ThomX : Optimisation of ring injection

Presentation by Alexandre Moutardier (09/04/2020)

How to optimise the number of particles injected in the ThomX ring

Two paths are followed:

- Identify the orbits that lead to particles being injected in the ring (with MadX)
- Calculate semi-analytically the effect of the TL correctors on the orbit of the particles at the beginning of the ring (with Matlab)

Transfer line (TL) parameters were proposed by:

- Ezgi E. using Codal (Lattice_TL+extract.xlsx, 10/03/2020)
- Alexandre L. using Beta (TDR version)

Ring parameters were proposed by:

• Iryna using AT (lattice_ring_AT_14102019.txt, 14/10/2019) 09/04/2020 Alexandre Moutardier

Denomination

(based on ThomX nomenclature)

Computer algebra

- Calculation of propagation of a 6D vector (x,px,y,py,z,pz) along the TL
- Simulation of a steerer using small angle approximation of a dipole's transfer matrix

We assume that a particle deflected by the steerer deviates from the ideal orbit

- Use of first order transfer matrix for other elements (based on Trace-3D documentation, cf appendix)
- Use of Ezgi's set of quadrupole strength values for TL (see slide 9)

09/04/2020

Alexandre Moutardier

5

Analytical calculation : first result

Analytical calculation : Analysis

• Steerer's effect:

 $\Delta x \sim 2,60 \text{ dev4}_x * P_z$ $\Delta y \sim 3,01 \text{ dev4}_y * P_z$

- Same algebraïc equation can be computed everywhere on the line
- Lots of constants can be changed or set as analytics parameters like quadrupole forces
- Some corrections have yet to be done on the injection in the ring

Beam simulation along the transfer line

• TL simulation to understand which orbits enter the ring done with madX

 Study of the Beta-function and tracking of the particles

MadX simulation : TL lattice

MadX simulation : Ring lattice

MadX simulation : full ring (two periods)

Beta simulation (Alexandre L.) :

09/04/2020

Alexandre Moutardier

More details on the transfer line

source

Value matching according to Ezgi

βx at start	43.25 m	K for QP2	10.473 m ⁻²
βy at start	43.13 m	K for QP3	-10.170 m ⁻²
αx at start	-11.00	K for QP4	5.634 m ⁻²
αy at start	-10.97	K for QP5	5.267 m ⁻²
Δp at start	1 MeV	K for QP6	-10.409 m ⁻²
K for QP1	-0.265 m ⁻²	K for QP7	11.011 m ⁻²
09/04/2020	Alexandre	Moutardier	12

Beam acceptance calculation

- Tracking of particles done on madX
- Taking 10⁴ particles within a beam 10 times larger than the beam defined by Ezgi
- Check at the entrance of each element if the particles go on the pipe and exclude them
- Plot the initial position of the particles that are going from start to end of the TL without being excluded

Maximal possible size at start

- Beam acceptance on TL :
 - 6 mm in x
 - 4.5 mm in y

Alexandre Moutardier

Acceptance losses along the TL

- lots of losses between dipole 3 and quadrupole 6
- check aperture on dipole
- $\sim 1/7$ of particles passing

Projection of particles passing through TL at screen 1

Y as function of X at position tl_dg_sst01_scr01

Can be used to caracterize the beam before turning on the dipole

09/04/2020

Value matching according to Alexandre L.

βx at start	34.46 m	K for QP2	9.829 m ⁻²
βy at start	33.96 m	K for QP3	-9.666 m ⁻²
αx at start	-4.24	K for QP4	5.831 m ⁻²
αy at start	-4.34	K for QP5	5.353 m ⁻²
Δp at start	1 MeV	K for QP6	-10.821 m ⁻²
K for QP1	-0.048 m ⁻²	K for QP7	10.872 m ⁻²

Ezgi vs Alexandre L.

