom and which
are not composites of any short arrows because any element of the radical in the image
of UGy is a linear combination of monomials in its generators.

We can thus conclude that the modules over the enveloping algebra of Gy in the
spin-chain representation have the same subquotient structure as for the ng[(J TL N)
and therefore their Jacobson radicals are isomorphic. In addition to the analysis on
their semisimple parts given in Lemma 4.2.1—both algebras have the same equivalence
classes of simple modules—we also conclude that they are isomorphic as associative
algebras. This finally proves the theorem. O

As a consequence of Theorem 4.4, we get the following corollary which we consider
as a non-semisimple version of the (symplectic) Howe duality.
Corollary 4.5. The centralizer 3y, of the universal enveloping algebra UGSy in the
periodic gl(1|1) spin-chain representation in (4.5)—(4.7) is given by 37, which is
generated by the image of UgddsE(Z) in (4.8) and L and e’

4 The level consisting of all nodes having both ingoing and outgoing arrows.
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Note that in this case the “Howe-dual” algebra is not described as the enveloping
of a Lie algebra of bilinears, in contrast to the anti-periodic case. It is rather a Z,-
graded algebra due to presence of the gl(1|1) subalgebra. It is easier to show for the
open case, where the 7Ly is the enveloping algebra of a non-semisimple Lie algebra
(having maximum semisimple Lie subalgebra sp,; _, and its radical is smaller than in
the JT Ly case) and the action of its centralizer U;s¢(2) is generated by the semidirect
product sp, x gl(1]1) of the Lie algebras sp, and gl(1]1).

4.6. Normal ordered basis. We introduce here a few formalities which will be useful to
analyze the N — oo limits of our algebras. Recall that the excitations over the space of

ground states are generated by the creation modes X; and n,, with p € (0, 7r), while the
annihilation modes are x, and n;. We can thus introduce normal ordering prescriptions

like :Xp)(;,: = _X;/Xp and :n;:nl,/ = —r]p/n;, etc. Then, a normal ordered basis in
gly; @ C1 (a trivial central extension) is given by £ = = :&,, ,:, where the elementary
2L m,n ,

matrices &, ,,for0 < m,n < 2L—1, areintroduced above in (4.5). The normal ordering
affects only one half of the Cartan elements: 5,’1, w = Ennwhile &} inLen = ELtnL4n—1,
where now 0 < n < L — 1 and 1 is the identity in End H>; . The defining relations in

the normally ordered basis are slightly changed—they have the central element term:
[5131,L+n’ ‘€/L+k,l] = 8n,k5y/n,1 - 8m»l£/L+k,L+n — 8n i Om 1, 4.12)

while all the other commutators have the same form as in the standard basis (4.6).
We also consider central extensions of the Lie subalgebras sp,; _» C gly; and Sop C
gly; by the identity 1. So, we introduce the Lie algebras

sphy_» =5y > ®C1 and Gy = Sy @ CL. (4.13)
Then, we choose the normal ordered basis in their Cartan subalgebras as
Apn = A =8y = Euy 10 = Ann +1, (4.14)

see notations in (4.7). Similarly to (4.12), the commutators [B,, », Ck.;] have the central
element term in the normally ordered basis in sp), , while other relations are not
changed.

Note finally that the weights of highest-weight sp,, -modules are now different due
to the different choice of Cartan elements (or simple roots). For example, the vacuum
irreducible module £ 1 has now the weight (0, 0, .. ., 0), thenextone L, _ corresponds
to the weight (1,0, ..., 0), etc.

5. Scaling Limit

We are now interested in studying how the algebraic properties of the finite spin chain
relate with those of its continuum—or scaling—Ilimit. Our ultimate purpose is to extract
from the gl(1|1) case lessons that can be used in other, more complicated situations.
We shall for this purpose, introduce and discuss in the next section the new concept of
interchiral algebra and its relationship with fields in a LCFT setting. For now however,
we do not discuss field theory per se, and define and discuss the scaling limit of the spin
chains using fermionic modes.
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In this section, we consider mostly the periodic model and discuss briefly the anti-
periodic case only at the end in Sect. 5.5. The limit of JT Ly algebras is constructed
in Sects. 5.1 and 5.2. We discuss in Sect. 5.3 the structure of the bimodule over the
two commuting algebras, U gddsK(Z) and the scaling limit of J7 Ly or UGy algebras
denoted by U S . In Sect. 5.4, we also describe simple modules over U S o, that appear
in the space H of scaling states. Finally, the full generating functions of energy levels
are computed in Sect. 5.6.

5.1. The full scaling limit of the closed gl(1|1) spin-chains. In this section, we recall
the construction of the scaling limit [22] of the (anti)periodic spin-chain that gives a
conformal field theory model. We then use the Lie algebraic reformulation of the (images
of) JT Ly and JT L} to construct the full scaling limit of these algebras. An essential
ingredient in the general definition of the scaling limit is the low-lying eigenstates of the
Hamiltonian H. In order to study the action of JTL elements on these eigenstates in the
limit L — oo (recall N = 2L) we first truncate each H5z, keeping only eigenspaces
up to an energy level M, for each positive number M. Each such truncated space turns
out to be finite-dimensional in the limit, i.e., it depends on M but not L. Then, keeping
matrix elements of JTL elements that correspond to the action only within these truncated
spaces of “scaling” states, we obtain well-defined operators in the limit L — oo. The
corresponding operators acting on all scaling states of the CFT can be finally obtained
(if they exist) in the second limit M — oo. A bit more formally, the scaling limit
denoted simply by ‘+—’ is defined as a limit over graded spaces of coinvariants with
respect to smaller and smaller subalgebras in the creation modes algebra, see details in
Sec. 4.3 from [22]. Meanwhile, in the case of our gl(1|1) spin-chains we can actually
give a clearer definition of the scaling limit (of algebras and their modules) by means of
inductive systems, see Appendix C.

5.1.1. The Clifford algebra scaling limit. We first recall [22] the scaling limit of the
Clifford algebra C4; generators introduced in Sect. 4.1.2—the x and » fermions—and
then define a representation of gl,, which contains the full scaling limit of JTL. The
lattice fermions appropriately rescaled coincides in the scaling limit with the symplectic-
fermions modes:

oy = U ML Y Mgy U, —mn) g,

_ - _ - (5.1
_ﬁanwim’ ﬂx;szmv \/Enp'_)l/finp ﬂX;HwEma
where we consider any finite integer m > 0 and set p = mmx /L and ﬁg) = nj(:l p» and
X ,(,T) = XS_) 7 while the scaling limit for zero modes is
VLT v =0, VLT xg > v = V3. 52

Jr/Lnd e igg, /L xo > —idp.

Indeed, having this limit we obtain that the scaling limit of the Hamiltonian H =

z;v:] e; gives the zero mode of the stress energy tensor 7'(z) + T (Z) in the symplectic
fermions theory:

S(H+ ) X ki (0> 9) - S =Lo+Lo— 5. 653

meZ


AG
Texte surligné 

AG
Texte surligné 

AG
Texte surligné 

AG
Texte surligné 

AG
Texte surligné 

AG
Texte surligné 

AG
Texte surligné 

AG
Texte surligné 

AG
Texte surligné 

AG
Texte surligné 

AG
Texte surligné 


58 A. M. Gainutdinov, N. Read, H. Saleur

where we use the fermionic normal ordering prescription introduced in Sect. 4.6 which
takes the form [25]

v wf form < 0,

o Bl
V¥t = —yPye form>o.

(5.4)

We note that the fermionic operators act on the space H of scaling states, which are
limits of low-energy eigenvectors® of the Hamiltonian H , in the sense of construction in
Appendix C. The ground subspace in H has the same structure (4.3) as in the finite chain
‘Hn, where one should replace XJ and 7o by the zero modes wg and w& , respectively.
The module structure (over the infinite-dimensional Clifford algebra) on H containing
all the excitations over the ground states w, wgw, wéw and Iﬂé wgw = Q is thus gener-

ated by the free action of the creation modes 1//,1’2 and 1/_/,1,’2, for integers n,m < 0.
The annihilation modes, or positive modes, act on the vacuum states in the usual
way.

We have also shown in our first paper [22] that the limit (5.1) allows one to obtain
all left and right Virasoro modes L, and L, in the symplectic fermions representation

Lp= Y n ¥mi Lo=D 0 Wy nel, (5.5)

meZ meZ

as the scaling limit of particular JTL elements, see also more details below in Sect. 6.1.
A comment is necessary about the infinite sums in the definition of L,’s and L,’s.
Note that the Hilbert space H has bi-grading by the pair (Lo, L¢), where each homo-
geneous or root subspace H"™"™ for positive n and m is spanned by states of the form
w,%,’z . w,i,;z w,illz . w,}{lz acting on any ground state such that Zfz (ni = —n and
lezl m; = —m. The space H then can be described as the direct sum &, , 7" which
means that any state v € H can be writtenas v = >, , v with v®™ € H"™ and
there exist positive integers N and M such that v = 0 foranyn > N orm > M.
This is what we call the finite-energy and finite-spin (or simply scaling) states space and
it is a dense® subspace in the the direct product of the root subspaces H"". Therefore,
the formally infinite sums in (5.5) actually reduce to finite sums in the scaling states
space H. This is standard, and discussed for instance in [45].

5.1.2. The symplectic fermion representation of gl,,. We recall that the bilinears in the
x -1 fermions give a standard basis &, ,,, the usual elementary matrices, in the Lie algebra
gly;, see Sect. 4.2 for details. Due to the fact that low-lying eigenstates are generated by
the Clifford generators with their momenta p close to 0 or & (in the large L limit), we
keep in the scaling limit all bilinears in the fermions with any of these momenta. Note
that basis elements (4.5) of gl,; can be divided into 4 blocks with the (m, n) indices
running from O to L — 1. Because in our limit we keep only those indices close to O or
to L, then each block is further divided into four infinite blocks in the scaling limit. This
limit of gl,; can be schematically described in terms of its standard generators as

5 It is better actually to say ‘root-vectors’ because the Hamiltonian is not diagonalizable on H and we
have a basis where relations such as (H — kl)zv =0, for v € H, are satisfied.
6 See the discussion of completions and topology in Sect. 6.2 after (6.41).
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Xq X0 X?TXE x;gze X%):(e

. X XO X Xe -+ X X2e X Xe

[5,,”, = Xp Xq ]OSp,qSL—l T: R K ) : T: (5.6)
Kae X0 Xog Xe -+ X Xoe X Xe
X K0 K Xe o X Hoe K Ke

for the left-top block in the matrix algebra, and similarly for other three blocks. Here, we
set for the momenta variables p = me, g = ne, with € = /L, and these momenta on
the right-hand side are formal variables—one should of course make substitutions (5.1)
and (5.2). We emphasize that each item of the block on the right is an infinite elementary
matrix having identity at the corresponding position and zeros otherwise. These elemen-
tary matrices (for all four blocks) define a representation of an infinite-dimensional Lie
algebra gl on the space H which we call the symplectic-fermion representation of gl .

A comment is necessary about the exact definition of the algebra gl .. Any element of
9l 18 an infinite matrix with a finite number of non-zero elements, i.e., it is represented
on H by a finite sum of the generators—the elementary matrices. The commutation
relations in this algebra are given by corresponding limits of (4.6) and they correspond
to usual basis and relations [46] in gl after appropriate rearranging rows and columns,
see more precise statements in Appendix B. B

‘We note that formally the Virasoro generators L,,’s and L,,’s from (5.5) do not belong
to such defined gl (recall there exist many versions of gl algebras [46]) but belong, for
n # 0, toits completed version aoo, where there is now a possibly infinite number of non-
zero elements, but the matrix still has a finite number of non zero diagonals, see details
in Appendix B. The only problem is with L and L, because of the well-known central
anomaly that appears in CFT. In order to get a convenient algebra containing the Ly and
Lo operators we should actually take the scaling limit of the family of algebras {gl,; }
in their normally ordered basis 5,;”, introduced in Sect. 4.6. Using then (5.1)—(5.2), we
obtain finally the generators (after rescaling by +./mn) of another infinite-dimensional
Lie algebra we call gl given by the following list of bilinears

gl = CUn¥nts Uptns Wambns Ut Undes  Umdy
:¢31ﬁ,}:, :¢§1/_f,{:, :(/)%qbé:, m,n € 7y, 5.7

which are now all normally ordered (note that some of these bilinears, 1//1,1 1//,%, are not
elementary matrices). This Lie algebra turns out to be a central extension of the gl i.e.,
itis gl = gl,, ® C1, as a vector space. The central element 1 is obtained by the scaling
limit of the identity in the (trivial) central extension gl,; @ C1 considered in Sect. 4.6,
see also a formal inductive limit construction in Appendix C. Commutation relations in
this algebra are obtained as limits of the relation (4.12) which fixes the central charge
of gl_. The contribution of the central term in commutators of the new generators can
be also obtained using the two-cocycle [46] c(&}, ,,. €, /) and it coincides with the

vacuum expectation of the commutator [£, ., £, ] as it should. Now, all the left-right

Virasoro operators on H are embedded into the completed Lie algebra g_[;O including Lo

and Lg. We will actually work below with this Lie algebra a;o containing the Virasoro
generators and not with gl..
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5.1.3. The scaling limit of the JTL algebras, sp,,, and Ss. The scaling limit of the
(spin-chain representations of) J 7' Ly algebras can then be taken using the Lie algebraic
description given in Theorem 4.4. It was shown there that the spin-chain representation
of JT Ly is given by a representation of the enveloping algebra UG y. We thus need
only to take the scaling limit of the central extension &), = Sy @ Cl1 introduced in
Sect. 4.6 which is straightforward since there is an embedding of G into the gl,; , see
Definition 4.10. In particular, the Lie subalgebra sp}, , C & from (4.13) generated
by normally ordered elements in (4.14) and (4.7) has the limit generated by the following
quadratic expressions

Jap eyl Jug 80l SapvWl, m,n e Z/(0}, (5.8)

where Jyg is such that Jug JPY = 8¢ and we use the symplectic form JR2=_j2li=1q,
and Syp is the symmetric form S = S21 = 1, S11 = S22 = 0. We show below that
the vector space spanned by finite linear combinations of these operators is closed under
taking commutators. The infinite-dimensional Lie algebra they generate coincides with
the central extension of the Lie algebra sp,, C gl..

Further, we introduce S, ., T, and T, , as the operators

S = Saﬂlﬂ,‘fﬂﬂf, Tingn = Jaﬂiﬁffﬂﬁf, Tingn = Jaﬁlﬂ,‘fﬂﬂf, with n,m € Z,
(5.9)
i.e., as in (5.8) but without normal ordering and including combinations involving the
zero fermionic modes 1//5 and lﬂg (note that there are no bilinears here involving conju-
gate modes ¢§ and ¢Ol). Actually, we have the symmetry 7, , = T, and Tm’ n = _n, m-
The operators in (5.9) together with the central term 1 give now generators of the scaling
limit of &/, which we denote simply by S, C gl ,. We conclude that the correspond-
ing action of UG, is the scaling limit of the (spin-chain images of the) JTL algebras.
We give in Appendix C a more formal construction of this scaling-limit algebra as a
direct/inductive limit lim ng[(.l TL, L) of the finite-dimensional spin-chain represen-
—L
tations 7t gy of the JTL algebras.

