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2 Numerics and the lightcone limit

2.1 A numerical picture of the 3d Ising spectrum

Numerical bootstrap methods have become powerful enough to estimate several operator
dimensions and OPE coe�cients in the 3d Ising CFT. The strategy is as follows. Consider
the four-point functions h����i, h��✏✏i, and h✏✏✏✏i where � and ✏ are the lowest-dimension
Z2-odd and Z2-even scalars in the 3d Ising CFT, respectively. Crossing symmetry and
unitarity for these correlators forces the dimensions ��,�✏ and OPE coe�cients f��✏, f✏✏✏
to lie inside a tiny island given by [55]

�� = 0.5181489(10), f��✏ = 1.0518537(41),

�✏ = 1.412625(10), f✏✏✏ = 1.532435(19). (2.1)

We can then ask: given that (��,�✏, f��✏, f✏✏✏) lie in this island, what other operators
are needed for crossing symmetry? Although it is possible in principle to compute rigorous
bounds on more operators, it is di�cult in practice because we must scan over the dimensions
and OPE coe�cients of those additional operators.

Instead, we adopt the non-rigorous approach of [68], based on the extremal functional
method [7, 14, 20]. Consider N derivatives of the crossing equation around z = z = 1

2 ,
which we write as FN = 0, where FN is an N -dimensional vector depending on the CFT
data. We assume that OPE coe�cients are real and operator dimensions are consistent
with unitarity bounds [69]. By the argument of [3], there is an allowed region AN in the
space of CFT data such that any point outside AN is inconsistent with FN = 0.6 For every
point p on the boundary of AN , there is a unique “partial spectrum” SN(p): a finite list of
operator dimensions and OPE coe�cients that solve FN = 0. The number of operators in
SN(p) grows linearly with N .7

If p lies on the boundary of the Ising island and N is large, we might expect that SN(p) is
a reasonable approximation to the actual spectrum of the theory. However, it is not obvious
how to assign error bars to SN(p). Firstly, the actual theory lies somewhere in the interior
of the island, not on the boundary. It is important that the island is small enough that
points on the interior are close to points on the boundary. Secondly, SN(p) depends on p,
and there is no canonical choice of p.

In [68], we propose the following trick. We sample several di↵erent points p on the
boundary of the island, and compute SN(p) for each one. As we increase N and vary p,
some of the operators in SN(p) jump around, while others remain relatively stable. If an
operator remains stable, we can guess that it is truly required by crossing symmetry.

In [68], we used this strategy to estimate the dimensions and OPE coe�cients of a
few low-dimension operators in the 3d Ising CFT. In figures 1 and 2, we show a more

6The island (2.1) is the projection of A1265 onto (��,�✏, f��✏, f✏✏✏)-space, where we also assume that �
and ✏ are the only relevant scalars in the theory.

7It is impossible to solve the full crossing equations with a finite number of operators. SN (p) can be
finite because we have truncated the crossing equations to FN = 0.
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complete computation, giving about a hundred stable operators. To produce figures 1 and 2,
we computed 60 di↵erent spectra by varying (��,�✏, f��✏, f✏✏✏) and minimizing cT . (We
give more details in appendix A.1.) We then superimposed these 60 spectra, and grouped
together operators with dimensions closer than 0.03. Each circle represents a group, and
the size of the circle is proportional to the number of operators in that group. Thus, large
circles correspond to stable operators and small circles correspond to unstable operators.
We list the dimensions and OPE coe�cients of the stable operators in appendix A.3. Most
of the stable operators also appear in figures 7, 9, 12, 13, 14, 17, 18, and 19, where we
compare to analytics.

10 20 30 40 50
�
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15

20
�=�-�

operators in the �×� and �× � OPEs

Figure 1: Estimates of Z2-even operators in the 3d Ising model. Larger circles
represent “stable” operators whose dimensions and OPE coe�cients have small errors in our
computation. We plot the twist �� ` versus spin `. The grey dashed lines are ⌧ = 2�� + 2n
and ⌧ = 2�✏ + 2n for nonnegative integer n.

2.2 E↵ectiveness of the large spin expansion

Let us make some comments about these results. Firstly, most of the stable operators fall
into families with increasing spin and nearly constant twist ⌧ = � � `. We immediately
recognize these as double-twist operators — specifically the families [��]0, [��]1, [✏✏]0 in
figure 1, and [�✏]0 in figure 2. (There are also vague hints of [�✏]1.) The fact that these
families are stable implies that they play a crucial role in the numerical bootstrap for the
3d Ising CFT.8

8Note that even though our numerical calculation uses an expansion of the crossing equation around the
Euclidean point z = z = 1

2 , the results are sensitive to the Lorentzian physics of the lightcone limit. The
prevailing lore was that, since the conformal block expansion converges exponentially in � in the Euclidean
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�=�-�

operators in the �× � OPE

Figure 2: Estimates of Z2-odd operators in the 3d Ising model. Larger circles represent
“stable” operators. We plot the twist � � ` versus spin `. The grey dashed lines are ⌧ =
�� +�✏ + 2n for nonnegative integer n.

