ThomX : Optimisation of ring injection

Presentation by Alexandre Moutardier (09/04/2020)

How to optimise the number of particles injected in the ThomX ring

Two paths are followed:

- Identify the orbits that lead to particles being injected in the ring (with MadX)
- Calculate semi-analytically the effect of the TL correctors on the orbit of the particles at the beginning of the ring (with Matlab)

Transfer line (TL) parameters were proposed by:

- Ezgi E. using Codal (Lattice_TL+extract.xlsx, 10/03/2020)
- Alexandre L. using Beta (TDR version)

Ring parameters were proposed by:

- Iryna using AT (lattice_ring_AT_14102019.txt, 14/10/2019)

Denomination

(based on ThomX nomenclature)
DP = dipole
Str = steerer
SST = screen
Transfer line
QP = quadrupole
BPM = Beam Position Monitor
Ring

Computer algebra

- Calculation of propagation of a 6D vector (x,px,y,py,z,pz) along the TL
- Simulation of a steerer using small angle approximation of a dipole's transfer matrix

We assume that a particle deflected by the steerer deviates from the ideal orbit

- Use of first order transfer matrix for other elements (based on Trace3D documentation, cf appendix)
- Use of Ezgi's set of quadrupole strength values for TL (see slide 9)

Particle propagation from Str 4 to

- γ the Lorentz factor
- $\operatorname{Dev} 4_{x}$ the deviation in x-plane ie: $\mathrm{Px} \rightarrow \mathrm{Px}+\mathrm{Dev} 4_{\mathrm{x}}{ }^{*} \mathrm{Pz}$
- Dev4 ${ }_{\mathrm{y}}$ the deviation in y-plane ie: Py \rightarrow Py $+\operatorname{Dev4}{ }_{y}{ }^{*} P z$

Analytical calculation : first result

Analytical calculation : Analysis

- Steerer's effect:
$\Delta x \sim 2,60 \operatorname{dev} 4_{x}{ }^{*} P_{z}$
$\Delta y \sim 3,01 \operatorname{dev} 4 y{ }^{*} P_{z}$
- Same algebraïc equation can be computed everywhere on the line
- Lots of constants can be changed or set as analytics parameters like quadrupole forces
- Some corrections have yet to be done on the injection in the ring

Beam simulation along the transfer line

- TL simulation to understand which orbits enter the ring done with madX
- Study of the Beta-function and tracking of the particles

MadX simulation : TL lattice

MadX simulation : Ring lattice

MadX simulation : full ring (two periods)

Beta simulation (Alexandre L.) : One period

More details on the transfer line

Value matching according to Ezgi

βx at start	43.25 m	K for QP2	$10.473 \mathrm{~m}^{-2}$
βy at start	43.13 m	K for QP3	$-10.170 \mathrm{~m}^{-2}$
αx at start	-11.00	K for QP4	$5.634 \mathrm{~m}^{-2}$
ay at start	-10.97	K for QP5	$5.267 \mathrm{~m}^{-2}$
Δp at start	1 MeV	K for QP6	$-10.409 \mathrm{~m}^{-2}$
K for QP1	$-0.265 \mathrm{~m}^{-2}$	K for QP7	$11.011 \mathrm{~m}^{-2}$

Beta-function along the TL

- Focal point at the position of screen 3
- High divergence at the end
- Beam wider than higher

Beam acceptance calculation

- Tracking of particles done on madX
- Taking 10^{4} particles within a beam 10 times larger than the beam defined by Ezgi
- Check at the entrance of each element if the particles go on the pipe and exclude them
- Plot the initial position of the particles that are going from start to end of the TL without being excluded

Maximal possible size at start

- Beam acceptance on TL:
- 6 mm in x
- 4.5 mm in y

Acceptance losses along the TL

- lots of losses between dipole 3 and quadrupole 6
- check aperture on dipole
- ~1/7 of particles passing

Projection of particles passing through TL at screen 1

Can be used to caracterize the beam before turning on the dipole

Value matching according to Alexandre L.

βx at start	34.46 m	K for QP2	$9.829 \mathrm{~m}^{-2}$
βy at start	33.96 m	K for QP3	$-9.666 \mathrm{~m}^{-2}$
αx at start	-4.24	K for QP4	$5.831 \mathrm{~m}^{-2}$
αy at start	-4.34	K for QP5	$5.353 \mathrm{~m}^{-2}$
Δp at start	1 MeV	K for QP6	$-10.821 \mathrm{~m}^{-2}$
K for QP1	$-0.048 \mathrm{~m}^{-2}$	K for QP7	$10.872 \mathrm{~m}^{-2}$

Ezgi vs Alexandre L.