5.2. Commutation relations in G, We next obtain commutation relations between the
generators Sy, T n and Ty, ,, of S Using a straightforward calculation and identities
like Jog Jy s JBY = J,s, we first obtain

(T Tit] = [ap 20 L, 150 ) W91 = Japn (Snsko VWL +8us0 WEW])

+ Jopm (Smek.0 VUL + S0 VWY (5.10)

and a similar expression with Y% — ¥%. We then have
(S Tiea] = Sap . (Stcam,0 WEWE + Smaro VUL, (5.11)
[Smns Tt = Sap 11 (Sn 0 Vi + Suvt.0 Vi), (5.12)

and the commutators
[Snms Skt] = Jup (1 810m,0 WEUL +k Skan,0 WEVL) = 2Kk Stin 0814m0,  (5.13)

where we use repeatedly the identities SqpJ,5J%7 = Sgs and SepJ,sJ% = —Sg,,.

Using the definition of Sy, Tin.» and Tm,n given in (5.9), we see that the rela-
tions (5.10) and (5.13) together with (5.11) and (5.12) prove the following proposition
which can be considered as an alternative definition of the G, Lie algebra.
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Proposition 5.2.1. The Lie algebra S, has Sy m, Tk, and Tr,s, withn,m,k,l,r,s € Z,
as its basis elements, with the defining relations

[Sn.ms Skl = 1810m,0 Tk + &k Skan,0Tont — 2k Stcan,0814m.,0+ (5.14)
[Smns Tiet] = m (Skam.0 Stn + Sm+1,0 Skn )+ (5.15)
[Smns Tet] = 1 (8ken,0 S + Snst.0 S k) (5.16)

(T Tl = 1 (8nak,0 Tnt + 8n41,0 Ton k) + M (Smak.0 Tron + Smat0 Tion).  (5.17)
(Tonn Tet] = 1 (8nsk.0 Tont + 8ns1,0 Ton k) + M (S0 Tion + Smat,0 Tim)s  (5.18)
[Tm,ns 7_Wk,l] =0. (519)

We note that it is straightforward to check the Jacobi identitites.

5.3. Bimodule in the scaling limit and the centralizer of Soo. Using a formal construc-
tion of inverse/projective limits, we define the scaling limit of the JTL centralizers 371
in Appendix C. The limit s an infinite dimensional associative algebra which we identify
with a quotient of Ugddsﬁ(2) and we denote this quotient by p (U gddsﬂ(Z)), see (C13).
Fermionic expressions for the generators in the scaling limit of the centralizers were
computed in our first paper [22]:

n n
_ 1//}2?1 wzm I/_f,% 1/_/3"1 2 _ 1//}1” wlm '/_’rb 1/_/lm 1
E"—[Z(m‘m) ve Fa= | (P =) | v,
m>0 m>0
(5.20)
with the representation of the Cartan element h as

h=—i/2(0do) + widd) + X - (W2, um + UL, 02 + 92,00 + 0L, 02) (521
m=>0
while the generator K = (— 1)2h,
It is obvious that both gl and its subalgebra G act on the space H of scaling states.
To study the symmetry algebra of the Lie algebra G, on this space, we first note that
using identities like

[ | = Il [V V02| = =iy, mez, (522

itis straightforward to check that the generators (5.9) commute with the U odd ¢ (2) action
given in (5.20) and (5.21). Moreover, we prove in Theorem C.7 that the centralizer of the
direct-limit algebra G, equals the inverse limit of the centralizers for each term Gy .
In view of the importance of this fact, we repeat it here: the centralizer 3y, of the
enveloping algebra U S, action (5.9) on 'H is given by the representation of Ugddsﬁ(Z)
in (5.20) and (5.21).

‘We next describe bimodule structure of 7 over U G «, and its centralizer p (U gddse (2)) .

As a consequence of the direct limit construction of G4, and of its module H in
Sect. C.1, we obtain that the (direct) limit of irreducible representations over Gy is also
irreducible with respect to the action of G. This is proved in Proposition C.3 and it in
particular means that the only simple Go,-modules that appear in the direct limit space
'H are the limits X;. Further, see a note after Proposition C.3, the indecomposable but
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reducible J T Ly-modules P j that appear in Hy as direct summands go in the scaling
(or direct) limit to indecomposable but reducible U S ,-modules (so, P j do not split
on direct sums in the limit) and their subquotient structure has the same pattern as in
Fig. 4, or more precisely in its infinite analogue in Fig. 7 in Sect. 6.7.2. All this is
not surprising as we have essentially the same centralizer U%%5¢(2) in CFT as for any
JT Ly algebrain the periodic spin-chain, see Theorem C.7 about the centralizing algebra
for UGS . The only difference from finite chains bimodules described in Sect. 3.3 is
that the representations of U deSE(Z) now admit the “total spin” (the h eigenvalues) of
any integer value: we have a decomposition of H as a module over Ugddsﬂ(Z) onto the
indecomposable direct summands T, for any j > 1, and with multiplicities given now
by graded vector spaces which are the simple X; modules over U&,. Then, in our
space of scaling states where each state is a finite linear combination of basis ones, we
can easily extend our analysis from [23] and obtain the bimodule structure over the pair
of commuting algebras (U Gy U, OddsE(Z)) as in Fig. 3. In the figure for the bimodule
in the scaling limit, each node is now a simple S,-module X; and the towers have
infinite length. The first question is of course about the left—rlght Virasoro content of
these scaling limits, which we discuss below.

5.4. The content of simple S ,-modules. We start our analysis by discussing the left—
right Virasoro V(2) = V(2) ®V(2) content of the simple J 7 Ly modules in the scaling
limit. By this, we mean more precisely the Virasoro representation content of the states
that contribute to the direct limit X; of the simple JT L y-modules L (—1)i+! (recall
that this limit is simple as well, as a 600 module). It is convenient for thls purpose to
first evaluate the generating functions (E1) of energy-momentum levels in the JT Ly
modules P; (the direct summands of the spin-chain) we have encountered previously.
This can be done by reorganizing the fermions such that v 1-2’s correspond to even modes
of new fermions and ¢ :2’s give odd modes of the fermions, see Appendix B. Then, we
can produce a generating function F; (_jyj+ for each charged sector P; with §° = j
using the new fermions. Repeating an exercise similar to what can be found in [46], we
obtain the character formula for F; (_jyj+ in the limit which reads

1/12 1/12 (]+n) +j+n _nzi
Fj pm = P(q)P(q) Zq 2 (5.23)
with
o0
P(@) =[]0 =g =q"""n. (5.24)

n=1
We present a more general derivation of this result in Appendix E which is based on
well-know scaling properties of the spectrum for twisted XXZ models, and will be useful
in our future studies [36]. From the structure of the spin chain modules (see Sect. 3.3;
Fig. 4), we deduce then the traces F, ( () 1y for the simple & ,-modules X ; which read,
in terms of Virasoro characters, (see a calculation in Appendix E)

*
0 —
F(() D Z Xjr1X ja,1 (5.25)
J1,2>0
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where the sum is done with the following constraints:
lr—pl+1=<j, ji+p—-1=j ji+j2—j=1mod2 (5.26)

(note this is equivalent to treating j not as a spin but as a degeneracy, i.e., setting
Jj =2s+1, ji =2s; + 1 and combining s1 and s> to obtain spin s), and we recall the

characters of the simple modules with Kac labels (j, 1) over Virasoro at ¢ = —2:
2j=D?/8 _ ;@j+1)?*/8
Xj1 = 1 1 (5.27)
n(q)

For instance, we have

0)
Fo,—1 =0,

o
0 _
Fl(,l) SR arar
r=1
- (5.28)
0 _ _
Fz(zl = ZXrl (Xr—1.1 + Xr+1.1) »

r=1
o0
0 _ _ _ _ _ _
Fg(l) = xnx31+ x21 (X21 + xa1) + z Xr1 (Xr—2,1 + Xr1 + Xr42,1) -
r=3

The result (5.25) implies that, in contrast with the open case, simple modules of the
JT Ly algebra do not become simple modules over V(2) in the scaling limit. While
in general one might expect that this scaling limit gives rise to non-fully-reducible
modules over V(2), it turns out that one gets in fact a direct sum of simple modules over
the full Virasoro algebra V(2). This can be checked either by explicitly working out
this scaling limit as was done in [22], or by using a direct argument. We first note that
the left Virasoro generators are particular endomorphisms of the module structure over
the right Virasoro V(2) action. Then, taking into account possible extensions/‘glueings’
between simple V(2)-modules—a module &’ 1 can be extended only by &j11,1 into an
indecomposable module,—the left Virasoro algebra can map vectors from subquotients
X1 WX 1 only to X111 WAy 1, and similarly for the right Virasoro algebra. Therefore,
the character of a reducible but indecomposable V(2)-module has to have at least one
pair of the indices (j, k), say (j1, k1) and (j2, k2), such that | j; — jo| = 1 and k; = kp or
lki — ka2 = I and ji = j>. None of these conditions is true for the functions F, 1(?()_ 1yt
given above. We thus conclude that V(2)-modules with characters in (5.25), for any fixed
J, are semisimple. The foregoing analysis gives thus the left-right Virasoro content for
the direct limits of simple J7 L y-modules’:

*
Licym = Xjlvoy = @ X1 B, (5.29)
J1,2>0

with the conditions (5.26) on the sum.

7 Having the identification of the Hamiltonians H = H(0) with the Cartan-subalgebra elements of
sPpyr o, see (6.12) below, it should be possible using the Weyl character formula for fundamental represen-
tations of spy; 5 to study the character asymptotics and extract the V(2) content of the limits as in (5.29).
We leave this exercise for future work.


AG
Texte surligné 

AG
Texte surligné 


64 A. M. Gainutdinov, N. Read, H. Saleur

Recall now Proposition C.3 where we found that direct limits of simples are again
simple modules, and thus the only simple G,-modules that appear in the direct limit
space H are the limits X ;. We thus conclude this subsection with an important statement:
the UG, simple modules that appear in H are the direct limits X j of the JT Ly simples
L =1y and considered as modules over V(2) they are the direct sums (5.29) over
YV (2) simples.

5.5. Scaling limit of the anti-periodic chains. Of course, we could also consider the an-
tiperiodic model (or the twisted sector) for the symplectic fermions where the modes are
half-integer [25]. This corresponds to the scaling limit of the anti-periodic gl(1|1) spin-
chain from Sect. 3.4. The JT Ly algebra is then replaced by J TL’A’,” while U, gddsE(Z)
is replaced by Us£(2). The corresponding bimodule is semisimple and is given in (3.9).
We take the scaling limit of J 7' L} using Theorem 4.1.1 where it was shown that the
spin-chain representation of J TL’ * is isomorphic to a representation of the enveloping
algebra Usp . We thus need only to take the scaling limit of the Lie algebra spy which
is quite straightforward. Repeating the analysis given in Sect. 5.1 or following lines in
Sect. C.1, we obtain in this case that sp, has the direct limit generated by the same
bilinears (5.8) as in the periodic case but now with n,m € Z — % This representation
of sp,, gives a symplectic-fermion representation of the universal enveloping algebra
U S in the twisted model as well and the generators Sy, », Ty, and Ty, , have similar
expressions as in (5.9) but with fermionic modes shifted by one-half:
Sm,n = aﬂllf,i%l/ff;%, Tm n = aﬂ¢m¢l lﬁf#, Tm,n = “ﬁwri;%‘/’fﬁ
n,m € Z/{0}, (5.30)

where m F % is by definition m — % for positive m and m + % for negative values of m. In
particular, we see that the radical of G, which is a subalgebra generated by So ., Tin.0,
etc., is trivially represented in this model.

There are no zero modes in the anti-periodic model and the continuum limit of the
Us{(2) generators reads as [22]

o B 7, 7B
1/lfnfl/ZIlthl/Z Ip7n71/21//n+l/2
a
—dﬁZ( n+l/2  n+l2 ’ (53D

with the matrices

()_1—10 1_110 2_10—1
daﬂ—z(o —1)’ daﬁ—z(O—l)’ dwﬂ—z(—l 0)’ (5:32)

with[Q9, OP] = fc"b 0° and ]‘201 = —1. We check then that the action of the Lie algebra
G o of fermionic bilinears commutes with this action of Usf(2). Moreover, we repeat
the construction in Sect. C.4 and prove Lemma C.5 in this context. This allows then to
state an analogue of Theorem C.7 about the centalizer in the half-integer-mode sector.

Theorem 5.5.1. The centralizer 3y, of the enveloping algebra UG action in the
half-integer-mode (twisted) sector, which factorizes to the action of Usy ., in this model,
is given by the representation of U s£(2) from (5.31). The bimodule over (BUGOO’ Uﬁpoo)
is semisimple and given by the direct sum (3.9) over all j > 0.

This is confirmed by the decomposition of the full partition function to which we
now turn.


AG
Texte surligné 


Associative Algebraic Approach to Logarithmic CFT in the Bulk 65

5.6. The full generating functions. The generating function of levels for the periodic
gl(1]1) model—that is, the left hand side of (E1) reads, from the analysis in [27],

Z=Fy_1+2 Z Fij_1+2 Z Fj (5.33)
j even Jj odd

(in the reinterpretation as the partition function of the XX model with appropriate twists,
the factors 2 arise from the Z; spin-flip symmetry, so the summation index j is positive).
Elementary algebra using

0 0
Fz(n,)_1 + Fz(,,il,] = Fop,—1 — Fapei 1 (5.34)
leads to

o0
2 (0)
zZ=4>" JF; e (5.35)
—~

This formula is a direct translation of the bimodule structure discussed in Sect. 3.3:
the same decomposition holds in fact for a finite system, with F© the trace over the
simple modules over JT L. Note that it is similar to the formula Z,, = 4 Z?O:O JXjn
obtained in [7] for the open gl(1|1) spin chains. In the open case, the degeneracy 4 j arose
as dimensions of irreducible representations of the full quantum group, which coincides
with the algebra A;|1. In the periodic case, we lose the full quantum group symmetry
and retain only U gddsﬁ(Z) on the lattice. This leads, nevertheless, to the same 4 j for the
simple modules: £; _jyj+ in the periodic case, X 1 in the open case.

Finally, we rewrite the full generating function as

2 2

o (e.¢] o
. (0 .
Z =4ZJF;,()71)./'+1 =4 ZJXJZI =4q'/" H(l +q"?
j=0 j=0

n=1
The right hand side is now seen to coincide with the generating function for the level
of symplectic fermions with periodic boundary conditions indeed [25]. Of course, the
corresponding partition function of doubly periodic symplectic fermions on the torus
vanishes exactly due to the gl(1]|1) symmetry; it is thus trivially modular invariant. The
generating function Z in (5.33) is not modular invariant, nor does it have to be.
In the anti-periodic case or twisted model, the generating function of levels is now

. (5.36)

Z="Fy1+2 Z Fj_1+2 Z Fi1 (5.37)
odd j>0 even j>0
corresponding to
o
_ : (]
7= 2(1 +DF) (5.38)
j=0

in accordance with the decomposition (3.9). The (j + 1)’s are now dimensions of the
Ust(2)-modules; the gl(1]|1) symmetry is broken. As before, we can rewrite

2 o P
7 — ijj’z — g1/ H (1 +qn+1/2)
j=1

n=1
which is a well known expression in this sector as well.

(5.39)
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6. Interchiral Algebra and Local Fields

We are now discussing a reinterpretation of our previous results in a way that, we expect,
can be generalized to other LCFTs. This requires us to perform a few manipulations
whose validity, however likely, we cannot prove at this stage. The present section, while
more physical, is thus of a less mathematical nature, and, ultimately, based on some
conjectures we discuss below.