One can compute anomalous dimensions of double-twist operators in a large-` expansion
using the crossing equation [59–62, 1, 63–67]. The authors of [1] observed that the large-`
expansion appears to be asymptotic, but they conjectured that the anomalous dimensions
of [��]0 should be well-described by the first few terms in this expansion, coming from the
operators ✏ and Tµ⌫ appearing in the �⇥� OPE. The expansion is most naturally organized
in terms of the “conformal spin” J defined by

J(`)2 ⌘

✓
⌧(`)

2
+ `

◆✓
⌧(`)

2
+ `� 1

◆
. (2.2)

regime [70], numerical bootstrap methods should only be sensitive to low-dimension operators. Evidently
this is incorrect because certain derivatives probe physics outside the Euclidean regime. Some hints that
the numerical bootstrap probes the lightcone limit were given in [71], where an exact extremal functional
was constructed that involves the lightcone limit of conformal blocks.

6
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where we used equation (5.48) for the Jacobian @h

@`
that relates f��[��]0 to ���[��]0 . The

actual operator dimensions are determined by solving h� 2h� � �(h) = 0, 2, 4, . . . .

A comparison between the above formula and numerics for ⌧[��]0 = 2��+2�[��]0 is shown
in figure 7. The discrepancy between analytics and numerics is 3 ⇥ 10�3 and 5 ⇥ 10�4 for
spins ` = 2, 4, respectively, and ⇠ 5 ⇥ 10�5 for ` > 4. Including additional higher-twist
operators (primaries or descendants) in (6.1) and (6.2) does not improve the fit for low
spins, and barely a↵ects it for high spins.

10 20 30 40
h

1.00

1.01

1.02

1.03

1.04
�

�[��]0(h)

Figure 7: A comparison between the analytical prediction (6.5) (blue curve) and numerical
data (blue dots) for ⌧[��]0 . The two agree with accuracy 3 ⇥ 10�3 and 5 ⇥ 10�4 for spins
` = 2, 4, respectively, and ⇠ 5⇥ 10�5 for ` > 4. The grey dashed line is the asymptotic value
⌧ = 2��. The curve (2.3) from [1] looks essentially the same.

6.1.1 Di↵erences from [1]

Let us comment briefly on the (inconsequential) di↵erences between the above calculation
and the series (2.3) computed in [1]. Firstly, we have not included descendants of ✏, T ,

namely terms of the form W (0)����
O,m

and V (0)����
O,m

with m � 1, whereas [1] included descen-
dants at first order in z. This is because it doesn’t make sense to include level-1 descendants
of ✏, T without also including the double-twist operators [✏T ]0, [TT ]0, which contribute at
the same order in the large-h expansion. Also, because we organize everything as a series in
y instead of z, the contributions of descendants will di↵er somewhat (though the sum over
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in interpreting the numerics. Although the numerical spectra include operators O` with
twists ⌧[��]0 , they also sometimes include spurious higher-spin currents J` at the unitarity
bound with small but nonzero OPE coe�cients. Because ⌧[��]0 is close to the unitarity
bound, these spurious operators can “fake” the contribution of O` in the conformal block
expansion.28 The J` are artifacts of the extremal functional method. They should disappear
at su�ciently high derivatives, but working at higher derivatives is not currently feasible.
Instead, we remove them by hand and add their OPE coe�cients to the correct operators
O`. In other words, we use (f 2

��O`
+f 2

��J`
)1/2 as our numerical prediction for f��[��]0 . Indeed,

the numerical errors in in this modified quantity are smaller than the errors in f��J` , and
the results agree beautifully with the analytical prediction. We show numerical data both
before and after the modification in figure 9.

0 10 20 30 40
h

0.995

1.000

1.005

1.010

1.015

f��[��]0/fMFT
f��[��]0 normalized by MFT

Figure 9: A comparison between the analytical prediction (6.6) and numerics for
f��[��]0 , both normalized by dividing by the Mean Field Theory OPE coe�cients fMFT =

(2S�2h�(h))
1/2. We show two sets of numerical data. The orange series gives the OPE

coe�cients of the operators O` with twist closest to ⌧[��]0 for each spin `. The blue series

combines the contributions of O` and spurious higher-spin currents J` into (f2
��O`

+ f
2
��J`

)1/2.
The latter quantities have smaller errors and better match the analytical prediction. The fact
that the errors shrink after this modification supports the idea that the correct OPE coe�cient
is being shared between the real operators O` and “fake” operators J`.

The leading contribution to the OPE coe�cients �✏✏[��]0 comes from �-exchange in the

28Higher spin currents are disallowed in interacting CFTs [84–87].
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numerics/analytics for f��[��]0

Figure 12: Ratios n/a of numerical results to the analytical prediction (6.1, 6.31) for f✏✏[��]0 .