Ezgi's case :

- Divergence higher
- Focal point at the position of screen 3
- Beam wider than higher

Alexandre L.'s case :

- Beam smaller than Ezgi nearly everywhere
- Initial beam smaller and less divergent
- Beam higher than wider

Alexandre L. matching

- Same study has been done and results are pretty much the same
- A little larger losses acceptance
- Beam smaller (even initialy)
- A little less losses but at the same place

Conclusion

- First analytical calculations have been done to caracterize the effect of the steerers on the beam position
- Some improvements have to be done to correctly simulate the injection on the ring
- My simulations under MadX are in good agreement with those of Ezgi and Alexandre L. however some minor differences are still to be understood
- Two different matchings of TL have been tested and in first approximation Alexandre L.'s matching seem to have a larger acceptance (to be discussed)
- Good agreement between the MadX and AT simulations of the ring

Next step

- Take into account off-axis elements in injection in both codes
- ThomX lattice implemented, ready to work on injection
- Simulate ring injection
- Simulate ring injection with kicker that does not kick well to see what happens when the kick is insufficient

Appendix

Transfer matrix of dipole (length L)

$$
M=\left|\begin{array}{llllll}
1 & L & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & L & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \frac{L}{\gamma^{2}} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right|
$$

Transfer matrix of quadrupole (length L , strength k)

$F=\left(\begin{array}{cc}\cos (k L) & \frac{1}{L} \sin (k L) \\ -k \sin (k L) & \cos (k l)\end{array}\right), D=\left(\begin{array}{cc}\cosh (k L) & \frac{1}{L} \sinh (k L) \\ k \sinh (k L) & \cosh (k l)\end{array}\right), R_{z z}=\left(\begin{array}{ll}1 & \frac{L}{\gamma^{2}} \\ 0 & 1\end{array}\right)$

- F is the sub-matrix in the focal plane
- D is the bus-matrix in the defocal plane
- R_{zz} is the sub-matrix in the longitudinal plane
- No couplage between planes

Transfer matrix of bending magnet

- Cf : TRACE 3-D Documentation, K. R. Crandall and D. P. Rusthoi, Third Edition (LA-UR-97-886), May 1997, Los Alamos National Laboratory
- Page 14
- https://laacg.lanl.gov/laacg/services/traceman.pdf

Transfer matrix of steerer

- length L
- deviation in x-plane : Dev_x
- deviation in y-plane : Dev_y

Comparison Ezgi/Alexandre matching

βx	43.25 m	K for QP2	$10.473 \mathrm{~m}^{-2}$
βy	43.13 m	K for QP3	$-10.170 \mathrm{~m}^{-2}$
$\alpha \mathrm{X}$	-11.00	K for QP4	$5.634 \mathrm{~m}^{-2}$
ay	-10.97	K for QP5	$5.267 \mathrm{~m}^{-2}$
Δp	1 MeV	K for QP6	$-10.409 \mathrm{~m}^{-2}$
K for QP1	$-0.265 \mathrm{~m}^{-2}$	K for QP7	$11.011 \mathrm{~m}^{-2}$

βx	34.46 m	K for QP2	$9.829 \mathrm{~m}^{-2}$
βy	33.96 m	K for QP3	$-9.666 \mathrm{~m}^{-2}$
αx	-4.24	K for QP4	$5.831 \mathrm{~m}^{-2}$
αy	-4.34	K for QP5	$5.353 \mathrm{~m}^{-2}$
Δp	1 MeV	K for QP6	$-10.821 \mathrm{~m}^{-2}$
K for QP1	$-0.048 \mathrm{~m}^{-2}$	K for QP7	$10.872 \mathrm{~m}^{-2}$

Beam acceptance calculation

- Tracking of particles done on madX
- Taking 10^{4} particles within a beam 10 times larger than the beam defined by Alexandre L. and Ezgi
- Check at the entrance of each element if the particles go on the pipe and exclude them
- Plot the initial position of the particles that are going from start to end of the TL without being excluded

Comparison : Maximal size at start

Ezgi

Alexandre L.

- Larger beam at start can go to the end in Alexandre L. case
- Beam acceptance on TL: around 5 mm in x and y

Comparison : acceptance losses Ezgi along the $\mathrm{TL}_{\text {Alexandre }} \mathrm{L}$.

- Lower losses in Alexandre L.'s case
- In both cases: lots of losses between dipole 3 and quadrupole 6 (check apperture on dipole)

Projection of particles passing through TL at screen 1

Ezgi

Alexandre L.

Can be used to caracterize the beam before turning on the dipole