While the structure of the symplectic fermion LCFT is fully consistent with the
one of the gl(1|1) spin chain, there is an obvious difference due to the presence of the
s£(2) symmetry in the continuum theory, which, in the periodic case, does not have a
natural analog on the lattice. Investigation of more complicated models [36] suggests
that the most productive way to think of this difference is to essentially forget the s£(2)
symmetry, which seems to be an artifact from the point of view of the gl(1|1) theory.
Rather, we believe that the bimodule structure of the lattice model does suggest to us the
proper symmetries, and the proper way to analyze the scaling limit. Put otherwise, the
good algebraic object that will organize the spectrum of most general logarithmic lattice
models should be the scaling limit of the Jones—Temperley—Lieb algebra. Switching our
point of view in this way leads to profound and maybe not so surprising conclusions, in
particular that the organizing algebra of bulk LCFTs should contain non-chiral objects.
Indeed, while the focus in the past [42] had been mostly to extract the stress-energy
tensor modes from the Temperley—Lieb or Jones—Temperley—Lieb algebras, it is well
known [27] that the scaling limit of some elements in J 7 L can lead to other physical
observables corresponding to different bulk scaling fields. A very important example
of such a field is what we will call the energy operator, which is associated with the
staggered sum

N
Z(—l)iei — /dx Dy X Day(x, 7 =0), (6.1)

i=1

where the integral is taken over the circumference of a cylinder at constant imaginary-
time T = 0. In the Potts model of statistical mechanics, where the Temperley-Lieb
algebra with positive, integer values of m appears, this field is canonically coupled to
the temperature. The field in (6.1) is the non chiral degenerate field with conformal
weights i = h = hy 1; later, we will denote it by Sey1.(x, 7). Of course, the introduction
of such fields in the organizing algebra of a LCFT requires discussion of objects which
mix chiral and anti-chiral sectors. We shall in this section introduce the new concept of
an interchiral algebra, and discuss its structure and role in the case of the closed gl(1]1)
chains and the bulk symplectic fermions.

It is important to note that in the open case, the continuum limit of the Temperley—
Lieb algebra T Ly only leads to the enveloping algebra of the Virasoro algebra, and
does not involve other conformal fields. A related fact is, for instance, that the boundary
energy operator at the ordinary transition in the Potts model coincides with the stress
energy tensor [43]. There are probably cases for open spin chains where the algebra
of hamiltonian densities will lead, in the continuum limit, to a bigger algebra than the
Virasoro algebra—for instance, the super Virasoro algebra, W-algebras [44], etc.

From another, more formal point of view, recall we showed in [22, Sec. 5.2] that
the scaling limit of the JTL centralizer 3 ;7 —an infinite dimensional representation of
the U gddsE(Z)—gives an algebra of intertwining operators respecting the left and right
Virasoro algebras. On the other hand, we also showed [22] that the centralizer of V(2)
contains U, gddsﬂ(Z) but is a bigger algebra. It is thus reasonable to expect that the scaling
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limit of the Jones-Temperley-Lieb algebra is bigger than the non-chiral Virasoro algebra
V(2), and that the latter is only a proper subalgebra.

To make progress, we turn back to the scaling limit analysis of the gl(1|1) spin-chains
discussed in [22] and extract an additional field that generates the full scaling limit of the
JTL algebras. It turns out that the limit gives modes of a field of conformal dimension
(1, 1). We call this field the interchiral field S(z, 7); itis expressed in terms of derivatives
of the symplectic fermions as

S(z.2) = Sap¥®* @V (@) with Y*() =09%(z.2), P*() =09%(z.2), (6.2)
where we introduced the symmetric form
Sp=81=1, Si1=582=0. (6.3)

We recall that the derivatives of the symplectic fermions have the mode decomposi-
tion [25]

Y@ =D Ye " Yt =D g (6.4)

neZ nez

and are primary fields of conformal dimensions (1, 0) and (0, 1), respectively. The
fermionic modes satisfy the anti-commutation relations

Wl ) =mI S0, @ BellL2), mom €Z, (6.5)

with the symplectic form J'2 = —J?! = 1, and the same formulas for the antichiral

modes 1&,‘;‘ and {5, &’ﬁ ,} = 0. We also introduce ‘constant” modes q)g and ¢é which
are conjugate to the zero modes

{ob.vd} =i {od.vi}=—i (6.6)

6.1. Modes of local fields and the algebra S. While dealing with bilinears in fermi-
onic modes is quite convenient and provides the most obvious approach to the scaling
limit of JTL algebras, it is also important to understand what happens in more physical
terms. From a (L)CFT point of view indeed, the natural objects are, for instance, not so
much bilinears such as 112, 1\ :, but the modes of the stress energy trensor, which are
(infinite) sums such as L, = >, ., ¥2_, ¥}:. Also, while Howe duality (in its non
semi-simple version) gave us a powerful and new angle on J T Ly and its scaling limit, it
is not likely that this will generalize to other models. It is thus crucial to be able to come
up with an alternative, if less pleasant, approach to the scaling limit of JTL algebras.

6.1.1. Higher Hamiltonians. We begin by recalling the lattice analysis given in [22]
where it was shown how to proceed from the J7 Ly generators to get Virasoro modes
in the non-chiral LCFT of symplectic fermions: the combinations

N N
Hmy=—> e el Pm)=3> e e )], g="" (6.7)
j=1 j=1


AG
Texte surligné 

AG
Texte surligné 

AG
Texte surligné 

AG
Texte surligné 


68 A. M. Gainutdinov, N. Read, H. Saleur

of the JT Ly generators (recall that e?[ denotes the representation of e; given in (2.2)
and (3.1)) converge in the scaling limit as L — oo to the well-known symplectic
fermions representation of the left and right Virasoro generators

LMW > Ly+ Ly, EPm)— L,—L_,. (6.8)
2 21

We note that the limit (6.8) of H(n) and P (n) is taken for finite 7.

Here, we go further and consider also limits with n close to N /2 (corresponding,
physically, to alternating sum of JTL generators, related with the energy operator), or
equivalently we consider H(L — k) and P(L — k) with L — oo and finite k. It turns
out that this limit gives modes of a field of conformal dimension (1, 1). To show this,
we introduce a family of operators H;(n) which are Fourier images of all the higher
Hamiltonians:

N
Hy(n) = —%e_il% D e WE;; g="" and IeN, neZ  (69)
j=1

where we used the following notation for multiple commutators of the J 7' L y -generators
€j
Ej = [ej, [ejsts .. ejri. [ejai—1, €ju]. .. ]] 1<j=<N. (6.10)

We call these Fourier images generalized higher Hamiltonians. Note that P (n) = H;(n)
and we set Hy(n) = H(n).

The fermionic expressions for the H;(n)’s were obtained in our first paper [22,
Sec. 4.5.1] and it turns out that the H;(n)’s can be written in the basis (4.10) of the
Lie algebra Gy, for/ > 0and0 <n <L — 1, as

L—n—1
Hi(n) = 2eiql+z'( Z cosl(p+ %)\/Sin (p) sin (q + p) Am.mn

m=1

n—1
+ % Z COSl(p - %)\/Sin (p)sin(g — p) (Cm,n—m + (_1)IBL—m,L+m—n)

m=1

[ -
+cos 2 /sing (Eon + (=)' €022-n + ELanr + (—D'ELn 1)

+28,0(1 + (—1)’)€o,L), 6.11)

where we set p = mm /L and ¢ = nm/L as usually. The expressions for negative values
of n are given in (D4). Note that all zero modes H; (0) and the lattice translation generator
u® have very simple expressions:

L—1
Hi(0) =2 cos (Ip) sin (p) Apm +4(1+ (=D)L (6.12)

m=1
and

L—1
u* = exp (—Zan Z n.An,n) (6.13)

n=1

and they belong, for odd values of /, to the Cartan subalgebra of spy; _>.
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We check then that the element Hy(L) is the energy operator indeed Z?]:l (=DJe j
on the lattice (which differs from the Hamiltonian H'), which reads

T—€

N
D (=Diej=2i > sinp(xjn,+nixp)- (6.14)
j=1 p=¢

step=e€

The energy operator rescaled by the factor % has then the limit

2mi
j mez

N
LS ey D (WARL + v T2) = So.
j=l1

We denote this limit by Sy and show below that it corresponds to the zero mode of a
primary field of dimension (1, 1). First however, we discuss what will correspond to
higher modes S, of this primary field. We refer to our calculations in Appendix D where
we obtain in the scaling limit for Ho(L — k) (keeping only the leading order in 1/N),
with finite integer k,

L - 0
S Ho(L = k) > Sup > VaUha =S, kel (6.15)

meZ

and the scaling limit for Hy (L — k) is

12 -
—SSHUL = k) > Sap S em+byivl, =s", kel (6.16)

meZ

where we introduce, for [ > 0 and k € Z, the operators

SY = Sup D @m AR YR (6.17)

meZ

The whole family of operators S (l), with ! > 0 and k € Z, can be extracted from the
scaling limit of the operators Hy (L —k) keeping not only the leading terms in their formal
expansion in 1/L but also all sub-leading terms in the expansion. Put differently, we can
formally expand Hy (L — k) as Laurent series in N where coefficients are fermionic
bilinears of the form S,El). For simplicity, we refrain from discussing this any further
here.

6.1.2. Fields. The foregoing family of operators S (l), with/ > 0 and k € Z, can be ob-
tained as modes of a primary field of conformal dimension (1, 1), and of its descendants.
We denote this primary field defined on the complex plane as

Sp1. (2, 2) = Sap¥* ()Y (2), (6.18)

where Sy is the symmetric form, i.e., S12 = S21 = 1, S11 = S22 = 0. We call this field
the interchiral field; note that it is of course neither chiral nor anti-chiral.
Recall first the mode decomposition of the fermion fields

GRS N A R (6.19)

nez nez
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Then, Spi.(z, 7) has a formal expansion

Spl(2.2) = Sep D Uyl Tzl (6.20)

n,mez

Interpreting z and 7 as independent complex coordinates allows one to extract ¥ 1},’3 by
a double integration over z, z. This is not too pleasant however, since we rather would
like to deal with modes obtained by integration in the physical theory, where z, 7 are not

independent. Note also that in the Virasoro case, there is no z we can integrate over, so

there is no integration that can give rise to the single product ¥ w,ﬁ starting from the

stress energy tensor and its descendants.

To make contact with the hamiltonian formulation we used so far, it is now convenient
to perform a conformal transformation z — w(z), 7 — w*(Z) onto a cylinder of
circumference L', with w(z) = 2% log(z). We set w = t — ix and now w* = t +ix,
we then obtain

2 2 -
Sey.(x, )= (2%) 2Z8p1.(z, 2) = (%) Sap Z (/o ‘/’,ﬁ exp[—% (r(m +n)+ix(m —n))].
n,mez
(6.21)
Introducing the mode expansion of the field Scy1.(x, T) on the cylinder in the Heisenberg
presentation, where the modes depend on the imaginary time ,

2 . /
Set (6, 7) = (25) D Se(mper ke, (6.22)
keZ
we then obtain N
Sk(r) = asz / dxe ZRILS ) (x, T) (6.23)
0
which is evaluated as
Sk(f) = Sup Z I/ffl[+k I/_/fe—zﬂf(zn+k)/L/. (6.24)
nez

Finally, we get the expansion

(=27t) L)

Sk(t) = ! —k

=0

(6.25)

and in particular
S0 =89, kez, (6.26)

where S,El) were introduced above in (6.17).

It is important to note that applying the zero mode Sy of the local field Sy (x, T)
on the vacuum state, we get then an infinite sum >, _o (V2 v, + ¥, 2) K. All other
modes Sy have similar formally divergent action. These formal divergences are not very
surprising as a local operator in general is able to excite states of arbitrarily high energy
(the spin is fixed in the action of our local operators). Note nevertheless that the modes
Sk (7) in the Heisenberg picture are well-defined as they have the convergence factor
e~ 21T n+k)/L" yhich eliminates high excitations. We could thus regularize the action of
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our local operators by introducing convergence factors in the formally divergent sums
but this is not very convenient for us. In order to describe representations of the algebra
generated by these local operators, we prefer to choose another regularization in which
a locally defined field at a point w = 7 — ix becomes a bilocal field at points z and
(hence formally “point splitting” by going to C x C). So, we interpret the field S(z, z) as
a regularization of the local interchiral field on the cylinder where the variables z and z
might be considered independent. After such a regularization the modes of S(z, z) given
in (6.20) now indeed generate states of finite energy only.

Recall now that the modes of the regularized field, S(z, z), are elements of the Lie
algebra G, which is a subalgebra in the algebra gl,, of infinite matrices with finite
number of non-zero elements. It turns out that the modes of the local, non-regularized,
field Scy1.(x, T) belong to the algebraic completion aoo of this gl,,. The Lie algebra
gl was already mentioned above in Sect. 5.1.2 and it consists of infinite matrices with
finite number of diagonals having (possibly infinite number of) non-zero elements, see
also Appendix B. Working now in the completion aoo, we can ask about the Lie algebra
generated by the local operators. We show below that all the other operators S,El) that

appear in the scaling limit of the Hy (n) operators are produced from S,EO) by the conformal

generators L, and L,,. It is of course interesting to study, more generally, commutation
relations involving these operators, that is, to study the Lie algebraic structure generated

from the S ([).

6.1.3. Commutation relations and the Lie algebra &S. We first find commutation rela-
tions among the modes S(O) with the result

SO, 5O = ﬁz n—s)pel (n+r)1//,2’wf(r+x)_n). (6.27)

ne’

Recall that the modes of the chiral stress-energy tensor can be written as Ly = %Jaﬁ
Doz Ul w,f_n :, and similarly for the anti-chiral modes. We introduce also

LY = —J g > syl o LY = f.]aﬁznllll_fgl/_ff_nl, 1>0, keZ,

nez nez 6.28)
(6.
with L( ) = Ly and L( ) — = L. Then, (6.27) has the form, for r #* —s,
1 1 =0 0
(59, sy =2L0) -2 — 25L& —2rLO) . (6.29)

Note that the new modes L,(Cl) and i,({l) together with Lﬁ,o) and L 520) generate a subalgebra:

2LV, LT = m(n —2m)LYY, +m3 LYY, (6.30)
2L, L0 = m(n — 2m)LL), + m> LY, 6.31)
(LM, LM =0, (L, LO1=0, [LV, LO]1=0, (6.32)
(LD, 2O = (0 —2m)LY, +m*LY),,. (6.33)

= = 1 0
LD, L0 = (n —2m)L), + m*L,,. (6.34)
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where we give relations for n # —m (at the case n = m there is a central charge
term in all these commutators, which is not important for our purposes). Note also that

ALY, L1 =mILP, LY.
In general, we have

I+'+1
/ k - 5k
150, 8O1= > (@L®)_ +al®)). (6.35)
k=0

where a; and a; are coefficients in the expansions

I+ +1
> axk = (=) Qx ) (x + 1) Q2x 428 +5)! (6.36)
k=0
I+1'+1
Z ek = (=DM 2x — 5)' (=x +5)(2x — 25 — 1), (6.37)
k=0

and we again suppose that r #= —s.
We compute next for all higher modes the action of the left and right Virasoro, i.e.,

commutation relations between S,(l) and LEO), I:EO):

l
- I+1 [
st 101 =510 = Sl () ()]s

k=0
) ! I+1 l
s =S [ (1) ()]
k=0

In general, we have

r,s € Z. (6.38)

[+1 I'+1

’ -1 _ o fl+1 r i (! I
157 L = 5 2 2 (= k[s(s - ( k )(k) Fro =0 (k) (k)

k=0 k'=0

+ (D' r+s)(=s —r)'¥ (i) (l ]:, 1)] S (6.39)

and a similar formula for [S,(l), I:§1/)], with r, s € Z.