(One must multiply by the Jacobian @h

@`
to relate f✏✏[��]0 to �✏✏[��]0 .) As in figure 9, we show

two sets of numerical data. The orange series are the raw OPE coe�cients f✏✏O` of operators
with twists ⌧[��]0 . The blue series are the improved coe�cients (f2

✏✏O`
+ f

2
✏✏J`

)1/2 discussed in
section 6.1.

From the above, we can read o↵ the contributions to ��✏[�✏]0 and �[�✏]0 from exchange of the
family [��]0. Including also the corrections from exchange of ✏ and Tµ⌫ , we have

�2
�✏[�✏]0 ⇡ Sh�✏,h✏�

�h��h✏
(h) + (�1)`f 2

��✏
W (0)�✏�✏

�,0 (h)

+ f��✏f✏✏✏W
(0)�✏✏�
✏,0 (h) + f��Tf✏✏TW

(0)�✏✏�
T,0 (h)

+

✓
�2f 2

��T
f 2
��✏

�(2hT )�(2h�)3�(h✏ � hT )2�(2h✏ � 2h�)

�(hT )2�(h✏)4�(2h� � hT )2
�even
0 [ShT�h✏ ](2h� + 4)

�2f 4
��✏

�(2h✏)�(2h�)3�(2h✏ � 2h�)

�(h✏)6�(2h� � h✏)2
B0(2h� + 4)

◆
@

@a
Sh�✏,h✏�

h��h✏+a
(h)

����
a=0

,

(6.33)

�2
�✏[�✏]0�[�✏]0 ⇡ (�1)`f 2

��✏
V (0)�✏�✏
�,0 (h)

+ f��✏f✏✏✏V
(0)�✏✏�
✏,0 (h) + f��Tf✏✏TV

(0)�✏✏�
T,0 (h)

+

✓
�2f 2

��T
f 2
��✏

�(2hT )�(2h�)3�(h✏ � hT )2�(2h✏ � 2h�)

�(hT )2�(h✏)4�(2h� � hT )2
↵even
0 [ShT�h✏ ](2h� + 4)

�2f 4
��✏

�(2h✏)�(2h�)3�(2h✏ � 2h�)

�(h✏)6�(2h� � h✏)2
A0(2h� + 4)

◆
@

@a
Sh�✏,h✏�

h��h✏+a
(h)

����
a=0

.

(6.34)41





6.2.3 Comparison to numerics

We plot the twists ⌧[�✏]0 = �� + �✏ + 2�[�✏]0 in figure 13 and OPE coe�cients f�✏[�✏]0 in
figure 14, comparing the formulae (6.33) and (6.34) to numerical results. In both cases,
analytics matches numerics to high precision (⇠ 10�4) at large h, and moderate precision
(< 10�2) for all h. The agreement is particularly impressive because the corrections are
large compared to Mean Field Theory, in contrast to the case of [��]0. Correctly summing
the family [��]0 is crucial for achieving this.

10 20 30 40
h

1.7

1.8

1.9

2.0

2.1

2.2
�

�[��]0(h)

Figure 13: Comparison between numerical data and the analytical prediction (6.33, 6.34) for
⌧[�✏]0 . The blue curve and points correspond to even-spin operators and the orange curve and
points correspond to odd-spin operators. The dashed line is the asymptotic value ⌧ = ��+�✏.

7 Operator mixing and the twist Hamiltonian

7.1 Allowing for mixing

The naive large-h expansion of section 5 describes the operators [��]0 and [�✏]0 nicely.
However, it fails badly for [��]1 and [✏✏]0. As mentioned in the introduction, the numerics
indicate large mixing between these families. As a striking illustration, we plot the ratios
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f��[��]0/fMFT

f��[��]0 normalized by MFT

Figure 14: Comparison between numerical data and the analytical prediction (6.33) for

f�✏[�✏]0 , both divided by the Mean Field Theory OPE coe�cients fMFT = S
h�✏,h✏�
�h��h✏

(h)1/2. The
blue curve and points correspond to even-spin operators and the orange curve and points
correspond to odd-spin operators.

f✏✏[✏✏]0/fMFT and f✏✏[��]1/fMFT in figure 19. (We define [✏✏]0 as the operator with lower twist.)
For spins ` . 20, the coe�cient f✏✏[��]1 is actually larger than f✏✏[✏✏]0 .

One might guess that the asymptotic large-h expansion simply breaks down earlier for
these operators — that it just doesn’t work for ` . 40. This turns out to be false. In
this section, we give a procedure that extends the validity of the large-h expansion down to
smaller values of h.

The key idea is to relax the assumption from section 5.3 that the double-twist operators
[ij]n on one side of the crossing equation map only to terms of the form yhi+hj+k on the
other side. Instead, we will compute a fully y-dependent asymptotic expansion in h and
identify operators by diagonalizing an e↵ective “twist Hamiltonian.”