Ezgi's case :

- Divergence higher
- Focal point at the position of screen 3
- · Beam wider than higher

Alexandre L.'s case :

- Beam smaller than Ezgi nearly everywhere
- Initial beam smaller and less divergent
- Beam higher than wider

Alexandre L. matching

- Same study has been done and results are pretty much the same
- A little larger losses acceptance
- Beam smaller (even initialy)
- A little less losses but at the same place

Conclusion

- First analytical calculations have been done to caracterize the effect of the steerers on the beam position
- Some improvements have to be done to correctly simulate the injection on the ring
- My simulations under MadX are in good agreement with those of Ezgi and Alexandre L. however some minor differences are still to be understood
- Two different matchings of TL have been tested and in first approximation Alexandre L.'s matching seem to have a larger acceptance (to be discussed)
- Good agreement between the MadX and AT simulations of the ring

Next step

- Take into account off-axis elements in injection in both codes
- ThomX lattice implemented, ready to work on injection
- Simulate ring injection
- Simulate ring injection with kicker that does not kick well to see what happens when the kick is insufficient

Appendix

Transfer matrix of dipole (length L)

Alexandre Moutardier

Transfer matrix of quadrupole (length L, strength k)

$$F = \begin{pmatrix} \cos(kL) & \frac{1}{L}\sin(kL) \\ -k\sin(kL) & \cos(kl) \end{pmatrix}, D = \begin{pmatrix} \cosh(kL) & \frac{1}{L}\sinh(kL) \\ k\sinh(kL) & \cosh(kl) \end{pmatrix}, R_{zz} = \begin{pmatrix} 1 & \frac{L}{y^2} \\ 0 & 1 \end{pmatrix}$$

- F is the sub-matrix in the focal plane
- D is the bus-matrix in the defocal plane
- $\mathrm{R}_{_{\mathrm{ZZ}}}$ is the sub-matrix in the longitudinal plane
- No couplage between planes

Transfer matrix of bending magnet

- Cf : TRACE 3-D Documentation, K. R. Crandall and D. P. Rusthoi, Third Edition (LA-UR-97-886), May 1997, Los Alamos National Laboratory
- Page 14
- https://laacg.lanl.gov/laacg/services/traceman.pdf

Transfer matrix of steerer

$$M = \begin{bmatrix} 1 & L & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & Dev_x \\ 0 & 0 & 1 & L & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & Dev_y \\ 0 & 0 & 0 & 0 & 1 & \frac{L}{y^2} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- length L
- deviation in x-plane : Dev_x
- deviation in y-plane : Dev_y

Comparison Ezgi/Alexandre matching

βx	43.25 m	K for QP2	10.473 m ⁻²
βy	43.13 m	K for QP3	-10.170 m ⁻²
αχ	-11.00	K for QP4	5.634 m ⁻²
αγ	-10.97	K for QP5	5.267 m ⁻²
∆р	1 MeV	K for QP6	-10.409 m ⁻²
K for QP1	-0.265 m ⁻²	K for QP7	11.011 m ⁻²

βx	34.46 m	K for QP2	9.829 m ⁻²
βy	33.96 m	K for QP3	-9.666 m ⁻²
αχ	-4.24	K for QP4	5.831 m ⁻²
αγ	-4.34	K for QP5	5.353 m ⁻²
Δр	1 MeV	K for QP6	-10.821 m ⁻²
K for QP1	-0.048 m ⁻²	K for QP7	10.872 m ⁻²

09/04/2020

Alexandre Moutardier

Beam acceptance calculation

- Tracking of particles done on madX
- Taking 10⁴ particles within a beam 10 times larger than the beam defined by Alexandre L. and Ezgi
- Check at the entrance of each element if the particles go on the pipe and exclude them
- Plot the initial position of the particles that are going from start to end of the TL without being excluded

Comparison : Maximal size at start

Ezgi

Alexandre L.

- Larger beam at start can go to the end in Alexandre L. case
- Beam acceptance on TL: around 5mm in x and y 09/04/2020 Alexandre Moutardier

Comparison : acceptance losses Ezgi along the TL_{Alexandre L}.

- Lower losses in Alexandre L.'s case
- In both cases: lots of losses between dipole 3 and quadrupole 6 (check apperture on dipole)
 09/04/2020
 Alexandre Moutardier
 31

Projection of particles passing through TL at screen 1

Can be used to caracterize the beam before turning on the dipole

09/04/2020

Alexandre Moutardier