Although it is obvious that the commutator [Lf,l), L,(,i )] is expressed as a linear com-
bination of L E,l+,)n with I” < [+, its precise expression looks more complicated and we
do not give it for simplicity. We note also that the commutators from (6.29)—(6.35) have
central charge terms which are the vacuum expectations of these commutators (we do
not give explicit computations for brevity). Finally, we conclude that the vector space
with the basis S,g,l), L,(ll) and l_,,(f), with / > 0 and n € Z, has a Lie algebra structure.
We will denote this Lie algebra as &. It is noteworthy to mention that all operators that
appear in repeated commutators of S,EO), including all S,(Zl), do commute with the action
of U, gddsﬁ(Z). We thus have that the action of the enveloping algebra UGS commutes
with Ug%s£(2).
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6.2. The relation between the G and S algebras and completions. We have so far
obtained two different Lie algebras. One, G, is generated by bilinears in fermion
modes, while the other, G, is generated by the modes of bilinears in fermionic fields,

which are local operators. The corresponding objects such as S,gl) and so on expand on
an infinite sum of bilinears in fermion modes, and we now have to face the question
of the equivalence of these two descriptions. We note first that the generators of the
second algebra, G, are formally infinite sums of the generators of G,. On the other
hand, any element in the first algebra G, is expressed (by definition) as a finite linear
combination of fermion bilinears. Therefore, in order to compare we should first take
an algebraic completion G, of the Lie algebra G, that now admits infinite sums like

those for S,(,l). The completion G, is defined as a Lie subalgebra in a;o (the completion
of gl,, introduced in Sect. 5.1.2 and Appendix B) that contains any (possibly infinite)
linear combinations of the bilinears

[ Xo,,ﬂn//%l/rfin: for a fixed value of (m — n), (6.40)

where the fermions ¢¥* are defined in (B4) and X, g = Sy, for m and n of different
parity and X g = Jo,g for m and n of same parity. Then, recalling the expressions (6.17)
and (6.28) we obviously have inclusions

6 C 6w Caly.

So, considering the completion of the Lie algebra appearing in the scaling limit of our
spin-chains is crucial if we want to describe local operators.

Strictly speaking, the algebra G, as well as its subalgebra &, does not act on the
space ‘H of the scaling states. It acts on the completion

H= H H™,  where H" are root/eigen-spaces for E = Lo + Lo, (6.41)

constructed initially as the projective limit of our spin-chains in Sect. C.4 and described in
details in the paragraph preceding Corollary C.6. This is the completion in the so-called
formal topology [46]: all subspaces Py /M H™ < H, for a finite subset M C N, are
declared to be the fundamental system of neighbourhoods of zero. Then, the completion
of H in this topology is the direct product [ [y H™ of its homogeneous, or fixed energy,
subspaces H, and H C H is a dense subspace. We will denote the representation
of the universal enveloping algebra of the Lie algebra G, on the completed space by
7: USy — EndH and for simplicity denote the image 77 (Sn,) of the abstract Lie
algebra just by G, in what follows.

Itis interesting to go back for a while to the finite lattice and to mention that there is an
isomorphism between the Lie algebra generated by the generalized higher Hamiltonians
H;(n), from which we extracted operators like S,(,l), and the Lie algebra Gy introduced
in Sect. 4 in order to give special generators of rrg[(.] TL N) as bilinear monoms in the
fermionic modes. The existence of such an isomorphism is discussed in Sect. D.1. The
Gy algebras in the scaling limit give the G, while the Lie algebra of H;(n)’s gives
in the limit the Lie algebra G. It is natural to expect that the isomorphism between the
two Lie algebras for finite spin chains carries over to their scaling limit, after taking a
proper completion. The completion & (of the image of the representation) of & acting
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in 7H is defined as the Lie algebra with the basis of & but containing also infinite linear
combinations of S,Sl) or Lg), or Zf,l)’s for any fixed n such that

S - O] O} 30 i i —
&: YasP S aLl. DL, wih Jlim €, =0. (6.42)
>0 >0 >0
Actually, we will require a stronger condition: for any (infinite) sequence of the constants
Cy, the series > ;= C; has to be convergent. Note that this way defined completion &
is a subalgebra in a;o We can show that the infinite combinations in (6.42) with the

coefficients series >~ C; equal 0 or 1 converge on ' to the generators of G ,. We first
note that the G generators are obtained from those of G, by infinite Vandermonde-type
matrices:

2L(l) Zn Tn k—n-s 2L(l) Zn Tn k—n-s S(l) Z(Zi’l + k) Sn kins 1>0
nez nezl nez
(6.43)

where we set n = 1, for any n. Let us consider for simplicity only the case k = 0

in details. We start with L(()l), which are non-zero only for even values of [ (recall that
Ty,—n = T_y ). Then, we can write

LY = 75, 0700+ D 1Ty . (6.44)

n>0

or introducing infinite vectors L = (L(()O), L(()z), L(()4), )l and T = (%TO,O, Ti.—1,
o, .. .)T, we have

L=V-T, (6.45)
where 'V is the transposed of the classical infinite Vandermonde matrix
lxoxéo.. x6l...
1 'xl 'xl e xil e
vi=1:: o0 ], with x; =2 (6.46)
1oy x2 - Xl -

Now, we face a problem of finding the inverse V-l = (Ck.n)k.n>0- In general, it is
a non-trivial problem but our Vandermonde matrix is special: it has one row and one
column of units 1’s (x; = 1) and this property allows at least to prove that the series
> =0 Ck.n associated with each row of V! converge. Indeed, we have by definition of
the inversed matrix

> Chnxpy = Smi. (6.47)

n>0

Introduce then formal power series in x as

Pi(x) = D" Crpx" (6.48)
n>0

and using (6.47) they take the following values at points in the sequence {xg, x1, x2, .. .}:

Pr(xp) = 3m,k- (6.49)
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It is now obvious that
> Cin = Pel) = Pr(x1) = 8.1 (6.50)

n>0

and in particular lim,_, » Ck, = 0. We have thus shown that

21 2
Too = ZZCOJL(() ), Ty —k = ZCkJL(() ) (6.51)
=0 >0

are well defined and belong to our completion &. Now, we turn to the zero modes
S(()l) and introduce an infinite vector L = (% S(()l)) 10" It can be expressed again as
a product of a new Vandermonde matrix V = (x),),>0.mez, Where x,, = m, with
the vector T = (Sk.x)rez. Note that V has again one column and one row of units.
Proceeding as above, we have again that the inverse V~! = (Ck,n)kez.n>0 has rows
with the properties that the series >, - o Ck,, converge to 0 or 1. Therefore, the elements

Skk = 21=0 Ck,zS(()l) are in the completion G. For the non-zero modes k, we divide
the generators of G by appropriate polynomials in k of order / and proceed similarly to
establish the desired properties for the coefficients Cy ;.
Summarizing the previous arguments, we have thus established an existence of an
isomorphism
G =6 (6.52)

of Lie algebras. Though the explicit transformation requires computation of the coeffi-
cients Cy , in the power series (6.48), it is not necessary for our purposes.

We can justify the isomorphism in (6.52) by another, heuristic but more physical,
argument. Recall that the modes Sy = S ,EO) were obtained by expanding the field Sy (2, Z)
defined in (6.18) on the unit circle in the complex plane (or at time T = 0 in the
cylinder geometry). The higher modes S,El) can be obtained by expansion at different
moments 7. Indeed, we see from (6.38) that the dilatation operator Lo + L( generates
S,El) from S,EO), and so on. This action can be interpreted as an expansion of S (z, z) ona
different (non-unit) circle with the same centre. Transforming the unit-circle expansion
by the conformal generators L, and L, we generate all higher modes S,(ll) and cover an
expansion of the interchiral field Sp.(z, z) on the whole complex plane. On the other
hand, this expansion is given by the quadratic monoms S}, ;, in the fermions modes. This

suggest strongly that both Lie algebras—the one generated by S,Sl) and the other, G,
generated by S, ,,—are isomorphic, after taking proper completions.

6.3. The interchiral algebra S. We define the interchiral algebra for the g[(1|1) models,
denoted by S, as follows. Consider the completion G of the Lie algebra S, generated
by the modes of the regularized interchiral field S(z, z) in its double mode expansion.
The interchiral algebra S is then defined as the associative algebra generated by Gy,
i.e., it is the homomorphic image of UGy

UGy —> S. (6.53)

The defining relations in G4, and thus in the universal enveloping algebra UG are
computed in Sect. 5.2. The point is, there might be additional relations in the fermionic
representation of the abstract algebra U G, and the particular modules realized in H,
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as also happens say for the Virasoro Lie algebra and its enveloping algebra V(2). This
is why the map from (6.53) is not an isomorphism but a covering homomorphism of
associative algebras.

We also recall the discussion in the previous subsection about relations between
both Lie algebras G and & In view of existence of an isomorphism (6.52) of their
completions, we can give another, more physical, definition of the interchiral algebra. The
interchiral algebra can be considered as the associative algebra generated by the modes
of the following local fields: the stress-energy tensor fields 7' (x, t) and T (x, ) and the
interchiral field Scy) (x, T), see the mode expansion in (6.22) and in (6.25), where x and
T are the coordinates on the cylinder. The Lie algebra generated by these modes requires
of course the completion, S in the sense of (6.42), in order to get indeed a definition of
S equivalent to the first one. In the symplectic-fermion theory, the interchiral algebra is
then the homomorphic image of the (representation of the) enveloping algebra US. The
Lie algebra G, and its completion as well, has S,gl), Lf,l) and I:f,l), with/ > Qandn € Z,
as its basis. The commutation relations in this basis were computed also in Sect. 6.1.3,
which give relations in S, but probably not all defining relations, because there should
be more in the representation of U S. We write therefore

UGy XUG — S (6.54)

where the arrow is again a covering homomorphism of associative algebras and S is the
image of UG under this homomorphism.

Note that while the second definition of the interchiral algebra is probably better for
further generalizations of the concept of interchiral algebras for other models, we will
use the first, more technical (and less physically pleasant), definition of the interchiral
algebra in studying its simple modules below. We note further that for more complicated
logarithmic theories like those describing scaling limit of gl(n|n) (n > 1) periodic
spin-chains, we will have a different and now faithful representation of J7 Ly, and
a description in terms of Lie algebras will probably not be available. Nevertheless, a
description in terms of a (properly defined) interchiral algebra should still exist. This
will be discussed in further work.

6.4. OPEs. An important advantage in using the interchiral algebra is that it gives a
convenient “vertex-operator algebra” framework® where one introduces operator-valued
generating functions of formal variables z and z and their OPE in order to define an
algebraic structure. It is worth spending some time discussing this approach in the
context of the bulk theory. We recall first the OPE of derivatives % (z) and %% (Z) of the
symplectic fermions

1 T =\ T B, - 1 = _
V@Y (w)= Jaﬁ((z —w)? —T(w)+reg-), VPP ()= ((2 — )2 —T(w)+reg')’
(6.55)
where we use the symplectic form J*#, with J'2 = —J?! = 1, and computed the

coefficient in front of the stress tensor 7' (w) using usual conformal-invariance arguments.
The stress tensor 7'(z) is given in fermions as 7 (z) = %Jaﬂ C Y% ()PP (z) : with Jop
such that Jog J#7 = 6.

8 Qur interchiral algebra strictly speaking is not a vertex-operator algebra because of the neither-chiral-
nor-antichiral fields. A proper generalization of the vertex-operator algebras for our context is still required.
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Then, OPE of two S(z, z) fields can be written using (6.55) as
S(z, DS(w, W) = Sup¥* VP (D) S, s9" (W)Y ()

:—Saﬁsya(ﬂy( = T+ 1) s (

zZ—w

= 5 —T(@) +[1].2)

e _lw)z (9P @ () : +E — ) : IYP @) (D) s +---)
1

+JP
z—w)?

(: Y)Y’ (w) @ +(z — w) : YT (W)Y (w) : +-- ) +reg.)
(6.56)

where we take into account contributions of all possible single and double contractions,

and denote by [1]~7 and [1]. , contributions of descendants from levels (7, 0) and (0, n)

with n > 2, respectively. We note that SygS,sJ%" JBS — —2 and SapSysJ*Y = Jgs.
Therefore, the OPE is

- - 1 2T (w) 2T () 112 1.
DS, ) =2 o )
$ DSw, w) C—wG-0? G0’ G-wl G0 G-w?
Z—wdTW)+... E—wdT@)+...
_ o — E— + reg. (6.57)

‘We note that the right-hand side in the relation (6.29) is consistent with the OPE (6.57)
in a sense that commuting two S(z, z) fields we can get only the identity and a linear
combination of modes of 7' (z) and 7 (z) and of their descendants, due to presence of the
symplectic form Jyg in (5.13).

The OPE of S(z, 7) with T (w) and T () is quite obvious because the field S(z, 7) is
primary for both chiral and anti-chiral stress tensors. We describe below in Sect. 6.6.2
the vacuum module over the interchiral algebra S and some other its simple modules
explicitly using this “vertex-operator” formulation.

6.5. The interchiral algebra in the twisted model. It turns out that we have also a rep-
resentation of the interchiral algebra in the twisted sector of the symplectic fermions,
where the fermionic modes are half-integer [25]. As we have seen in Sect. 5.5, this sector
corresponds to the scaling limit of the anti-periodic gl(1]|1) spin-chain from Sect. 3.4.
The symplectic-fermion representation of the universal enveloping algebra UG, in
the twisted model is given by the expressions (5.30) for the generators S, ,,, Ty n, and
]_"m,n. Using the local operators or modes of the local fields Scy. (x, T) and the energy-
momentum tensors in the half-integer sector, we obtain the corresponding representation
of the interchiral algebra in the anti-periodic model. And once again, taking then the com-
pletion sp,, of sp, as in (6.40), in this half-integer sector, we obtain the representation
of S as the representation of Usp ., which is also a quotient of UG .

6.6. Modules over the interchiral algebra S. In this new section, we describe the struc-
ture of simple and indecomposable modules over the interchiral algebra S that is defined
as the representation of the completion So. Recall that we already described all sim-
ple modules X; over UGS, that appear in the whole space 7 of the scaling states in
Sects. 5.3 and 5.4, together with the bimodule structure of H over U S, and the central-
izer U gddsﬂ(Z). Here, we give in Sect. 6.6.1 an explicit construction of the module X and
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then description of the vacuum module over the interchiral algebra S, and the twisted
vacuum module in Sect. 6.6.4. Finally, indecomposable modules over the interchiral
algebra are analyzed in Sect. 6.7.

6.6.1. The module X;. Recall that X; denotes the module over U &, which is obtained
in the scaling (direct) limit of the JTL simple modules £ j.(—1)j+1. Suppose we wish
to check directly that X; are simple modules over the algebra UG, and that their
completions X ;j in the sense of the formal topology, see (6.41), are simple modules
over S. Our strategy consists in a few steps: (i) we state that the 7, , and Tm,n basis
elements of G, generate the algebras of endomorphims of simple modules (as graded
vector spaces) over the left and right Virasoro algebras, respectively; (ii) we then recall
that the generators S, , are modes of the interchiral field S(z, z) of dimension (1, 1)
and (iii) finally we use the operator-state correspondence in CFT and identify composite
fields in S(z, z) and its derivatives that produce the direct summands in (5.29) for a few
explicit examples.

In our analysis, we use the s£(2) action or “global SU (2) symmetry” of the symplectic
fermions commonly known as Kausch’s s£(2) action [25] which we denote by s£(2).
The generators of the s£(2) in the non-chiral symplectic-fermion theory are

0 o 5 7o 'ﬂ
. U U,
0" =dt, [,¢gw{f+2(n+n)] (6.58)
n=1
where dJ, are defined in (5.32), and with [Q“, 0% = £%Q° and f' = —1. We

note that the generators 7y, , and ]_‘m,n commute with this s£(2) action. Meanwhile, it is
important to note that the generators S, , do not commute with the s£(2) and belong to
the zero isospin-projection in the triplet s£(2)-module.