Let

H(h) =

0

@
h[��]0(h) 0 0

0 h[��]1(h) 0
0 0 h[✏✏]0(h)

1

A , (7.1)

⇤(h) =

✓
���[��]0(h) ���[��]1(h) ���[✏✏]0(h)
�✏✏[��]0(h) �✏✏[��]1(h) �✏✏[✏✏]0(h)

◆
. (7.2)
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4.0
�

�[��]0(h) and �[��]1(h)

Figure 17: Comparison between numerical data and analytical predictions for ⌧[��]1 (blue)
and ⌧[✏✏]0 (orange). Solid lines correspond to y0 = 0.1, and dotted lines correspond to y0 = 0.02.

The orange curve ramps up sharply (moving from right to left) near h ⇡ 3.4 because M(y0, h)
becomes degenerate there. This coincides with the lower end of the family [✏✏]0.

8 Tying the knot

8.1 Where’s the magic?

By matching Casimir-singular terms on one side of the crossing equation to asymptotic
large-h expansions on the other, we can systematically solve the crossing equations order-
by-order in y, y. In particular, we can reproduce a conformal block on one side with a
particular large-h expansion on the other side. Our techniques for summing over twist
families remove the di�culties associated with accumulation points in twist space.39 If this
order-by-order solution to crossing is systematic, where are the nontrivial constraints on the
spectrum?

Note that the asymptotic large-h expansion misses terms that are Casimir-regular in
both channels. That is, terms that are both Casimir-regular in y and Casimir-regular in y.

39See [66, 67] for another approach to this problem.
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O Z2 ` � ⌧ = �� ` f��O f✏✏O

✏ + 0 1.412625(10) 1.412625(10) 1.0518537(41) 1.532435(19)
✏
0 + 0 3.82968(23) 3.82968(23) 0.053012(55) 1.5360(16)

+ 0 6.8956(43) 6.8956(43) 0.0007338(31) 0.1279(17)
+ 0 7.2535(51) 7.2535(51) 0.000162(12) 0.1874(31)

Tµ⌫ + 2 3 1 0.32613776(45) 0.8891471(40)
T
0
µ⌫ + 2 5.50915(44) 3.50915(44) 0.0105745(42) 0.69023(49)

+ 2 7.0758(58) 5.0758(58) 0.0004773(62) 0.21882(73)
Cµ⌫⇢� + 4 5.022665(28) 1.022665(28) 0.069076(43) 0.24792(20)

+ 4 6.42065(64) 2.42065(64) 0.0019552(12) �0.110247(54)
+ 4 7.38568(28) 3.38568(28) 0.00237745(44) 0.22975(10)
+ 6 7.028488(16) 1.028488(16) 0.0157416(41) 0.066136(36)

O Z2 ` � ⌧ = �� ` f�✏O -
� � 0 0.5181489(10) 0.5181489(10) 1.0518537(41)
�
0

� 0 5.2906(11) 5.2906(11) 0.057235(20)
� 2 4.180305(18) 2.180305(18) 0.38915941(81)
� 2 6.9873(53) 4.9873(53) 0.017413(73)
� 3 4.63804(88) 1.63804(88) 0.1385(34)
� 4 6.112674(19) 2.112674(19) 0.1077052(16)
� 5 6.709778(27) 1.709778(27) 0.04191549(88)

Table 2: Stable operators with dimensions �  8. The leftmost column shows the names
of the operators from [20]. Errors in bold are rigorous. All other errors are non-rigorous.
Because we have chosen di↵erent conventions for conformal blocks, our normalization of OPE
coe�cients di↵ers from those in [20, 68] by (A.17).
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Z2 ` � ⌧ = �� ` f��O f✏✏O

+ 2 3 1 0.32613776(45) 0.8891471(40)
+ 4 5.022665(28) 1.022665(28) 0.069076(43) 0.24792(20)
+ 6 7.028488(16) 1.028488(16) 0.0157416(41) 0.066136(36)
+ 8 9.031023(30) 1.031023(30) 0.0036850(54) 0.017318(30)
+ 10 11.0324141(99) 1.0324141(99) 0.00087562(13) 0.0044811(15)
+ 12 13.033286(12) 1.033286(12) 0.000209920(37) 0.00115174(59)
+ 14 15.033838(15) 1.033838(15) 0.000050650(99) 0.00029484(56)
+ 16 17.034258(34) 1.034258(34) 0.000012280(18) 0.00007517(18)
+ 18 19.034564(12) 1.034564(12) 2.98935(46) · 10�6 0.0000191408(89)
+ 20 21.0347884(84) 1.0347884(84) 7.2954(10) · 10�7 4.8632(23) · 10�6

+ 22 23.034983(11) 1.034983(11) 1.78412(27) · 10�7 1.23201(72) · 10�6

+ 24 25.035122(11) 1.035122(11) 4.37261(60) · 10�8 3.1223(15) · 10�7

+ 26 27.035249(11) 1.035249(11) 1.07287(18) · 10�8 7.8948(42) · 10�8

+ 28 29.035344(19) 1.035344(19) 2.6409(19) · 10�9 1.9992(23) · 10�8

+ 30 31.035452(16) 1.035452(16) 6.447(24) · 10�10 5.003(20) · 10�9

+ 32 33.035473(28) 1.035473(28) 1.640(25) · 10�10 1.308(21) · 10�9

+ 34 35.035632(67) 1.035632(67) 3.58(22) · 10�11 2.90(19) · 10�10

+ 36 37.035610(41) 1.035610(41) 1.15(13) · 10�11 9.6(11) · 10�11

+ 38 39.035638(58) 1.035638(58) 2.26(71) · 10�12 1.93(60) · 10�11

+ 40 41.03564(13) 1.03564(13) 7.3(15) · 10�13 6.3(13) · 10�12

Table 3: Operators in the family [��]0. The first line is the stress tensor Tµ⌫ .

We must now regularize the sum over h. Using @h

@`
= 1 + @�

@h0
, one can show

@h

@`
p(h)

 
�
�(2h)

�(h)

2

T�k�1(h)

!
=

1X

m=0

@m

h0

✓
p(h0 + `)

�(h0 + `)m

m!

✓
�
�(2(h0 + `))

�(h0 + `)2
T�k�1(h0 + `)

◆◆
.

(B.5)

Now form the asymptotic expansions

p(h)
�(h)m

m!
⇠

X

a2Am

c(m)
a

Sa(h). (B.6)

with coe�cients c(m)
a and sets Am. (When m = 0, these reduce to ca and A above.) Note

that ��(2h)
�(h)2Sa(h) = (1� 2h)Ta(h) ⇠ h�2a�1. The derivative @h0 decreases degree in ` by 1.

Thus, the combination

fk(`, h0) ⌘

@h

@`
p(h)

 
�
�(2h)

�(h)

2

T�k�1(h)

!
�

MX

m=0

X

a2Am
ak�m/2

c(m)
a

@m

h0
((1� 2(h0 + `))Ta(h0 + `)T�k�1(h0 + `))

(B.7)
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Z2 ` � ⌧ = �� ` f��O f✏✏O

+ 4 6.42065(64) 2.42065(64) 0.0019552(12) �0.110247(54)
+ 6 8.4957(75) 2.4957(75) 0.000472(49) �0.0431(48)
+ 8 10.562(12) 2.562(12) 0.0001084(69) �0.0139(11)
+ 10 12.5659(57) 2.5659(57) 0.00002598(39) �0.004437(62)
+ 12 14.633(21) 2.633(21) 6.10(33) · 10�6

�0.001224(60)
+ 14 16.6174(75) 2.6174(75) 1.417(34) · 10�6

�0.0003791(54)
+ 16 18.678(24) 2.678(24) 3.547(59) · 10�7

�0.0000972(64)
+ 18 20.654(22) 2.654(22) 7.99(90) · 10�8

�0.0000284(26)
+ 20 22.651(27) 2.651(27) 1.83(13) · 10�8

�7.58(47) · 10�6

+ 22 24.671(18) 2.671(18) 4.55(72) · 10�9
�2.09(19) · 10�6

+ 24 26.681(20) 2.681(20) 1.168(29) · 10�9
�5.67(17) · 10�7

+ 26 28.706(24) 2.706(24) 2.81(17) · 10�10
�1.49(11) · 10�7

+ 28 30.6923(81) 2.6923(81) 6.69(36) · 10�11
�4.162(88) · 10�8

+ 30 32.702(11) 2.702(11) 1.62(16) · 10�11
�1.066(59) · 10�8

+ 32 34.718(17) 2.718(17) 4.15(42) · 10�12
�2.83(18) · 10�9

+ 34 36.717(16) 2.717(16) 9.44(77) · 10�13
�7.33(59) · 10�10

+ 36 38.697(17) 2.697(17) 2.40(39) · 10�13
�2.12(34) · 10�10

+ 38 40.701(19) 2.701(19) 5.4(17) · 10�14
�5.2(15) · 10�11

+ 40 42.726(18) 2.726(18) 1.59(49) · 10�14
�1.55(48) · 10�11

+ 42 44.729(15) 2.729(15) 4.2(12) · 10�15
�4.4(11) · 10�12

Table 4: Operators in the family [✏✏]0.

falls o↵ faster than `�1, so its sum over ` converges. Here, we must choose M so that
min(Am) � k �m/2 for all m > M . If � approaches zero as h ! 1, it is su�cient to take
M � 2k � 2min(A).

Summing (B.7) over ` and adding back the regularized sum of the subtractions, we find

↵k[p, �](h0) =
MX

m=0

X

a2Am
ak�m/2

c(m)
a

@m

h0
Aa,�k�1(h0) +

1X

`=0

fk(`, h0). (B.8)

Note that fk(`, h0) as we’ve defined it is analytic in k, so we can form the derivative
�k[p, �](h0). The above result generalizes easily to the case of alternating or even sums, where
we must simply replace A ! A

� or A ! A
even and modify the sum over ` appropriately.