First, we can consider chiral and anti-chiral sectors separately to show that simples
X 1 over the Virasoro Lie algebra with ¢ = —2 are also simples over the Lie algebra of
Tn.n’s, and similarly for the anti-chiral part. To analyze the chiral sector, it is technically
easier to work in a smaller space—in the chiral symplectic-fermions theory. Recall that
the scaling limit of the open gl(1|1) spin-chains described in [7] and in Sect. 2.3 gives
this chiral LCFT. The symmetry algebra of this theory, which is now the centralizer
of the Virasoro algebra V(2), is a representation of the full quantum group Ugs€(2) at
q = i. We recall that this centralizer can be equivalently described as the semi-direct
product of the gl(1]1) and the enveloping algebra Us£(2). The generators of the Us¥€(2)
are the divided powers of the quantum-group generators and their action coincides with

the action of Kausch’s global s£(2), while the generators 1//3’2 of gl(1]|1) correspond to
horizontal arrows in the bimodule diagram in Fig. 2. On the other hand, the centralizer of
U;s£(2) is an associative algebra of endomorphisms of graded vector spaces End(H) =
@D, ner Hom(H™ 1 ™), where H™ are finite-dimensional homogeneous subspaces
of the nth energy level, and such that they commute with U;s€(2). This centralizer
obviously contains Virasoro V(2) but it is a bigger algebra—a completion’ of V(2).
The chiral space H is the direct sum H* & H~ of bosonic and fermionic degrees
of freedom, and it is decomposed onto modules over the product Us€(2) X V(2) as

9 The completion of the Virasoro contains in particular projectors onto a fixed, kth, energy subspace. Such
operators are obviously in the centralizer of U; s£(2) but they are not in the universal enveloping of the Virasoro
Lie algebra. Of course, there is no double-centralizing property in infinite-dimensional spaces and this is why
an appropriate completion is necessary for describing centralizers of quantum groups in the CFTs.
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in (2.11). The full bimodule structure is given in Fig. 2. We note that the generators
T n are well-defined operators from End(H) just introduced and they commute with
the U;s€(2) action. They are therefore in the centralizer of U;s£(2). The socle of H is
the intersection of the kernels of the fermionic generators of the gl(1|1) part of U;s€(2).
We can thus restrict the action of all 7, ,’s onto the socle of the modules in (2.11).
Using then the Us¢(2) symmetry, we obtain that simple modules over the Lie algebra
generated by T, ,,’s are the same, as graded vector spaces, as the simple modules over
the Virasoro. Indeed, the vacuum modules & | appears with multiplicity one and it is
the Us{(2) invariant but all 7, ,,’s are also Us¥€(2) invariants and they thus generate the
same A 1 from the vacuum state. Further, we take the highest-weight state of each higher
multiplet for the Us¢(2) and see that all 73, , s generate from it a module identified with
(isomorphic as a graded vector space to) the simple Virasoro module X ;. This proves
our claim that all 7,, ,,, for m, n € Z, are graded-vector spaces endomorphisms of the
simple Virasoro modules &X’; 1, for j > 1. Moreover, we also check that the fermion
bilinears 7}, , are the only bilinears that commute with U;s¢(2). They are therefore
generators of the centralizer of U;s¢(2). This means that simple modules over Virasoro
are also simple modules over the Lie algebra with the basis given by T}, ,. We use the
same arguments to show that the Lie algebra with the basis given by T,, , has simple
modules X} ;.

In the full non-chiral theory, the left (or right) Virasoro algebra has the same iso-
morphism classes of simple and indecomposable modules as in the chiral theory, see
a discussion in Sect. 6.7.1 below. We thus have essentially the same representation of
Tn.n»—the same expression for the generators as in the chiral theory but acting in a much
bigger space, so a difference is only in ‘multiplicities’ which are infinite now and cor-
respond to modules over the right Virasoro V(2). Summarizing, we give the following
statement. The simple modules X; 1 IXI A} 1 over the left-right Virasoro algebra V(2)
are also simple modules over the Lie algebra with the basis given by 7,,, ,, and Tm,,,, with
m,n € 7.

We then continue by analyzing the vacuum module over S which contains the identity
field. By definition, the vacuum module is a vector space generated from one state—the
vacuum 2—by those S, ., Tn.m and T, ,,, that have negative indexes n and m (note that
we used here our first definition of the interchiral algebra from Sect. 6.3). It turns out that
this vector space as a G,-module is decomposed over the left-right Virasoro exactly
like X(;. We stated just above that the T}, ,,, and T,, ,, generators of G, generate the en-
domorphism algebras of a simple Virasoro module X’; | or X i1, respectively. Therefore,
to extract the Virasoro content of the vacuum module and compare it with X; we only
need to identify highest-weight vectors for V(2) which are generated from the vacuum
state by the S, ;, basis elements. Equivalently, using the operator-state correspondence,
we are going to identify left—right Virasoro primary fields generated from the identity
by a field having these S, ,, as its modes. Such a field was identified in Sect. 6.1.2
with the interchiral field S(z, z) = Seg¥* (z)wﬁ (z). The S(z, z) is a primary field and
corresponds to the state

|S) = lirn0 S(z,2)L

,2—>

which belongs to the subspace &> | XX, ;. Note that this subspace is in the triplet sector
with respect to s€(2). Then, T,, ,, and T,,, m generate this V(2)-module from the highest-
weight state |.S). We thus obtained first two terms in the decomposition onto left-right
Virasoro modules
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Xilve) = @Xj,l X X1, (6.59)
j>1

which is the direct sum in (5.29) for j = 1. Highest-weight vectors in other direct sum-
mands in (6.59) can be constructed by taking appropriate composite fields in S(z, z) and
in its derivatives 8/ 9/ S(z, Z) applied to the vacuum & in the limit z, 7 — 0. So, the next
primary field from the decomposition (6.59) should have conformal dimensions (3, 3)
and it might be identified with the composite field :00.5(z, ) S(z, 2):, up to descendants
of S(z, z) and of the identity field on the level (3, 3). We note that this highest-weight
state belongs to a 5-dimensional s£(2)-module. This result can be obtained by a di-
rect calculation using the double mode expansion (6.20) together with normal-ordering
prescriptions or using OPE formulas given in (6.57).

The analysis can be continued to construct in a similar way states belonging to higher
s4£(2)-multiplets and contributing thus to new primary fields. Using (6.58), we obtain
that the composite field

n

J12797 s, 2): (6.60)

j=0
has the conformal weight (A,.2,1, Ay42,1) and it is in a (n + 1)-dimensional s€(2)-
module, up to contributions from lower s£(2)-multiplets 10 This state therefore belongs to
the direct sum EB;’J;ZI AX;1XX; 1. By induction, this finally gives the decomposition (6.59).

We next observe that the state
1S?) = lim :5%(z,2):
2,2—0

is on the level (2, 2) of the direct sum X, ; X 232,1 eI 231,1. This means that the
square of the interchiral field maps back to the identity module over V(2). A similar
analysis for states (6.60) living in higher s£(2) multiplets shows that our vector space
X generated by composite fields in S(z, z) and its derivatives is indeed a simple module
over Gqo.

6.6.2. Vacuum module over S. Recall then our discussion about the isomorphism of two
different Lie algebras, Go, and &, given in Sect. 6.2. The completed algebras, as well
as the interchiral algebra S, act on the completed space H defined in (6.41). It is natural
then to take the completion of X| = eanxﬁ”) as the direct product X, = I, DCE") of
the eigenspaces of E = Lq + Lo and declare it as the vacuum module of the interchiral

algebra. Note that this module has the basis of X| and the latter is its dense subspace
in the formal topology, see Sect. 6.2. The first question is now whether the vacuum
module X; is simple or not: making the completion we add many new vectors which
could generate invariant subspaces. However, it turns out that having v € X; written as
an infinite combination of the basis elements, i.e., if v is not in the subspace X we can
find a word in the generators of S such that the image of v under the action of the word
belongs again to X;. For example, for

v="S"R="S.p > VeULREH
m<0

10 Strictly speaking, the composite field constructed belongs actually to a direct sum 697/22 oCj where C;
denotes the (2 + 1)-dimensional s£(2)-module.
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we can write its image under (Lo — 2)(Lo —2) — L_>L_5 as
((Lo—2)(Lo—2) = Lol 5)v = Sapy® 9" R € H

and the image is just the Virasoro highest-weight state corresponding to the primary
field S(z, 2).
In general, we formulate the following conjecture based on many explicit checks.

Conjecture 6.6.3. Tuking the completions X j (those in the formal topology) of the simple
UGBoo-modules X gives simple modules over the interchiral algebra S.

6.6.4. The twisted vacuum module. We finally discuss an example of a simple module
over the interchiral algebra S in the sector with half-integer fermionic modes. Recall
that we have found in Sect. 6.5 an action of the interchiral algebra S in the twisted
model of symplectic fermions. The full symmetry algebra in this case is the Us€(2) as
it was stated in Proposition 5.5.1. We define then the twisted vacuum module over the
interchiral algebra as the space of s£(2) invariants. The structure of the twisted vacuum
module can be described in a way parallel to Sects. 5.4 and 6.6.1. The generating function
of levels obtained as in [27] now involves the characters

G=17%/2 _ o G+1)?/2
q q
Xj2 = (6.61)
’ n(q)
and we have the identity for the Kac character, see Appendix E,
J
Krojw2 = Z Xr—j+2s,2- (6.62)

s=0
This time, the simple modules of J TL%,” are obtained with a single subtraction
according to (3.10), so their left-right Virasoro V(2) content is
o
0 — — —
F;,()—l).f =Fjni — Fincn = Z Xr2 (Xr—j,z Xr—jr22t ot Xr+j,2) .
r=1
(6.63)
The J TL}I,” modules are all semi-simple in this model, and so are the V(2) modules,

according to the decomposition (3.9). We thus obtain the left-right Virasoro content in
the scaling limit

Licnit ProaR(X 20X 0.0 X.0). (6.64)

r>1

which is again a direct sum of infinite number of simple modules over V(2).
Let DC;“’ denotes the module over UG, (or Usp,,) which is obtained in the scal-

ing limit of the JT L™ simple modules L j.(—1yi- With an analysis similar to one in
Sect. 6.6.1, we generate the vacuum module applying by composite fields in S(z, z) and
its derivatives on the vacuum state, the highest-weight state in X} » X A 5. The vacuum
module DCf)w decomposition onto V(2)-modules is

Xp'lve) = P X2 B A (6.65)
e

and it is an irreducible module over Usp,,. We do not give details of calculations as
their essentially repeat the previous. Correspondingly, its completion, see a discussion
in Sect. 6.6.2, describes the vacuum module over S in the twisted sector.
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6.7. Indecomposable modules over S. To proceed, we must now discuss the scaling limit
of the indecomposable J T L y-modules P j» which are indecomposable U & ,-modules
denoted by Y ;, and compare it with potentially similar structure in the symplectic fermion
theory. This will be facilitated by a preliminary discussion of the latter.

6.7.1. The structure of the Virasoro representations in symplectic fermions. We already
reminded the reader of the known results about the chiral conformal field theory of
symplectic fermions in Sect. 2.3. We now turn to a similar analysis of the non-chiral
theory and its decomposition over the left-right Virasoro V(2). In this section, we will
denote our space of scaling states in the bulk theory by 7 in order to not be confused
with the decomposition (2.11) of the chiral theory.

In the integer-mode sector, the space of states H for the non chiral theory is decom-
posed into a bosonic sector H* and the fermionic one H ™~ with the s£(2) and left-right
Virasoro V(2) content [47]

Hse0mve) = @ Ci¥H, H |goRve = @ CkXH,,  (6.66)
keNo keN-1

where C,, denotes now a (2n + 1)-dimensional s£(2)-module of the isospin n, and ’H,jf
are V(2)-modules which we describe below.

With the left and right V(2)-modules ’Hki’(l) and ’H,:{t’(r) denoting restriction of ’H,f

on V(2) and V(2), respectively, the bosonic components ’H,Jg have the decompositions,
with non-negative integer k,

Hy O = @ P Pui B Xpizan. HPV= EB P X1 B Puizat. ke No,

a=—k n>k—a a=—k n>k—a

(6.67)

and the fermionic components H,~ decompose as, with a positive half-integer k,

k k
- - -, — 1
H"=P P PaRBzr, B =P P Xi®Pusan. keN-3,

a=—k n>k—a a=—k n>k—a
(6.68)

where we use the tensor product X for two Virasoro modules in order to show that
‘multiplicities’ of left- or right-Virasoro staggered modules in the decompositions are
simple subquotients over right or left Virasoro, respectively. We stress that direct sum-
mands in (6.67) and (6.68) are not V(2)-modules and the rest of this section is devoted
to describing a subquotient structure for the product of the two Virasoro algebras.

The sector with the trivial s£€(2) action (k = 0) has a particular interest because it
contains the vacuum state €2 and its logarithmic partner  (Low = Low = ),

Hy O =P PuiRX . Hy" =P X WP, R oeP B (6.69

n>1 n>1

These two states are the only bosonic states with conformal dimension (0, 0). There
are two other states of the same conformal dimension in the fermionic sector H1_/2 in
agreement with [48].

We use the decompositions (6.67) and (6.68) over the left and right Virasoro in study-
ing the subquotient structure over their product V(2). We first note an obvious fact that
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V(2)

ot

2
11 V(2) 1 V(2)
T 2 3 i 5 i 3 3 i 5.

Fig. 5. Module structure over V(2) = V(2) X V(2) for the vacuum sector ’Ha [with zero s£(2)-isospin] on
the left diagram while the right one is for the doublet-sector HI_/Z' Each node with a coordinate (72, n’) is a
simple subquotient over V(2) with the conformal weight (A, |, Ay 1). Vertical arrows represent the action
of the left Virasoro V(2) and horizontal arrows of the right Virasoro V(2)

right-Virasoro algebra elements are represented on each ’H,jf as intertwining operators
for the left-Virasoro action, i.e., there is a homomorphism from the universal envelop-
ing algebra U (9(2)) to Endy o) (’Hki). Therefore, we should begin with a description
of the space Homy,,) (Pn,1, Py 1). From the subquotient structure (2.12) of the stag-

gered modules, we deduce that the Hom-space is one-dimensional only for n = n’ or
n = n’ £ 1 and zero-dimensional otherwise. In the case n = n’, the image of a basis
element in the Hom-space is the simple submodule X}, ; while the image in the case
n = n’ + 1 is the indecomposable Kac module X, | — Aj+1.1 and the image in the
case n = n’ — 1 is the contragredient Kac module X, | — A},_;.1. Ananlysing then

all possible endomorphisms on ’H,f’(l) respecting the left Virasoro and combining with

the decomposition of ’Hki’(r) over the right Virasoro, we end up in diagrams depicting a

subquotient structure over the product V(2) of two Virasoro algebras for each ’H,jf.

The simplest is for k = 0, where we obtain the structure represented on the left in
Fig. 5 using the decompositions (6.69). On the right in Fig. 5, we show the subquotient
structure for k = 1/2 as well, which is in the fermionic sector H ™. For k = 1 meanwhile
we have the structure represented on Fig. 6. More detailed analysis of the V(2)-module
structure on each ’H,f can be also found in a companion paper [47].