B.1 Special cancellations between singular and regular parts

We sometimes encounter sums where both the Casimir-singular and Casimir-regular part
naively diverge, but the divergences cancel to leave a finite quantity. This occurs in sums over
un-mixed blocks with coe�cients lim✏!0 �(�✏)2S✏(h) and in sums over mixed blocks with
coe�cients �(�✏)Sr,s

✏�r(h). In such sums, the naive Casimir-singular parts are proportional
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Z2 ` � ⌧ = �� ` f��O f✏✏O

+ 0 3.82968(23) 3.82968(23) 0.053012(55) 1.5360(16)
+ 2 5.50915(44) 3.50915(44) 0.0105745(42) 0.69023(49)
+ 4 7.38568(28) 3.38568(28) 0.00237745(44) 0.22975(10)
+ 6 9.32032(34) 3.32032(34) 0.00055657(42) 0.06949(11)
+ 8 11.2751(24) 3.2751(24) 0.00013251(91) 0.01980(15)
+ 10 13.2410(10) 3.2410(10) 0.00003234(15) 0.005459(39)
+ 12 15.2301(64) 3.2301(64) 7.64(14) · 10�6 0.001538(22)
+ 14 17.1944(55) 3.1944(55) 1.930(46) · 10�6 0.000386(14)
+ 16 19.1950(62) 3.1950(62) 4.568(72) · 10�7 0.0001107(16)
+ 18 21.1720(23) 3.1720(23) 1.153(27) · 10�7 0.00002798(33)
+ 20 23.167(10) 3.167(10) 2.74(11) · 10�8 7.45(52) · 10�6

+ 22 25.163(10) 3.163(10) 6.88(22) · 10�9 1.937(51) · 10�6

+ 24 27.1491(82) 3.1491(82) 1.716(45) · 10�9 4.92(42) · 10�7

+ 26 29.1460(53) 3.1460(53) 4.183(78) · 10�10 1.347(62) · 10�7

+ 28 31.1306(52) 3.1306(52) 1.056(50) · 10�10 3.35(10) · 10�8

+ 30 33.126(12) 3.126(12) 2.54(10) · 10�11 8.35(42) · 10�9

+ 32 35.1299(77) 3.1299(77) 6.71(17) · 10�12 2.36(13) · 10�9

+ 34 37.1174(64) 3.1174(64) 1.39(14) · 10�12 4.87(48) · 10�10

+ 36 39.1079(78) 3.1079(78) 4.84(56) · 10�13 1.70(17) · 10�10

+ 38 41.101(29) 3.101(29) 8.4(28) · 10�14 2.5(11) · 10�11

+ 40 43.102(18) 3.102(18) 2.63(64) · 10�14 9.0(26) · 10�12

+ 42 45.116(27) 3.116(27) 7.9(22) · 10�15 3.42(95) · 10�12

Table 5: Operators in the family [��]1.
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Z2 ` � ⌧ = �� ` f�✏O

� 2 4.180305(18) 2.180305(18) 0.38915941(81)
� 3 4.63804(88) 1.63804(88) 0.1385(34)
� 4 6.112674(19) 2.112674(19) 0.1077052(16)
� 5 6.709778(27) 1.709778(27) 0.04191549(88)
� 6 8.08097(25) 2.08097(25) 0.0286902(80)
� 7 8.747293(56) 1.747293(56) 0.01161255(13)
� 8 10.0623(29) 2.0623(29) 0.00745(21)
� 9 10.77075(36) 1.77075(36) 0.003115(12)
� 10 12.0492(18) 2.0492(18) 0.001940(19)
� 11 12.787668(92) 1.787668(92) 0.000823634(82)
� 12 14.0383(33) 2.0383(33) 0.0004983(88)
� 13 14.80006(51) 1.80006(51) 0.0002150(10)
� 14 16.0305(12) 2.0305(12) 0.0001291(12)
� 15 16.81009(16) 1.81009(16) 0.000055870(15)
� 16 18.025(11) 2.025(11) 0.0000313(30)
� 17 18.81794(18) 1.81794(18) 0.0000144219(91)
� 18 20.01947(94) 2.01947(94) 8.442(28) · 10�6

� 19 20.8246(11) 1.8246(11) 3.690(54) · 10�6

� 20 22.0152(36) 2.0152(36) 2.131(28) · 10�6

� 21 22.83035(11) 1.83035(11) 9.5120(13) · 10�7

� 22 24.01143(53) 2.01143(53) 5.4746(61) · 10�7

� 23 24.83518(65) 1.83518(65) 2.428(11) · 10�7

� 24 26.00809(94) 2.00809(94) 1.3908(17) · 10�7

� 25 26.8394(13) 1.8394(13) 6.16(18) · 10�8

� 26 28.0045(17) 2.0045(17) 3.523(20) · 10�8

� 27 28.84330(31) 1.84330(31) 1.5809(50) · 10�8

� 28 30.0042(38) 2.0042(38) 8.86(18) · 10�9

� 29 30.84667(23) 1.84667(23) 4.0311(33) · 10�9

� 30 31.99996(74) 1.99996(74) 2.2555(81) · 10�9

� 31 32.84955(61) 1.84955(61) 1.0144(28) · 10�9

� 32 33.9976(28) 1.9976(28) 5.82(11) · 10�10

� 33 34.85245(50) 1.85245(50) 2.669(34) · 10�10

� 34 35.99600(99) 1.99600(99) 1.374(72) · 10�10

� 35 36.85548(90) 1.85548(90) 5.94(34) · 10�11

� 36 37.9939(12) 1.9939(12) 4.02(45) · 10�11

� 37 38.85691(49) 1.85691(49) 1.99(19) · 10�11

� 38 39.9895(17) 1.9895(17) 9.5(18) · 10�12

� 39 40.8583(11) 1.8583(11) 3.7(13) · 10�12

� 40 41.9886(15) 1.9886(15) 2.50(96) · 10�12

� 41 42.8607(14) 1.8607(14) 1.32(24) · 10�12

� 42 43.9915(21) 1.9915(21) 7.9(19) · 10�13

Table 6: Operators in the family [�✏]0.
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Z2 ` � ⌧ = �� ` f��O f✏✏O

+ 0 1.412625(10) 1.412625(10) 1.0518537(41) 1.532435(19)
+ 2 7.0758(58) 5.0758(58) 0.0004773(62) 0.21882(73)
+ 4 8.9410(99) 4.9410(99) 0.0001173(21) 0.08635(18)
+ 6 10.975(13) 4.975(13) 0.00002437(59) 0.02775(17)
+ 0 6.8956(43) 6.8956(43) 0.0007338(31) 0.1279(17)
+ 0 7.2535(51) 7.2535(51) 0.000162(12) 0.1874(31)

Z2 ` � ⌧ = �� ` f�✏O -
� 0 0.5181489(10) 0.5181489(10) 1.0518537(41)
� 0 5.2906(11) 5.2906(11) 0.057235(20)
� 2 6.9873(53) 4.9873(53) 0.017413(73)

Table 7: Stable operators not in one of the families [��]0, [✏✏]0, [��]1, [�✏]0. Errors in bold
are rigorous. All other errors are non-rigorous.

to
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or in the case of mixed blocks

lim
✏!0

�(�✏)y✏�r = �y�r log y � lim
✏!0

y�r

✓
1

✏
+ �

◆
. (B.10)

We define regularized quantities ↵k by replacing S0(h) ! S✏(h) and Sr,s

�r(h) ! Sr,s

✏�r(h),
adding the quantities in parentheses in (B.9) or (B.10) to ↵k, and then taking the limit
✏ ! 0. Examples of this procedure are given in (6.22) and (6.29). In general, we must
apply it whenever the asymptotic large-h expansion of p(h) contains terms of the form
lim✏!0 �(�✏)2S✏(h) or �(�✏)Sr,s

✏�r(h).

C Box diagrams

We claim that the Casimir-singular part of the box diagram in figure 21 is the same whether
we read the diagram from left-to-right or bottom-to-top. Consequently, the Casimir-singular
part of the sum of box diagrams over all possible internal legs is crossing-symmetric.51

We can regard any CFT as a 2d theory with SL(2,R) ⇥ SL(2,R) symmetry. If our
claim holds in 2d, it holds in general dimensions. A benefit of working in 2d is that tensor
structures are extremely simple, so we can prove the claim for external operators of any
spin (not just scalars).

51This is equivalent to the claim that exponentiation of the twist Hamiltonian in section 7 is consistent
with crossing-symmetry at asymptotically large spin, to second order.
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Non-gaussianity

Recent progress in the conformal bootstrap has dramatically improved our knowledge about
the critical point of the 3d Ising model. The leading critical exponents are now known with 10�6

accuracy. Scaling dimensions of a dozen operators appearing in the operator product expansion
(OPE) of the leading scalars are also precisely known, together with their OPE coe�cients.

One interesting observable in the Ising model is the four point (4pt) correlation function of the
spin field �(x). In the continuum limit and at the critical point, this 4pt function is constrained
by conformal invariance to have the form1

h�1�2�3�4i =
g(u, v)

|x1 � x2|
2�� |x3 � x4|

2��
, (1)

where �� = 0.5181489(10) [1] is the scaling dimension of � and u, v are the conformally invariant
cross-ratios: u = (x2

12x
2
34)/(x

2
13x

2
24), v = u|1$3, xij ⌘ xi�xj. The function g(u, v) can be expanded

in conformal blocks. This expansion, which will be reviewed below, is rapidly convergent, and
many initial terms in it are precisely known thanks to the above-mentioned conformal bootstrap
results. As a result, the four point function in the critical 3d Ising model is known in any Euclidean
kinematic configuration with a percent accuracy or better.