Each node with a coordinate (72, n) in the diagrams on Figs. 5 and 6 corresponds
to a simple subquotient over V(2) = V(2) X V(2) with the lowest conformal weight
(Ap 1, An,l) and arrows show the action of both Virasoro algebras—the Virasoro V(2)
acts in the vertical direction (preserving the coordinate 1), while the right Virasoro V(2)
acts in the horizontal way. Some values (72, n") occur twice and those nodes/subquotients
are separated slightly for clarity; we denote top subquotients by ¢, bottom ones &, and
subquotients in the middle level that have incoming as well as outgoing arrows are
denoted by e, in order to make reading the diagrams easier. We also note that some
horizontal arrows (of the same direction) connecting a ¢ with a pair of e’s at the same
coordinate or a pair of e’s with a , say connecting (1, 3) with two nodes at (2, 3) in
Fig. 6, are actually doubled which means that right-Virasoro elements corresponding
to the pair of arrows with the same source/sink map to/from a fixed linear combination
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A
V(2)

5

4

3 ||

2

1 V)
_ o  _ _ -
1 2 3 4 5

Fig. 6. V(2)-module subquotient structure for the triplet-sector ’HJ[ Each node with a coordinate (72, n’) is
a simple subquotient over V(2) = V(2) XV (2) with the conformal weight (A, 1, An,l)~ Vertical arrows
represent the action of the left Virasoro V(2) and horizontal arrows of the right Virasoro V(2)

of the pair of subquotients depicted by e. We use such a linear combination for each
pair of e’s that corresponds to a basis adapted for the left-Virasoro action'! that has
no (vertical) doubled arrows and is explicitly decomposed onto diagrams from (2.12).
We finally assume in our diagrams that right-Virasoro elements map states from two
neighbour ¢’s, say (1, 3) and (3, 3) in Fig. 6, to linearly independent subquotients of the
same coordinate, say (i, 3), in the middle level.

The indecomposable staggered V(2)-modules P, 1 introduced in (2.12) and ap-
pearing in the decompositions (6.67) and (6.68) can be recovered by ignoring all the
horizontal arrows, while staggered V(2)-modules 75,1, 1 are obtained by ignoring all the
vertical arrows in the diagrams and taking an appropriate linear combination of two
simple subquotients for each pair of middle-level nodes denoted by e and sharing the
same coordinate (71, n’).

We note that the interchiral field S(z, z) from (6.18) generating our interchiral algebra
S belongs to the submodule identified in the diagram for the triplet sector in Fig. 6 with
the node & at the position (2, 2).

11 of course, it is a matter of a convention, and we could choose a basis where horizontal arrows are not
doubled but the vertical ones would be doubled. It is important to note that there exists no a basis without the
doubled arrows in the corresponding diagram.
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Fig. 7. Scaling limit of indecomposable spin-chain modules i’j for j = 0 on the left and j # 0 on the
right side. These are indecomposable U Soo-modules Y ; with simple subquotients and the Virasoro character
0

L1+ of each subquotient is given by (5.25)

We will comment on the similarity and consistency of these figures with our results
of the (limits of) J T L y-modules in the next subsection. Notice that the way the left and
right indecomposables are glued together in (the vacuum sector of) the non-chiral theory
is similar that what is observed for super WZW models on gl(1|1) and su(2|1) [20,21].

Finally, we stress that the symplectic fermion theory also admits action of gl(1]1)
which connects in particular the bosonic H* and fermionic sectors H ™~ of the theory.
Its action is quite straightforward, and we refrain from discussing this for simplicity.

6.7.2. Indecomposable UG, and V(2)-modules. Recall that we denote the scaling
limit of indecomposable spin-chain modules P; by Y ;. These are indecomposable but
reducible modules over U G, recall the discussion in Sect. 5.3, with subquotient struc-
ture given by diagrams in Fig. 7 which is an infinite analogue of the finite ladders in
Fig. 4. As we discussed in previous sections, the interchiral algebra S acts on the com-
pleted space . From its definition in (6.41), we obviously have a decomposition over S:

H=EY;. (6.70)

where each direct summand is the completion (as defined in Sect. 6.2) of the indecompos-
able U S -modules Y ;. The main objective of this section is to show that the structure
of V(2)-modules described above is consistent with the diagrams in Fig. 7. Comparing
the structure of modules over U S, and V(2), which is a subalgebra in U @oo, we then
make conclusions on the structure of indecomposable modules Y ;j over the interchiral
algebra S.

Having obtained in Sect. 5.4 the content under V(2) of the simple subquotients, we
study a filtration'? of Y ; by V(2)-modules described in Sect. 6.7.1. Each Y as a V(2)-
module has the same as in Fig. 7 subquotient structure, where a crucial point is that a

12 Recall that a filtration of A-module M by its submodules M;, with 0 < i < n, is called a sequence of
embeddings0 =MoC My C---CM;C---CMy_1CMy=M.
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node stands now for an infinite direct sum of simples over V(2), i.e, it is a decomposable
V(2)-module.

This subquotient structure agrees with the final results of Sect. 6.7.1. Indeed, the
V(2)-modules (6.66) Hln=; = M) = Dy H; in each sector h = j have a
filtration

Soc(H(j)) € Mid(Hj)) € H(j) — Top(Hj)) = 0 (6.71)

by V(2)-submodules (which are described below) consistent with the structure of Y;
presented on Fig. 7, where each node is described by formulas in (5.25) and (5.28). In
particular, for j = 0, we obtain from decompositions (6.67) and (6.68) the left Virasoro
structure on 7, forgetting about the s£(2) content for a while,

Mgy = D minG,m) +1) P11 B et @ ) 2min(r, m)Poi B X1,
n,m=>0 n,m>1

(6.72)

and the right structure H") at the grade h = 0 is given by the substitutions P —

X and X — P. This decomposition allows us immediately to compare particular

submodules/quotients—the terms in the filtration (6.71)—with the ones in Y on Fig. 7.

First, the socle (the maximal semisimple submodule) Soc(Y¢) has the Virasoro character

0 . .. -
char [Soc(Yo)l = D F{§ = D (2min(j1, j2) + 1) x2j 1.1 X2jps1.1
Jj—odd J1,72=0

+ D 2minGi, j2)X2ji1 X241
J1.pzl1

which coincides with the character of Soc(H (o)) easily extracted from (6.72). The same
is true for the top parts (the maximal semisimple quotient) Top of o) and Yo, which are
isomorphic to the socle in our case. Second, we compare the middle-level subquotient
Mid/Soc in the filtration (6.71) consisting of all subquotients/nodes having in-arrows
from the top and out-arrows directed to the bottom/socle. The middle level of Yy, con-
stituting of two copies for each F © ) _, (see Fig. 7), has the same V(2) X V(2) content as
the V(2)-module H has at the h -0 grade, where we use (6.72) and (2.12). Similarly
one can proceed for any h = j grade.

The Kausch’s s£(2) action discussed in Sec. 5 of the first paper [22], see also

Sect.6.6.1, ‘split's’ the sum (5.29) into sectors (direct summands) of different isospinsl3—

e.g., with k > % and j > 1, in the bosonic case. For each sector, the formulas (6.67)
and (6.68) give the indecomposable structure under V(2). The simplest is for k = 0,
where we obtain the structure represented on the left in Fig. 5. By a slight change of
‘geometry’ the diagram for this V(2)-module can be represented as well as on Fig. 8,
with a pattern of arrows coincident with the one in Fig. 7. The case k = 1 in Fig. 6
appears more complicated, but it is only because of additional ‘gaps’ in the arrows when
compared to k = 0. The decomposition is still fully compatible with Fig. 7. Here, addi-
tional checks of consistency between structures of Y ; and H involve finer filtrations.
Consider for example the following filtration of U &o-submodules in Y ;

0=Fj 1 CFjCFiuCFipaC---CYj, (6.73)

B principle, it is possible to find the s£(2) content of the Y ; modules in Fig. 7 using the lattice realization
of the Kausch’s s£(2) given in Sec. 5.3 in [22] but we do not do it in this paper.
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Fig. 8. Two-strands structure of the vacuum sector for non-chiral symplectic fermions

where F is the submodule generated from the top subquotients F k( () 1y withk < j,
in Fig. 7. It turns out that each term of this filtration is a direct sum of indecomposable
V(2) submodules, belonging in general to different isospin-sectors. This follows from
the fact that the algebra U, gddsﬁ (2) of all intertwining operators between U & o-modules
gives also intertwining operators for V(2)-modules. To show an explicit example of
a correspondence between the terms of the filtration (6.73) and V(2) submodules, we
consider for simplicity again the case j = 0, where the first non-trivial term in (6.73) is
J1 with the subquotient structure

) (0)
i Fi
0) (0)

B2 2 (6.74)
FO

It is decomposed over V(2) into the direct sum (over all integer isospins)

Xl,lgfl,l Xy R Xy KXy Xy KXo

> . \><H :
X1 KAy Ao KA Ay X X31€BX11 (X110 @ Xy 1) KXoy
Xy WXy X B X ) @ X, B (X @ X)) ®Xepy KXy

where the first and second summands are particular V(2)-submodules of H{ in Fig. 8
and H7 in Fig. 6, respectively (we just rearranged nodes introducing red arrows for the
right or anti-chiral Virasoro action). The other direct summands of higher isospins appear
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in the same pattern (6.74) with arrows and nodes in the U &-picture split according
to (5.25) in order to get the left-right Virasoro diagrams. All the other terms F; in
the filtration (6.73) can in principle be analyzed in a similar way but pictures are more
complicated and we do not give them.

To conclude, we checked that all arrows present in the diagrams for the subquotient
structure of the scaling limit of the spin-chain modules P; or indecomposables Y ;
over UG are also in the corresponding infinite diagrams for the subquotient structure
of modules over Ugoo, which contains the Virasoro algebra V(2), and vice versa,
confirming our earlier results. Our analysis was based on a decomposition onto direct
summands over the left-right Virasoro algebra. Then, due to an isomorphism found
around (6.54) and Conjecture 6.6.3 about simple modules over S, we formulate our final
conjecture.

Conjecture 6.7.3. Taking the completions gj (in the formal topology as defined in
Sect. 6.2) of the indecomposable U & o-modules Y ; gives indecomposable modules over
the interchiral algebra S and their subquotient structure is given by the same infinite
towers as for Y ; in Fig. 7.

7. Conclusion

This paper terminates our series on the scaling limit of the gl(1]|1) spin chain. The
conclusions of the analysis of [7] in the open case do carry over to the periodic case,
but at the price of several complications. The bimodule structure of the spin chain over
JT Ly and its centralizer Ul.oddsﬁ(Z) does turn out to be compatible with the known
symplectic fermion continuum limit. However, simple modules over J T L y correspond
to direct sums of modules over V(2), the left-right Virasoro algebra, while the known
s£(2) symmetry of Kausch is not present on the discrete spin chain in the bulk case (in
contrast with the boundary case). The lesson drawn is that the good organizing object
of the LCFT is truly the scaling limit of the J7 Ly algebra, and that it contains more
than V(2), which must be extended by non chiral fields [not commuting with s£(2)],
giving rise to the interchiral algebra S. The centralizer of this interchiral algebra remains
UiOdds£(2) in the scaling limit, and the bimodule structure of the gl(1|1) discrete spin
chain carries over identically now to the scaling limit, exactly as in the open case.
Interestingly, we note that the bimodule over the pair of algebras S and Ul."ddsﬁ(Z)

produces acyclic complexes with the differentials E,, and F,, (E2 = F2 = 0). These can
be interpreted as non-chiral analogues of the well-known Felder resolutions for chiral
Virasoro representations.

The jaded reader might argue of course that the complex algebraic analysis pre-
sented here and in [22,23] is not really necessary nor useful to understand most physical
properties of symplectic fermions. The point however is that we are in the process of
developing a strategy to tackle interacting models for which very little is known, and a
direct solution based on a (free) action is simply unavailable. In this case, we believe
that the algebraic analysis is an essential tool to make progress, and answer such simple
questions as which conformal fields are degenerate and which are not, which fields have
logarithmic partners, what are the logarithmic couplings, etc. It is also probably possible
to obtain information about fusion rules using this approach.

Sadly, things are bound to be more complicated in most cases than they were for
gl(1|1). The reason is, that for gl(1|1), the representation of JT Ly is in fact non-
faithful—the structure of the bulk and boundary theories are, as a result, quite similar.
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General gl(n|m) or osp(n|2m) spin chains, such as those necessary to study the cases
¢ = 0, ¢c = 1, will provide faithful representations, for which the structure of the
indecomposable JT Ly modules will be considerably more involved. Their analysis
will, in fact, require use of more sophisticated algebraic techniques, and will be started
in [36]. Note that even for ¢ = —2, the gl(1]1) spin chain is non generic, and the gl(2]2)
spin chain for instance will lead, in the scaling limit, to a c = —2 LCFT that bears little
resemblance with symplectic fermions.
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Appendix A: Fourier Transforms

It is convenient to introduce Fourier transforms of the f; and f ; fermions used in the
definition of our J T L y representation in (2.2) and (3.1). We set, for 1 < m < N (recall
that we set N = 2L),

N N
_ 1 —ikpm ;—k o1 ikpm : —k ¢T
. —ﬁkz_le T o O, ﬁkz_le’ it gy (A1)

with the set of allowed momenta

2nm

== L-even
=4 N ’ <m <N, A2
Pm (2m;/l)7r L-odd, =mz= (A2)

and with the usual anti-commutation relations

{epl’epz} Spi.pas {9171’9172}:{ p]’ }_O

We then introduce the following linear combinations of fermions

/ t / e*) _L( Py . » )
(tan29 ,,+ c0t29p+%, X”_ﬁ c0t29p,7+ tan29p+7,

1/ = o v M
nl’_ﬁ tanZGP% cot2«9p+ , np_ﬁ cotzep,7 tan = 0 ,

(A3)
X()IZQ%a XOZG%’ 77({) 9771’ 770:937”’

with momenta p shifted by /2 and taking thus values p = p, = en, where € = 7 and
1 <n < L—1,forevenand odd L. The x and n fermions satisfy the anti-commutation
relations

{XpTv Xp’} {771,7 77])} _817])5 {Xp’ np} - {X;v U(T)} {’725 X(T)} =0 (A4)

These x and 5 fermions are creation and annihilation operators for the Hamiltonian H
from (3.2) and they were found in [22].
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For the anti-periodic model, we introduce 6, and 0; with the same formal expres-

sion (A1) but now the momenta p,, take values Z”Tm for L odd and w for L even,

with 1 < m < N. As a result, the values p = %, 37” are not allowed, and there are

no zero modes. Finally, we introduce x ;,T) and ng) fermions generating Hamiltonian

eigenstates from the vacuum by the same formal definition (A3) but now momenta take
values €/2 < p < —€/2 with the stepe = /L.

Appendix B: Lie Algebras gl_, gl.., and &

Recall [46] that gl is a Lie algebra of infinite matrices with a finite number of non-zero
elements. This algebra admits a well-known representation (so-called basic representa-
tion) in the free fermion models. Having fermion modes 42 with their conjugates ¢!,
the basis elements &, ;, of gl,,—the elementary matrices having identity at the position
(n, m) and zeros otherwise—can be written as

om =V2YL . n.omel. (B1)

The commutation relations in this algebra are then the usual ones as in a finite gl but
now indices are in Z. The algebra gl, admits a central extension gl,, @ C1 which we
denote by gl. This extension is defined using the two-cocylce ¢: gly, X gl — C
given by (see [46])

cEnm,Emn)=—cEnn,Enm)=1, ifn<0,m=>1, and c(&E m,E,1)=0 otherwise.