In this note we would like to use this newly acquired knowledge to study the strength of
non-gaussianity of the critical 3d Ising model. Namely, we will study the quantity

Q(1, 2, 3, 4) =
h�1�2�3�4i

h�1�2ih�3�4i+ h�1�3ih�2�4i+ h�1�4ih�2�3i
, (2)

where in the denominator we put the “gaussian” part of the 4pt function, that is, the sum of three
Wick contractions. In a gaussian theory Q = 1, and we would like to see how strongly Q deviates
from 1 in the critical 3d Ising model.

Because of conformal invariance, at the critical point Q depends only on the cross-ratios u, v:

Q =
g(u, v)

1 + u�� + (u/v)��
. (3)

It’s also convenient to apply a conformal transformation which puts all 4 points xi into a single
plane and, within this plane, assigns them to 0, z, 1,1 (in this order). In these coordinates we
have u = |z|

2, v = |1� z|
2 and

Q =
g(z, z̄)

1 + |z|2�� + (|z|/|1� z|)2��
. (4)

We can plot Q as a function of z in the complex plane. Q is symmetric with respect to z ! 1� z

(x1 $ x3), and z ! 1/z (x1 $ x4). A fundamental domain with respect to these two symmetries
is

R = {z 2 C : |z| < 1,<z < 1/2} . (5)

In Fig. 1 we show Q in the region R for the critical 3d Ising model. The 4pt function g(z, z̄)
is computed by summing over the first few conformal blocks using the latest 3d Ising CFT data
reported in [1, 2], see appendix A. The salient features of Q visible from this plot are:

1We use shortened notation writing 1 instead of x1, �1 instead of �(x1) etc.
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Figure 1: Q in critical 3d Ising, plotted in region R.

1. Q ! 1 as z ! 0. This is natural since in this limit g(u, v) ! 1, dominated by the contribution
of the unit operator in the OPE � ⇥ �.

2. Q deviates from 1 significantly. In fact, Q < 0.75 in a large part of R.

3. Qmin ⇡ 0.683, attained at the two corners of the R region, z± = 1/2± i
p
3/2.2

In comparison in Fig. 2 we show Q for the critical 2d Ising model. In 2d �� = 1/8 and the 4pt
function is known exactly [3]:

gd=2(z, z̄) =
|1 +

p
1� z|+ |1�

p
1� z|

2|z|1/4|1� z|1/4
. (6)

In this case Q deviates even more from 1, and plateaus around 0.4 in a large portion of R. The
minimum is

Qmin = 1/
p
6 ⇡ 0.408 (d = 2), (7)

attained at the same corner points z± as before.

On the basis of the above figures, we conclude that the critical 3d Ising model does show
significant non-gaussianity. The non-gaussianity of the critical 2d model is even larger. Recall that
the Wilson-Fisher fixed points interpolate between the Ising model critical points in dimensions
2 6 d < 4, becoming weakly coupled as d ! 4. This is compatible with the above finding.

The non-gaussianity of the 3d Ising model is a property which any attempted analytical
approach to it will have to keep in mind. It’s often said that the critical 3d Ising is special
because the anomalous dimension of � is small. It is also sometimes said that it might have a
weakly broken higher spin symmetry, because the higher spin currents also have a small anomalous
dimension. For example, the spin 4 current anomalous dimension is 0.02274(4) [4]. However, as
is clear from our study, in spite of these small anomalous dimensions, the theory does manage to

2For this z, the 4pt configuration 0, z, 1, 1 can be conformally mapped onto a rhombus with angles ⇡/6, 5⇡/6.
On the Riemann sphere, the same configuration can be mapped to four points equally spaced at the corners of a
tetrahedron. This makes it clear why u = v = 1 – all the points are the same distance apart.

3

Figure 2: Q in critical 2d Ising, plotted in region R.

deviate significantly from its gaussian approximation, so the breaking is not weak. This is certainly
related to the fact that there are other operators in the theory whose anomalous dimensions are
not small, of which ✏ is the prime example. It’s an interesting open question if one can build an
e�cient approximation scheme incorporating both the sectors with small and with large anomalous
dimensions. Some steps in this direction were taken in [5].

We would like to conclude this note by making contact with a curious result about the Q ratio
in the 3d Ising model as defined on the lattice. Namely, it can be shown that [6]

Q =
1

1 + 2p
, (8)

where p = p(1, 2, 3, 4) is a quantity which has probabilistic interpretation for certain curves on
the lattice (closely related to high-temperature expansion graphs), so 0 6 p 6 1. In particular we
have:

1/3 6 Q 6 1 . (9)

The upper limit is known as the Lebowitz inequality [7], and we will call the lower limit the
Aizenman inequality. For completeness, we review the derivation in appendix B. This lattice
result is valid:

• in an arbitrary but finite volume with free boundary conditions,

• for any number of dimensions,

• at any temperature.

Passing to the continuum and the infinite volume limit and specializing to the critical temperature,
we conclude that the same inequality (9) has to be satisfied by the critical 4pt function. It is then
comforting that the plots of Q given above are compatible with this two-sided inequality, in both 2d
and 3d. These plots can also be seen as a prediction for the probability p, whose precise definition
is in Eq. (B.11).
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