(B2)
Note that ¢ satisfies the cocycle condition that allows to modify the commutation relations
in gl as

[a+x1,b+yl] =[a,bl+c(a,b)l, a,begly, x,yeC. (B3)

The completed algebra gl is then defined as a Lie algebra of infinite matrices with
a possibly infinite number of non-zero elements but the matrix still has a finite number
of non-zero diagonals, those which are along the main diagonal containing the Cartan
elements &, ;. This completion can be also described using a formal algebraic completion
of the Cartan subalgebra in gl,, see [46].

Recall that we introduced the Lie algebra & in the end of Sect. 6.1.3—it is a Lie
algebra of our local operators. We now define an embedding of S into aoo, or more

precisely to its central extension a;o due to the presence of L and L¢ operators (see
Sect. 5.1.2), in the following way. First, we introduce new fermionic modes ¥, for
o = 1,2 and m € Z, and reorganize the modes of the chiral and anti-chiral symplectic
fermions, ¥ and 1/_/,‘;‘ , such that the chiral modes are identified with even modes of ¥’s

and the anti-chiral ones correspond to odd modes of ¥’s:

vy =95, ¥ =v%%,.,. ne€l, a=12 (B4)

Recall that we also have a pair of modes ¢é’2 conjugate to l//é’l—we do not use new
notations for them. Under the identification (B4), it is then easy to see that the scaling
limit of our gl algebras described in Sect. 5.1.2, and in more precise terms using direct
limits in Appendix C, is given by the basic representation (B1) of gl,, where one also
includes bilinears like 1#,21¢>(1), etc. The Lie algebra G which has basis elements as infinite
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sums of &, »,’s can be now embedded into the a;o algebra. Indeed, the Virasoro-like

generators L,(f) are the sums of bilinears in the ¥ modes that have infinite number of
terms like :3, 11/1_2k +2,,- and all these terms belong to the same diagonal along the main

one containing the Cartan elements w%w 1_ « Therefore, any finite linear combination of

L,(f) belongs to _[;o, and similarly for Zﬁ,l). Note then that the basis elements S,(,l) are
given by the sums containing infinite number of terms like 3, %' ,, ,,,; and they also

belong to g_Iéo Finally, we obtain that any linear and finite combination of basis elements

/
00"

in & belongs to gl

Appendix C: Direct and Inverse Limits

In order to satisfy the more formal reader, we give here precise definition of scaling
limits of spin chains and define the Lie algebra G, using direct-limit constructions. We
first remind a formal definition of the direct limit. A direct (or inductive) system is a
pair {A;, ¢;;} of a family of algebraic objects A; (vector spaces, algebras, etc.) indexed
by an ordered set I and a family of homomorphisms ¢;;: A; — A; foralli < j
satisfying the following properties: (i) ¢;; is the identity on A;, and (ii) ¢ix = @i
foralli < j < k. The direct limit Aso = h_r)n A; of the direct system {A;, ¢;;} is defined
as the disjoint union [ [; A;/ ~ modulo an equivalence relation: two elements a; € A;
and a; € A; in the disjoint union are equivalent if and only if they eventually become
equal in the direct system, i.e., a; ~ aj if there is k € I such that ¢;x(a;) = Pjr(a;).
We obtain from this definition canonical homomorphisms ¢; : A; — A mapping each
element to its equivalence class. The algebraic operations on A, are then defined using
these maps. Recall also that an inverse or projective system of algebraic objects can be
defined in a similar way reverting order and arrows everywhere. So, we have a family
of homomorphisms ¢;;: A; — A;, forall i < j, with similar to (i) and (ii) properties.
The inverse limit is then defined as a particular subobject (subalgebra/subspace) in the
direct product of the A;’s:

A=limA; = {a e [ [ Aila = ¢i(a)) forall i < j}. (C1)
i

The inverse limit A is equipped with canonical projections P;: A — A; defined by
taking the ith component of the direct product.

C.1. The scaling limit of JTL algebras as a direct limit. Consideracaseofodd L = N/2
for simplicity and an embedding ¢;, of the Clifford algebra C47, into a bigger one C4(z.+2)
defined by

¢ (x") = x5, o) =n),
My _ M () _ M L-1
¢L (X]'[—p) - XT[—[)/’ ¢)L (77;1—,;) - 77,,_[,/» for 1 S m S T (C2)
where we set p = p(m) = ’”L—”, with 1 <m < L — 1, and for the indexing set in the

bigger Clifford algebra we set p’ = p'(m) = 75, with 1 <m < L+ 1, and for the zero
modes we set

. L N [L+2 ¢ | L+2 ty L 5
PL(x0) =1/ 755 X0, LX) =\ 7= Xo» PL(0)=\/—— 10, PL(lg) =1/ 75 Tlo-

(C3)
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We note that C4(z42) is generated by its subalgebra ¢ (C4;) and eight additional gen-

erators iji candn ",

€
272 2 2
in Hy(1+2) eigenstates of highest eigenvalue of the Hamiltonian H in the one-particle

subspace.

The embeddings ¢; of algebras induce the corresponding embedding of the C4p -
module Hy;, into the €4 -module Ho(z42) by ¢r (x,R) = x;/SZ, etc., and ¢y (ab®) =
¢r(a)pr (bR),forany a, b € Cy4y,. Here, we denote the embeddings of the representation
spaces of the Clifford algebras by the same letter ¢, : Hz; — H2(r.+2). We thus construct
two direct systems: the one for the Clifford algebras

with €’ = 5. The additional fermionic operators generate

Cs SN Cin B, Car BN CaL+2) L

with the direct limit an infinite-dimensional Clifford algebra C = ﬁ_n)lL C4r generated by

the rescaled generators or the symplectic fermions modes 1/;,1 ’2, 1},1,’2, and ¢é’2 introduced
in (5.1) and (5.2) and satisfying (6.5) and (6.6); the second direct system is for modules
over the Clifford algebras or the spin-chains

Hzﬂ)Hﬁﬂ...E)HZLﬂHz(LmM... (C4)

Using the canonical homomorphisms in the definition of direct systems, the direct limit
1i_n>1 L ‘H>y, is then a C-module. This module coincides with the space H of scaling states
or finite-energy and finite-spin states described in Sect. 5.1.1.

Notice then that the direct system of Clifford algebras defines a direct system of the
matrix algebras gl,; in the following way'#

00...000 0...0 0
0 gm.n 00 gm,L+n 0
dL-2 Sm,n 5m,L+n oL 00...000 0...0 0 Pr+2
- (5L+m,,l 5L+m,L+,1)2LX2L ~7100...000 0...0 0 7
0 €L+m,n 00 5L+m,L+n 0
00...000 0.0 0/, 5 >
where the elements &; ; denote usual elementary matrices, with 0 < n,m < L — 1,
defined in (4.5) and we abuse notations denoting the embeddings of matrix algebras
by the same ¢, as for the Clifford algebras. The direct limit h_r)n . gly, then gives the
infinite-dimensional Lie algebra that we call gl,,—an algebra of infinite matrices with
a finite number of non-zero elements. An identification of this limit with the standard
representation (B1) of gl is given via the identification (B4) of the fermionic generators.
In order to get the central extension gl algebra having the proper normally ordered
basis, necessary for physics, see (5.7), we should map the normally ordered generators
of gly, = gly; @ C1, i.e., we define

¢1 10y = gl With @&, ) =&, ©3)

and set ¢} (1) = 1, where 1 is the identity or the central element. In particular, map-
ping the normally ordered generators of &, C gl5; subalgebra (defined in (4.13) and

14 After actually rearranging four rows and four columns of zeros for a simpler presentation which is just a
matter of conventions.
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Sect. 4.3.1) as ¢ (A, ,) = A, ,» etc., we get in the direct limit lim | &, what we call
the G Lie algebra and the identity is mapped under the canonical homomorphisms
6}\, — B to the central element in G.

It turns out that the Lie algebra G, has Ty, 5, Tmn and S, , with m,n € Z as its
basis or equivalently the universal enveloping algebra U G, has the symplectic-fermion

representation on H generated by 1 and

Sum=Sap UL, Tit = Jup¥fwl, Ty = JopP2PL, with n,m. k,lrs€Z,
(Co)
as was also pointed out in Sect. 5.1.3.

Using Theorem 4.4, we can define the scaling limit of JTL algebras using the direct
system for &'y algebras. Indeed, the generators of &', are also generators of the image
ng((J TL N). Therefore, the direct system for the enveloping algebras of &y, defines the
direct system for the images of the JTL algebras

9 s L oL P

7gi(JTLy) —> mgi(JTLe) —> -+ —> mqi(JTLar) —> mgi(JT Lor42)) —> - -+
(€N
where ¢lf are defined in (CS5) and are embeddings of the finite-dimensional associative
algebras. Note that an existence of embeddings for JTL algebras is a non-trivial (com-
paring to the open case) result and it is very hard to express these embeddings in terms of
diagrams or the initial generators ¢;’s and u®. Nevertheless, we found a special basis in
which a system of embeddings is easily constructed and the direct system (C7) gives the
limit—an enveloping algebra of &.,—which we call the scaling limit of JTL algebras.

Now, we can consider the direct system (C4) of spin-chains as the direct system of
JTL modules (by restriction of the action from €47 to JT Loy ) and therefore the direct
limit space H = h_r)n L ‘Hy1, has canonically the UGS -module structure: an element
a of G has its representative in the subalgebra Gy, for some N, or simply saying
a € Gy C G for large enough N, and then the action of a is given by the action of
this representative on 7, with the latter defined by the direct limit construction of the
G -modules. The result obviously does not depend on the choice of N.

We then show that the monomorphisms ¢ in (C2)—(C4) commute also with the
action of the centralizer 3 ;7 or the image of Ugddsﬂ(Z) in each term Hyy .

Theorem C.2. The embeddings ¢y, in the direct system (C4) commute with the actions of
the JT Ly and 3 71 algebras, or equivalently (C4) defines a direct system of bimodules
over (JTLzL, BJTL).

Proof. The statement about the JT Ly action was proved by the previous discussion
around (C7) noting that we have the equality ¢; = ¢, forhomomorphisms of associative
algebras. Recall then the expressions (4.8) for the U "ddsﬁ(Z) generators. We first note
that for all L > 1 the embeddings ¢ defined in (C%)—(C3) commute with the action
of h or the S operator because ¢; do not change the number of fermionic operators
in a homogeneous v € Hjy. Using (C3), we see that the ¢;’s commute also with
E=E)=(-D¥ \/ng and F = Fy = —iv/N1no generators. It is thus enough to show
that ¢;, commutes with the operators

T—€ T—€
AL=D NpXn—p» BL=D_ Xn_phh:
p=¢ p=€
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for any L > 1 and the sum is with the step € = 7 as usual. For any v € Hy7 and odd L
we have

T—€
SLALY) = D Ny pdL(v) = ALsagr(v),
p'=¢
PEEES
with €’ = 75 and in the last equality we used the fact that y, is an annihilation operator
and thus the image ¢y (v) is in the kernel of the operators X% 1 Similar calculation for

even L and the By, fX and et operators finishes our proof. O

We can of course construct direct limits of any submodules over JT Ly in Hy.
In particular, for any simple JT Ly-subquotient Lj’(_ 17t that appear in Hy, as a
fundamental representation of spy_, due to Corollary 4.2.2, we have an isomorphic
submodule in (the socle of) Hy. This fact follows from the explicit analysis of the
module structure in [23] or see Fig. 4. Fixing such an irreducible submodule, say in the
fermionic basis, the direct system (C4) thus gives a direct system of the simple modules
L 1y for different values of N. We denote their direct limit by X;, for any integer
j > 1, and these infinite-dimensional spaces have canonically the action of UGS as
explained above.

Proposition C.3. The direct limit modules X ; over U S, are irreducible for any integer
j=1L

Proof. Assume that for some j the G-module V = X; is reducible and has thus
an invariant subspace W C V. Take any element v € V such that it belongs to the
complement of W. Then, by definition of the direct limit, there exist a positive number
N such that the element v has its representative in the subspace £ J(=1yit! [N] C V,where
L (—1yi+1 [N] is just notation for the simple module over Sy, or over spy_. Simply
saying v is in the subspace L; (_j)j+1[N] for large enough N. Take then the intersection
W’ of the & y-module L —nm[N] with W. The Sy acts on W', otherwise it would
contradict to the fact that W is the invariant subspace for G, and thus for Sy C G.
We also have that W’ is a proper subspace of £ j.(—1yi+1[NV], otherwise v would belong
to W’ and it contradicts to the assumption that v is in the complement to W. We thus
obtain a contradiction to the fact that £ i (=1yitl [N] is irreducible for Gy. O

Using the same idea of a reduction from H to its subspace Hy C H for large enough
N and transporting thus an assumption in H to the corresponding assumption in Hy,
one can similarly prove that the direct summands P; in H (these are indecomposable
but reducible JT L y-modules from Fig. 4) have the direct limit denoted by Y; as an
indecomposable but reducible U & .-module and its subquotient structure (with simple
subquotients) is described by the infinite tower in Fig. 4.

C.4. Inverse limit of centralizers. By Theorem C.2, we have a direct system of bimodules
over (J TLy,U gddsZ(Z)) and the direct limit space H is canonically a bimodule over

(USoo, Ug¥st(2)). The action of USw on H is described in (C6) and the Ug¥s£(2)
action has the fermionic expressions computed in our first paper [22]:

P I P C R R

m>0 m>0
(C8)
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with the representation of the Cartan element h as

h=—i/2(v3g0 + Vi 83) + D> - (W2, + VL0 + V2,00 + 0L, 02) (C9)
m>0

while the generator K = (— 1)2". This action can be obtained by constructing an inverse

system for the spin-chain representations py of Ugddsﬁ(Z) as!?

p2(US¥s(2)) <2 p6(USYMse(2)) <2 - &2 oy (USYse(2)

Ly (U5 @) &2 (C10)

where py is defined in (4.8) and p, are surjective homomorphisms defined in terms of
the fermionic generators as

My — — () (1) _ ()
pe(ey) = (1-3,5. %)Xp’ pu() = (1=8, g0 ) 1=m=Lel
(CI11)

where as usual p = p(m) = 2% and p' = p'(m) = and for the zero modes as

L+2 ’

_JL+2 T + _ L W [L+2 ¢
pL(Xo)—,/TXO, pL(xo)—,/L+2xo, pL(no)—,/—“zno, pL(ng) = 7 No-

(C12)

In other words, we define first py, as a vector-space homomorphism Ca(z+2) — C4r
such that its kernel equals the cokernel of ¢ . Then using (4.8), it is easy to check that
the surjective maps pr: C4z+2) — Car of vector spaces induce homomorphisms of
subalgebras p2(1.42) (UgddsE(Z)) C Cy4(r+2) Onto poy, (Ugddsﬁ(Z)) and correspondingly

homomorphisms py,: Ha(z+2) — Har of modules over pa(z+2) (Ug%s€(2)). Then, the
inverse limit

p(Ug¥st(2)) = lim par (Ug¥se2)) (C13)

defines an infinite-dimensional associative algebra which we identify with a quotient
of U Odds£(2) that admits among irreducible representations only one-dimensional ones,
see representation theory of U, OddsE(Z) in [23, Sec. 3]. We call this inverse limit as
the scaling limit of the JTL centralzzers 371 The corresponding inverse limit space
H= lim M5, of the UOddsﬁ(Z) modules is a module over p(U"ddsE(2)) in (C13). The
action is defined componentw1se following the definition (C1). The explicit action (C8)
and (C9) of the generators of the inverse limit on 'H is calculated using (C11) and (C12)
and the identification in (5.1) and (5.2).

The direct and inverse systems of the spaces Hy have a useful coherence property
in the sense of the following simple lemma.

Lemma C.5. The direct system ¢r: Hop — Hoa+2) from (C4) and defined in (C2)
and (C3) satisfies
pro¢r=id, for L=>1, (C14)

where the projective system py,: Ho+2) — Hay is defined in (C11) and (C12).

15 This inverse system actually corresponds to the usual one [49] for the g-Schur algebras—quotients of
Ugst(2).
q



96 A. M. Gainutdinov, N. Read, H. Saleur

Remark C.5.1. As a consequence of Lemma C.5, the algebra G, acts on the image of
pL and this action is identical to the one on the subspace Ho; C Ho(r+2). Moreover, it
is straightforward to check that the map p;, intertwines the G, action on Hy(z+2) and
Hor.

Now, we discuss a relation between the two limits, H and H, so far constructed.
Recall that the Hamiltonian H in the scaling limit (5.3) of the JTL algebras gives the
grading (or energy) operator E = Lo+ Lo, which is a bounded below operator, while the
momentum operator P = P (0) in (6.7) gives the conformal spin operator S = Lo — Lo
(not bounded). Following the definition of ¢; and p;, and using commutation relations
of the fermionic generators with E and S, we conclude that the direct limit is a bi-
graded vector space with the decomposition H = @,>0 mez H®™ onto generalized
eigenspaces or root spaces of (E, S), while the projective limit 'H is the direct product
H= [1is0mez H™™ . Therefore, the inverse limit 7 contains the direct limit space H
as a dense subspace (in the formal topology discussed in Sect. 6.2) and the basis in H is
also a basis in 7. Thus, the space H can be considered as a formal completion of 7 and
the canonical projections Py : H — Hy reduce on the dense subspace H to projections
Py : 'H — Hy. Correspondingly, the action of p (U gddsZ(Z)) reduces to the action on H
given by the same formulas (C8) and (C9). Let ®y : Hy < H denotes the canonical
embedding defined by the direct system (C4). Using Lemma C.5 and Remark C.5.1, we
formulate a corollary.

Corollary C.6. The canonical projections Py : H — Hy are in the coherence property
with the canonical embeddings Oy : Hy — H.:

Py o®y =id, foreven N > 2. (C15)

Therefore, the image of the surjective map Py: H — Hy can be identified with the
subspace Hy C H. The map Py intertwines the Sy action on H and H y.

It turns out that the centralizer of the algebra UG, action on H is given by the
representation p of U, gddsﬁ(2) defined in (C13).

Theorem C.7. The centralizer 3y, of the enveloping algebra US, action (C6) on
'H equals p(UgddsZ(Z)), with the action in (C8) and (C9).

Proof. The centralizer of UG, obviously commutes with the normally ordered opera-
tors :T,, —p: and :7,, _,:, see (C6) and also discussion in Sect. 5.1.3, and therefore with
the energy operator

E=Lo+Ly=— Z(:Tn,_n: +:Tp—n2) — T 0%,

n>0

which is an element of the completed algebra G, but on each v € H the sum reduces to
a finite sum. Let " denotes the generalized eigenspace (or root space) of eigenvalue
n for the E operator, i.e., we have H = EBnH(”). From the partition function analysis
given in Sect. 5.6, we conclude that n is non-negative integer and each H® is finite-
dimensional. We thus have that the centralizer is a subalgebra in the direct product
[1,50End (H™) of finite matrix algebras.

Using the simple fact that the fermionic operators w % and w change aneigenvalue
of E by m, we have by construction of the direct system (C4), w1th the identifications
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in (5.1) and (5.2), that for a fixed positive j there exists a big enough N > 0 such that
any v € HY) C H has its representative in the N-site spin-chain H C H. Using the
canonical embedding ® : Hy < H we can consider any such v as an element in H
(or in other words, we observe that the fixed energy subspaces H " stabilize with the
rise of N).

Assume then that there exists a non-zero operator O € [],-,End (H(”)) such that it

commutes with the action of UGS, but is not an element of the algebra ,o(UgddsZQ)).
In other words, writing the operator O componentwise as O = (Op, O1, O», ...), with
0; € End(H/)), there exists a positive number j such that the jth component O j
of O can not be written as a finite linear combination of words in the generators (C8)
and (C9). Following the preceding discussion we can take a big enough N such that
the HY) is in the subspace Hy C H (under the canonical embedding ® ). By the
coherence property (C15) in Corollary C.6, this subspace is identified with the image
of the canonical projection Py: H — Hy and therefore on the subspace Hy C H
we have the action of p(Ugddsﬂ(Z)) that factorizes up to the action of py (UgddsE(Z)).

The latter also acts on H/) C H . By the assumption on the operator O, we have that
the composition Py O Py € End Hy is not an element of py (U gdds6(2)), otherwise

its action on H) C Hy could be written in terms of the ,o(U gddsE(Z)) generators and
it contradicts to the initial assumption. On the other hand, the composition Py O Py
commutes with the action of the subalgebra Gy C G4, or the JT Ly algebra (recall
Theorem 4.4) because Py intertwines the action of Sy (see Corollary C.6) and O com-
mutes ngth any subalgebra of G, by the assumption. Therefore, the operator Py O Py
equals

PyOPy =aif"? +aeV?, for a1, ay € US"st(2), (C16)

because the centralizer of JT Ly on Hy is the algebra generated by pN(Ua’ddsﬂ(Z))
and fN/2 and eM/? (see Sect. 3.2). It is then easy to show a contradiction. Indeed,
taking similarly the projection onto Hy42, which contains the Hy, we conclude that
Pn42 O Pyir commutes with the Gy or the JT Ly action and by (C16) it equals
b+pn+2(a1fN/? +aeN/?), where b € 371.,,, suchthatb € ker Py. By this equality we
obtain that py42(a1fV/? +aeN/?)isin 3 ,7L,,., and it is possible only if (i) the operator
py+2(arfN/? + az€N2) is in py42 (U§¥s(2)) and thus Py O Py € py (Ug%st(2)) or
(i1) a1 = ap = O and thus Py O Py = 0. The first assertion contradicts to the assumption
on O and the last assertion contradicts to the assumption that Py O Py is a non-zero
operator. Thus we obtain the statement of the theorem. O

Appendix D: Emergence of the Interchiral Algebra from the Lattice

We look at the Fourier transforms of ¢ ;’s introducing ¢ = nr /L, forn € Z, and defining
the operators

N
H(n) =— Ze_iqjej = z [1 +el+ie”P — iei(p+q)] 9; Oprqn (D1)
j=l p

16 For brevity, we write N/2 instead PN (fN/z), etc.
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which were obtained in our first paper [22]. These can be rewritten using the more
convenient x and n fermions from (A3) as

T—q—€
H(n) = 2¢'/? (v sing xg (xq +1g) + D, V/Sin(p)sin (p+9) (X} xprg — 1 Npeg)
st];;:e
q—¢€ . )
+ > sin(p)sin (g — p) (X Ng—p+s—p Xg—p)+/sing (x4, + n,’,_q)no),
p=€
step=¢

(D2)

where 0 < n < L, while a similar expression can be written for other values of the
modes 7.

In order to take the scaling limit for n close to L we define k = L — n and consider
operators H(k) = H(L — k) and study their scaling limit for finite k. We thus first
substitute n — L —k and ¢ — 7 — ¢/, with ¢’ = kx/L, in (D2). Then, using the
limit (5.1)=(5.2) to the fermions ¥ "2 and -2 and linearizing the dispersion relation,
we obtain in the scaling limit (keeping terms in the sums with the momentum p close
to 0 or to ), with finite positive &,

k—1
SECCER T SN NED W77

+ z (wzmlﬁlgfm - iiwrbfk)

m>k+1

+ > (U mer = V2V ) + (W2 = U2) Vg

m>1

Gathering all terms and using the relations (6.5), we finally obtain the contribution
corresponding to low-lying excitations over the ground state,

L ~ —_
SH®K) > Sap S syl =S k>0,

meZ

which we denote in what follows by Si or S,EO). A similar computation gives the same
scaling limit of i H (k) for negative finite k.
l
We then consider the Fourier transformation of the momentum operator P,

N
Py =35> ¢ Wejejnl. q="T

which gives [22] on a finite spin-chain the expression in x-n fermions:

\/Sln (p)sin(p +q)

P(n) = 26 (cos 1 {/sing Xo

@
<
||mM

x (X; Xp+q + 77; 77P+q)
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- Z cos (p = 2)/sin (p)sin (¢ = p) (xa—p N—p = N p Xa—p)

step e

~oos VS (dy = 1)),

Once again, to take the scaling limit for n close to L we consider operators P(k) =
P (L — k) and study their scaling limit for finite k. It turns out that the scaling limit (for
finite k) is

—P(k) > Sap D @m+ k)Yl =S, kel (D3)

meZ

where the operators S,El) are introduced in (6.17), for/ > 0 and k € Z.

D.1. Higher Hamiltonians and the Lie algebra Sy. Recall that in Sect. 4 we gave a Lie
algebraic G description of the JTL algebra in terms of fermion bilinears. We consider
here a different basis in G y thatis spanned by the generalized higher Hamiltonians H; (n)
introduced (6.9). These Hamiltonians for positive modes n were expressed in (6.11) in
the basis of Gy. In order to check that the linear span of all H;(n)’s gives the vector
space Gy we need also negative-mode expressions. For/ > Oand 1 <n < L, we find
a slightly different formula

L—1
Hi(—n) = ze—"‘ihzl( Z cosl(p — %)\/Sin (p)sin (p — q) Am.m—n
m=n+1
ZCOSI \/Sln(P)Sm(q—P)(CL m,L+m— nt (= ])an m)

l -
+cos T/sing (€o..—n — (=)' Eo.an + EnL — (—1>182Ln,L)). (D4)

We checked then up to N = 20 that a basis in the linear span of all H;(n)’s, with
[ > 0andn € Z, resides actually in the range —v +/+1 <g=nn/L <mw+[+2and
[—the index for the family—runs from 0 to L — 1. Moreover, the number of linearly
independent H;(n)’s in this range is given by the dimension of the Lie algebra Gy
introduced in Definition 4.3.1. We thus conclude that the H;(n)’s should be closed under
commutations (which is really hard to compute explicitly) and that they just give a
different basis in the Lie algebra Gy .

Appendix E: The Character Formulas

We provide here an analysis of the left-right Virasoro V(2) = V(2) X V(2) content of
the simple JT Ly modules in the scaling limit using a general strategy (via the XXZ
spin chain) that will be useful for other models as well. We recall the basic fact [50] that

Tr e PrRUE—Neo) ,~ip1 P _, Tquofc/24q—iofc/24 (E)
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where H and P are a lattice Hamiltonian (normalized such that the velocity of sound
is unity) and momentum (see [22] and below), eq is the ground state energy per site in
the scaling limit, g(g) = exp [—%"(ﬁR + i,31)] with Bg ; real and fg > 0, and N is
the length of the chain. On the right-hand side, we have Lo and L as zero modes of the
stress-energy tensor, and c is the corresponding central charge. The trace on the left is
taken over a subspace (of scaling states) of the spin chain, and the trace on the right is
over the states occurring in this subspace in the scaling limit.

The calculation of an expression such as the trace on the left of (E1) is most easily
done when the spin chain is the well known XXZ chain with appropriate value of the
deformation parameter ¢ and appropriately twisted boundary conditions. To be more
specific, we consider the Hamiltonian

201 2L |
_ + _— -+ 2iK _+ _—, —2iK _— _+ a+q9 "z z
Hxxz(K) = Z (070 +0; 0f)+e" F o o +em" oy, 0, "‘Z 2 7%+
j=l Jj=1

(E2)
where the 2 x 2-matrices o™, o' are Pauli matrices. The momentum operator Pxxz(K)
can be chosen either by using the exact eigenvalues of the translation operator on the spin
chain, or by using the general formulas in [22]. Parametrizing q = ¢/™/®**1 it has been
known for a long time thanks to Coulomb gas and Bethe ansatz arguments [8,51,52]
that

+

TrH[j]e—ﬂR(HXXZ(K)—2L€0)e—tﬁ1PXXZ(K) — Fj,eZiK (E3)
where
q—c/24q—c/24 D)k /m)? =1 (=) (4K fm))? 1
Fj,EZIK — P(q)P(é) Z 4x(x+1) q 4x(x+1) (E4)

and the subspace H|; is the subspace of spin §* = j, with —L < j < L, of the
spin-chain of length N = 2L (also denoted by P;), and P(q) is defined in (5.24).

On the other hand, it is also well known [8] that this XXZ Hamiltonian can be written
as

2L
Hxxz(K) ==Y e, (ES)
i=1

where the ¢; are expressed in the spin-1/2 basis [8] and, together with u2, provide a
representation of the Jones—Temperley—Lieb algebra JT Ly whenever ¢*/X = 1, for
j # 0, and ¢*X = g2, for j = 0. This representation has for dimension the usual
binomial coefficient ( szj), and is believed to be isomorphic to the standard module
le"eihp for q generic and ¢ = —2K, where the ‘+’ is for a positive j, and the ‘—’
is for a negative value of j. The standard modules (defined and discussed in [23]) on
opposite sectors S° = =+ j are conjugate to each other with respect to the bilinear pairing
Wijlz X W,jj ;-1 = C from [32] invariant with respect to the action of the affine TL
algebra denoted there by Ty. The pairing has a trivial radical only in the generic cases.

When q is a root of unity, the representation obtained from the twisted XXZ chain
is not isomorphic to a standard module any longer. But it is well established [8] that
the traces over the modules and their scaling limit behave smoothly across those points.
This means that we can use (E4) to obtain the generating function of conformal weights
(that is, eigenvalues of L and L) in the scaling limit of the modules occurring in our
gl(1|1) spin chain.
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Let us specialize now to g =i (x = 1) where ¢ = —2 and

1/12-1/12 (H2m+K/m))% =1 _ (j=2m+K /1) -1

F, ix =19 _ 8 7 g E6
e = gy 24 1 (£

neZ

(note that F ,2ix = F ,—ik). Recall the Kac formula for the value of the central charge

c=-2

Qr—s)?%—1
hys = — s (E7)
Introduce now the character of the Kac representation
B qhm _ th,,x B q(2r—s)2/8 _ q(2r+s)2/8
Krs =0 = (E8)
q="P(q) n(q)

where the Dedekind’s eta function is n(g) = ¢ I/ 24P(q). A short calculation establishes
the crucial formula

o
Fj pivoe — Fip i = Z Kk Ky ps2js (E9)
r=1
with g = i here.
From the structure of the spin chain modules (see Sect. 3.3; Fig. 4), we deduce the

traces (0) )
F = hm Trp i€ o~ PrRUH(0)—Leo) ,—~if1 P(0) (E10)
in each of the s1mple subquotlents L <1+ appearing in the (scaling limit of) JT L-

modules /Usk:

0 -
Filpm = 2,07 JZK”Krz,+1, j <k (E11)
/>]
On the other hand, recall the characters of the simples of Virasoro at ¢ = —2
Qj=17%/8 _ 4 @j+1)?/8
q q
Xj1 = (E12)
n(q)
from which it follows that
r2j+1 Z Xj+s,1- (E13)
s=—r+1
Moreover, we formally define the character when r is negative by the same formula,
so we have x_; 1 = —x;,1. It follows that
Kr,l = Xr1- (E14)
Straightforward algebra then leads to the key result
*
(0) —
F]( 1)/+1 - Z lelejz,l (EIS)
J1.j2>0

where the sum is done with the following constraints:
lh—pl+1<j, ji+p—-1>j, j1+j—j=1mod?2 (E16)

(note this is equivalent to treating j not as a spin but as a degeneracy, i.e., setting
Jj =2s+1, ji =2s; + 1 and combining s; and s> to obtain spin s).
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